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ABSTRACT
Macroautophagy/autophagy is a physiological mechanism that is essential for the maintenance of
cellular homeostasis and stress adaptation. Defective autophagy is associated with many human
diseases, including cancer and neurodegenerative disorders. The emerging implication of epigenetic
events in the control of the autophagic process opens new avenues of investigation and offers the
opportunity to develop novel therapeutic strategies in diseases associated with dysfunctional
autophagy-lysosomal pathways. Accumulating evidence reveals that several methyltransferases and
demethylases are essential regulators of autophagy, and recent studies have led to the identification
of the lysine demethylase KDM1A/LSD1 as a promising drug target. KDM1A/LSD1 modulates autop-
hagy at multiple levels, participating in the transcriptional control of several downstream effectors.
This review summarizes our current understanding of the role of KDM1A/LSD1 in the autophagy
regulatory network.
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Introduction

Accessibility of promoter elements to the transcriptional
machinery is regulated by post-translational modifications
of histone tails, that modify chromatin structure and
nucleosome organization. Histone methylation, acetyla-
tion, ubiquitination, phosphorylation, sumoylation, and
ADP ribosylation are reversible modifications to endogen-
ous and external stimuli that accommodate transient cel-
lular transcriptional responses [1]. These modifications are
finely and dynamically regulated during cellular processes.
The specificity of the epigenetic pattern is endorsed by the
interactions between histone-modifying enzymes and tran-
scription factors, which strategically recruit specific epige-
netic modifiers to drive the deposition of histone marks at
discrete genetic loci. Such an intricate regulatory network
is essential for physiological responsive activation and/or
repression of genes involved in cell proliferation, embryo-
nic differentiation and homeostatic processes, including
macroautophagy (hereafter called autophagy).

Autophagy is an evolutionarily conserved, lysosomal-
degradative process used for degradation of damaged orga-
nelles and protein aggregates and for recycling of cellular
components [2]. Autophagy represents a major mechanism
for maintaining cellular homeostasis and acts constitutively at
low basal levels, but could be also induced by several stimuli
such as oxidative stress, hypoxia, DNA damage and nutrient
starvation [3]. Given its role in the maintenance of cellular
homeostasis, stress response and cell-fate decision, it is not
surprising that autophagy needs to be tightly controlled.

Regulation of the autophagic process is mostly depen-
dent on the activity of energy and nutrient sensors, such as
MTORC1 (mechanistic target of rapamycin kinase complex
1) and 5ʹ AMP-activated protein kinase (AMPK) [4], that
not only control activation but also regulate the long-term
outcome of autophagy, leading to the specific cytosol-
nucleus shuttling of different transcription factors involved
in the control of lysosome- and autophagy-specific genes,
including the master regulator TFEB (transcription factor
EB) [5]. Over the past several years, a wide number of
transcription factors [6], including the FOXO (forkhead
box O) family members [7], TP53 [8], HIF1A [9,10],
E2F1 [11] and SOX2 [12], have been linked to the control
of autophagy in response to various stresses. These tran-
scription factors likely work in cooperation with epigenetic
modifiers, but our understanding of the integration of epi-
genetic and transcriptional control of autophagy is only at
the beginning [13].

Genome-wide investigations reveal that the autophagic
process encompasses an intricate epigenetic program [14].
Autophagy induction is associated with H4K16 deacetyla-
tion and concomitant downregulation of KAT8/MOF lysine
acetyltransferase. Importantly, H4K16 acetylation status
seems to participate in the autophagic survival-or-death
decision [15], because inhibition of H4K16ac downregula-
tion upon autophagy, by overexpression of KAT8/MOF or
inhibition of its counterpart, SIRT1 (sirtuin 1) deacetylase,
increases autophagic flux and promotes cell death. In par-
allel with the deacetylation of H4K16, a global reduction of
H3K4me3 is observed in both mammalian and yeast cells
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upon autophagy induction [15], in accordance with the
established molecular connection between these histone
marks [16], but responsible regulators have not yet been
uncovered. Glucose starvation increases genome-wide
H3R17 dimethylation, linked to transcriptional activation,
through the stabilization of the H3R17 methyltransferase
CARM1 [17]. H2Bub1 (H2B mono-ubiquitination) is
downregulated during starvation; reduction in H2Bub1
results in autophagy activation, and the de-ubiquitinase
USP44 is likely the cause of the starvation-induced decrease
in H2Bub1 [18]. In yeast, treatment with rapamycin, an
established TOR/MTOR inhibitor, is accompanied by the
reduction of H3K56ac residues [19].

Indeed, changes in protein levels of key histone modifiers,
such as KAT8/MOF [15] and CARM1 [17], occur during
autophagy, leading to global chromatin modulation; conver-
sely, histone modifications have been reported to be actively
involved in long-term modulation of autophagy, driving a
regulatory feedback loop which contributes to the control of
the autophagic flux, metabolic direction and cell-fate decision,
through the transcriptional regulation of autophagy-related
(ATG) genes [13].

Here we provide a comprehensive coverage on the relative
contribution of histone methyltransferases and demethylases in
autophagy regulation, and summarize our current understand-
ing of the emerging role of the lysine-specific demethylase
KDM1A/LSD1 in the autophagy regulatory network. Histone
methyltransferases and demethylases linked to the regulation
of autophagy, with their mode of action, are listed in Table 1.

Regulating autophagy by histone methyltransferases

Enzymatic histone methylation occurs at specific lysine or
arginine residues on histones H3 and H4 and is catalyzed by
lysine methyltransferases and arginine methyltransferases,
with S-adenosyl-L-methionine as cofactor and methyl donor.
Histone methylation can involve the transfer of 1, 2 or 3
methyl groups, resulting in mono-, di-, or tri-methylated
lysine, respectively, and in mono- or di-methylated arginine,
leading to silencing or activation of target gene promoters
[20]. Histone methyltransferases function as regulators of
essential biological processes, such as cell cycle, genome sta-
bility and lineage development, and have emerged as an
integral part of the autophagic process [21].

CARM1 (coactivator associated arginine methyltransferase 1),
which catalyzes histoneH3R17 dimethylation, has a genome-wide
role in regulating the autophagic process and acts as TFEB tran-
scriptional co-activator of autophagy and lysosomal genes upon
glucose starvation [17]. Importantly, the CARM1 level is tightly

regulated by nutrient availability. Under glucose-rich conditions,
nuclear CARM1 is degraded by the SKP2- containing Skp, Cullin,
F-box containing E3 ubiquitin ligase. Glucose starvation results in
AMPK accumulation in the nucleus. Once in the nucleus, AMPK
phosphorylates FOXO3 and positively regulates its transcriptional
activity; FOXO3, in turn, transcriptionally represses SKP2, leading
to CARM1 protein stabilization and subsequent increases in
histone H3R17 dimethylation and autophagy induction
(Figure 1(a)) [17].

While CARM1-dependent H3R17 dimethylation is a tran-
scriptional activation mark for autophagy, H3K9 dimethyla-
tion by EHMT2/G9a and H3K27 trimethylation by EZH2
(enhancer of zeste 2 polycomb repressive complex 2 subunit)
have been reported to suppress expression of genes essential
for the autophagic process, playing an important role in
maintaining autophagy at low basal level under nutrient-rich
conditions.

EZH2 is a histone H3 lysine 27 methyltransferase that acts
as a transcriptional repressor. EZH2 is recruited, via MTA2
(metastasis associated 1 family member 2), to the promoter
region of several MTOR pathway negative regulators, includ-
ing TSC2, DEPTOR, RHOA, and GPI [22]. Thus, transcrip-
tional repression by EZH2 results in MTOR activation and,
consequently, inhibition of autophagy (Figure 1(b)).

EHMT2 methyltransferase associates with the promoter
regions of LCB3, TP53INP2/DOR, and WIPI1 genes, involved
in the autophagic process, and represses their expression [23].
Significantly, EHMT2 is displaced upon the induction of
autophagy by starvation, resulting in decreased H3K9me2
repressive mark level and enhanced ATG gene expression.
Accordingly, pharmacological inhibition or knockdown of
EHMT2 promotes formation of autophagosomes resulting in
the occurrence of autophagy [23].

Recently, it has been reported that the epigenetic reader
BRD4 (bromodomain containing protein 4), interacting with
EHMT2, negatively regulates autophagy and lysosome gene
expression [24]. Under normal conditions, BRD4 binds to the
promoter regions of ATG genes via histone H4K16 acetylation
by KAT8/MOF (Figure 1(b)). Then, BRD4 recruits EHMT2,
which dimethylates H3K9 and represses autophagy gene tran-
scription. During starvation, SIRT1, activated via an AMPK-
cascade, deacetylates H4K16, leading to BRD4 displacement
from ATG gene promoters and consequent denied recruit-
ment of EHMT2, thereby activating autophagy [24].

Regulating autophagy by lysine demethylases

KDMs (lysine demethylases) cluster in the KDM1 subfamily,
containing the lysine-specific demethylase enzymes, and the

Table 1. Histone methyltransferases (HMTs) and lysine demethylases (KDMs) currently known to regulate autophagy.

Epigenetic
enzyme

Histone
target

Effect on gene
expression Mechanism of action

Effect on
autophagy Refs.

HMTs CARM1 H3R17 Activating TFEB transcriptional co-activator of autophagy and lysosomal genes + [17]
EZH2 H3K27 Repressive Repressor of several MTOR pathway negative regulators – [22]

EHMT2/G9a H3K9 Repressive Repressor of transcription of several autophagy-related genes – [23]
KDMs Utx/dUTX H3K27me3 Activating Activator of transcription of several autophagy-related genes + [29]

Rph1/KDM4A H3K36a Repressive Repressor of transcription of several autophagy-related genes – [30]
KDM1A/LSD1 H3K4me1/2 Repressive Repressor of transcription of several autophagy-related genes – [32,34]

aHistone demethylase activity is not required for autophagy regulation
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KDM2-KDM7 subfamilies, consisting of the Jumonji C
domain-containing enzymes [20]. The KDM1 subfamily
members, KDM1A/LSD1 and KDM1B/LSD2, are flavin ade-
nine dinucleotide (FAD)-dependent amine oxidases which
rely on a lone electron pair within the lysine for catalysis
and thereby can catalyze demethylation reactions on only
mono- and di-methylated lysines. In contrast, the Jumonji C
domain-containing KDMs directly oxidize methyl groups and
can demethylate mono-, di-, or tri-methylated lysines [25].
Lysine demethylases are involved in mammalian embryonic
development and cell reprogramming playing an important
role in the regulation of cellular processes essential to cell
plasticity and homeostasis, including autophagy [26].

The H3K27me3 demethylase KDM6A/UTX antagonizes
polycomb-group protein-mediated silencing, in particular
EZH2, by removing the repressive methylation mark from

H3K27me3 and establishing an active chromatin state
[27,28]. It has been reported that the Drosophila KDM6A
ortholog, Utx/dUTX, coordinates temporal regulation of key
apoptosis and autophagy genes, during steroid hormone-
mediated programmed cell death of the salivary glands [29].
Developmental cell death in Drosophila could occur in an
autophagy-dependent manner, and Utx represents a molecu-
lar link between survival versus death during metamorphosis,
modulating expression of both apoptosis and autophagy-
related genes [29].

The H3K36 demethylase Rph1/KDM4A is a transcriptional
negative regulator of several ATG genes and a repressor of
autophagy induction under nutrient-replete conditions,
although its role in autophagy is independent of histone
demethylase activity [30]. Overexpression of Rph1/KDM4A
strongly suppresses autophagy induction after starvation and
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Figure 1. Methyltransferases linked to regulation of autophagy. (a) Starvation results in AMPK-dependent CARM1 protein stabilization and subsequent increases in
histone H3R17 dimethylation and autophagy induction. (b) H3K27 trimethylation by EZH2 represses the expression of several MTOR pathway negative regulators,
resulting in MTOR activation and the consequent inhibition of autophagy. (c) Under nutrient-rich conditions H3K9 dimethylation by EHMT2 suppress expression of
genes essential for the autophagic process, maintaining autophagy at a low basal level. Induction of autophagy by starvation results in EHMT2 displacement,
decreasing the H3K9me2 repressive mark and enhancing ATG gene expression. Dashed arrows indicate repression of gene expression.
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such an effect is highly conserved from yeast to mammals.
Consistently, KDM4A depletion has been reported to pro-
mote autophagy in human cell lines [30,31].

As reported by Bernard and colleagues [30], the DNA
binding domain of Rph1 is necessary for its function in
autophagy, suggesting that Rph1 negatively regulates the
expression of ATG genes by preventing the recruitment of
the transcriptional activators at their promoter regions.
Importantly, phosphorylation of Rph1 is a prerequisite to
the induction of ATG gene transcription and autophagy
upon nutrient limitation, and blocking Rph1 phosphorylation
strongly impairs autophagy induction. Rim15, a protein
kinase that integrates signals from different nutrient sensors,
mediates Rph1 phosphorylation, leading to its partial autop-
hagy-independent protein degradation and inhibition of its
activity [30].

Multiple lines of evidence point to KDM1A as an essential
regulator of autophagy [32–34]. KDM1A can demethylate
mono- and di-, but not tri-methylated, lysines 4 and 9, of
histone H3 [35–37], acting as co-repressor or co-activator in a
target-specific manner [38,39]. KDM1A target specificity is
regulated by its association with different partners. For exam-
ple, when it interacts with transcriptional co-repressors, such
as RCOR/CoREST (REST corepressor), HDAC1/2, CTBP and
NuRD (nucleosome remodeling and deacetylase) complexes,
KDM1A demethylates H3K4me1/2, thus repressing gene tran-
scription [40–42]. In contrast, when KDM1A interacts with
the AR (androgen receptor) and ESR (estrogen receptor)
nuclear hormone receptors, its enzymatic specificity switches
to H3K9me1/2, then promoting transcription [43,44].

KDM1A is essential for mammalian embryonic
development [45] and plays a pivotal role in many important
aspects of cell biology, such as cell proliferation [46], chromo-
some segregation [47], epithelial–mesenchymal transition
[48], spermatogenesis [49], adipogenesis [50], stem cell plur-
ipotency [51] and differentiation [52], and its dysregulation is
often associated with both solid tumors and hematological
malignancies [51].

As described in detail below, a number of studies identified
KDM1A as a critical negative regulator of genes essential for
the autophagic process. Accordingly, inactivation of KDM1A,
by depletion or pharmacological inhibition, induces autop-
hagy in a range of different human cancer cell lines
[32,53–57].

At a mechanistic level, KDM1A acts at several places in the
modulation of autophagy, regulating expression of key players
involved in signaling, phagophore elongation and autophago-
some formation. These studies, collectively, indicate that
KDM1A orchestrates an intricate network via transcriptional
control of several downstream effectors, with different and
non-overlapping functions, converging in autophagy
modulation.

KDM1A/LSD1 regulates autophagy in neuroblastoma
through the SESN2-MTORC1 pathway

Nutrient starvation and stress signals induce autophagy
through inhibition of MTORC1, which controls the balance
between cellular catabolic processes and cellular energetic

status [58]. Recently, we found that KDM1A depletion trig-
gers autophagy by blocking the MTORC1 cascade in neuro-
blastoma cells [32]. We identified SESN2 (sestrin 2) as a
KDM1A-repressed target gene involved in MTORC1 pathway
control. SESN2 is a member of the SESN1/PA26-related pro-
tein family, involved in cellular response to different stress
conditions [59]. SESN2 inhibits MTORC1 activity through the
regulation of the GATOR complex, suppressing the RRAG-
dependent recruitment of MTORC1 to the lysosomal mem-
brane [60,61].

Mechanistically, we have shown that KDM1A binds to the
promoter region of the SESN2 gene and represses its expres-
sion [32]. Genetic depletion or pharmacological inhibition of
KDM1A is accompanied by a significant increase in histone
H3 acetylation and decrease in H3 lysine 27 trimethylation,
consistent with the induction of SESN2 gene expression
(Figure 2), although the mechanisms through which
KDM1A depletion induces such changes remain to be eluci-
dated. Knockdown also increases the H3K4me2 level at the
transcriptional start site of SESN2, whereas the H3K9Me2
signature appears not to be affected, according to its repres-
sive function.

Thus, KDM1A depletion triggers a structural remodeling
of the chromatin at the promoter region of the SESN2 gene,
leading to transcriptional activation of SESN2 expression,
which in turn inhibits MTORC1 activity, leading to
enhanced autophagy. Consistently, SESN2 enhanced expres-
sion promotes autophagy in neuroblastoma cells, and
SESN2 silencing attenuates MTORC1 inhibition and par-
tially suppresses the autophagy induction obtained by
KDM1A inhibition [32].

SESN2 transcription is under the control of TP53, which
activates its expression in response to DNA damage and
oxidative stress [62]. Nevertheless, following KDM1A inhibi-
tion, activation of SESN2 expression occurs in SK-N-BE(2)
neuroblastoma cells, in which TP53 carries a missense muta-
tion at codon 135, converting cysteine to phenylalanine, and
the mutated TP53 fails to activate CDKN1A/p21 gene expres-
sion [63]. Thus, KDM1A could regulate SESN2 transcription
in both TP53-dependent and TP53-independent manners.
Because KDM1A does not bind to DNA alone [39], but
requires association with DNA-binding interaction partners,
it remains to be determined as to the presence of a DNA-
binding factor capable of recruiting KDM1A at the SESN2
promoter.

Furthermore, in neuroblastoma cells, KDM1A, together
with MYCN, inhibits transcription of the molecular chaper-
one CLU (clusterin) [64], which is involved in the protein
quality-control system and degradation of misfolded pro-
teins [65]. CLU is an integral part of the autophagic process
because it increases autophagosome biogenesis through the
stabilization of the MAP1LC3/LC3-Atg3 heterodimer [66].
It is likely that CLU participates in the activation of autop-
hagy that occurs after KDM1A inhibition in neuroblastoma
cells.

Together, these findings reveal that KDM1A, by remo-
deling the chromatin landscape, coordinates the expression
of several genes involved in the autophagic process
(Figure 2).
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KDM1A/LSD1 mediates hepatic post-prandial autophagy

In liver, autophagy is mainly under the control of the fed-state
sensing nuclear receptor NR1H4/FXR (nuclear receptor subfam-
ily 1 group H member 4) and the fasting transcriptional activator
CREBBP/CREB (CREB binding protein), which negatively or
positively modulate ATG genes expression, respectively [67]. In
the fasting state, the CREB-CRTC2 complex, together with the
histone acetyltransferase EP300/p300, activates transcription of
autophagy-related genes. In the early fed-state, NR1H4 directly
interacts with CREB and leads to the dissociation of EP300 and
CRTC2, resulting in a reduction of activating histone marks
H3K9/14ac and gene repression (Figure 3) [67].

Very recently, it has been demonstrated that KDM1A
participates in the post-prandial epigenetic repression of
hepatic autophagy [34]. In this work, the authors showed
that, in response to FGF15/FGF19 signaling in the late fed-
state, the nuclear receptor NR0B2/SHP (nuclear receptor sub-
family 0 group B member 2) binds and recruits KDM1A to a
subset of CREBBP-bound autophagy genes, including Tfeb,
Atg3, Atg7, and Atg10. FGF19 treatment or feeding of mice

increases occupancy of KDM1A at NR0B2/SHP-target autop-
hagy genes. The presence of the KDM1A-NR0B2/SHP-
CREBBP complex decreases the occupancy by POLR2 and
initiates an epigenetic cascade by accumulation of H3K9me2
repressive marks and removal of the activating histone marks
H3K4me2, H3K4me3, and H3K9/14ac, suggesting the exis-
tence of multiple molecular interaction between KDM1A and
other epigenetic enzymes responsible for sustaining postpran-
dial repression of autophagy (Figure 3). Consistently, ectopic
expression of KDM1A decreases autophagy, whereas down-
regulation of KDM1A increases basal and post-prandial
autophagy in both hepatic cells and mouse liver [34]. Thus,
KDM1A participates in temporal modulation of hepatic
autophagy after feeding, and plays a key role in maintaining
cellular homeostasis, mediating the establishment of a stable
epigenetic repression of several autophagy-related genes.

Noteworthy, Byun and collaborators [34] showed that
KDM1A is recruited at the TFEB promoter and regulates its
expression. TFEB is a master regulator of autophagy and
lysosomal biogenesis [68,69] and controls expression of the
coordinated lysosomal expression and regulation gene
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Figure 3. KDM1A mediates hepatic post-prandial epigenetic repression of autophagy. In the fasting state, the CREBBP-CRTC2 complex, together with the histone
acetyltransferase EP300, activates transcription of autophagy-related genes. In the early fed-state, NR1H4/FXR directly interacts with CREBBP and leads to the dissociation of
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network [70]. Modulation of TFEB expression, and conse-
quently of the TFEB-dependent transcriptional program,
represents an important molecular driver of the autophagic
process. Thus, KDM1A seems to be involved in autophagy
participating in different and critical layers of regulation; on
the one hand, participating in the CREBBP transcriptional
program, and on the other hand, modulating TFEB expres-
sion. Further studies will determine whether these KDM1A
functions operate also in other cell types and tissues.

Non-epigenetic regulation of autophagy by KDM1A/LSD1

Beyond its direct activity on chromatin structure, KDM1A
modulates global or specific gene expression patterns through
demethylation of lysine residues at several non-histone pro-
teins, such as TP53 [71], HIF1A [72], DNMT1 [73], E2F1 [74]
and PPP1R12A/MYPT1 [75], modulating their activity or
stability. It has been demonstrated, by Periz and coworkers,
that KDM1A and UBE4B (ubiquitination factor E4B) syner-
gistically regulate the cellular protein quality control system,
and that knockdown of both UBE4B and KDM1A activates
proteasomal degradation and autophagy [33]. Such an effect
appears to be highly conserved across species, because inacti-
vation of KDM1A and UBE4B orthologs, ufd-2 and spr-5,
suppresses neurotoxicity associated with protein aggregates
in Caenorhabditis elegans [33].

It was shown that TP53 acts downstream of UBE4B and
KDM1A to activate degradation machineries and to
improve the clearance of misfolded proteins.
Mechanistically, TP53 stability and activity are negatively
regulated at the post-translational level by both UBE4B and
KDM1A. Whereas UBE4B promotes TP53 ubiquitination
and degradation [76,77], KDM1A specifically demethylates
the TP53 dimethylated K370 residue and represses its activ-
ity, preventing the interaction with its coactivator TP53BP1
[71]. Thus, loss of UBE4B and KDM1A leads to TP53
stabilization and the activation of the TP53-mediated tran-
scriptional program, which, in turn induces autophagy.
According to its subcellular localization, TP53 is involved
in the control of autophagy through 2 opposite mechan-
isms. Cytoplasmic TP53 is a potent inhibitor of autophagy
[78], conversely, nuclear TP53 binds the promoter region of
several autophagy-related genes, including ATG7 and
ULK1, and activates their expression [79]. Moreover, TP53
activity establishes the major link between autophagy and
DNA damage through the transcriptional activation of sev-
eral genotoxic stress responsive factors, such as AEN/
ISG20L1 [80], SESN family genes [62] and DRAM1 (DNA
damage regulated autophagy modulator 1) [81]. Thus, this
study highlights an active involvement of KDM1A in the
autophagic pathway via direct modulation of a TP53-
mediated transcriptional program.

Very recently, it has been shown that KDM1A tethers and
destabilizes the autophagy receptor and substrate SQSTM1/
p62, a ubiquitin-binding scaffold protein that interacts with
ubiquitinated proteins and enables their selective degradation
in the lysosome [57]. KDM1A is required for SQSTM1/p62
ubiquitination in uterine and ovarian cancer cells; albeit the
mechanisms by which KDM1A drives SQSTM1/p62

degradation remain unclear, the authors found that KDM1A
knockdown decreases ubiquitin-conjugated SQSTM1/p62
levels with consequent stabilization and accumulation of
SQSTM1/p62. Interestingly, SQSTM1/p62 ubiquitination
seems to not rely on direct demethylation by KDM1A, but
requires its catalytic activity, because treatment with enzy-
matic inhibitors also increases SQSTM1/p62 protein stability
[57]. The impact of SQSTM1/p62 expression on autophagy is
apparently cell-type dependent: whereas in HeLa cells
SQSTM1/p62 is not required for autophagosome formation
under basal conditions and starvation [82], in cardiomyocytes,
deletion of the corresponding gene results in impaired LC3-II
and autophagosomes formation and leads to misfolded pro-
tein stress, affecting cell survival [83]. More in-depth studies
will clarify the significance of this newly identified KDM1A
function and its effect on autophagy.

Regulation of KDM1A/LSD1 during autophagy

KDM1A seems to participate in the establishment of a stable
epigenetic repression state of several ATG promoters.
However, how exactly KDM1A recruitment to these promo-
ters is regulated, by specific upstream autophagic stimuli,
remains to be defined. Because KDM1A does not directly
bind to DNA [39], its occupancy at the chromatin strictly
depends on the interaction with specific transcriptional part-
ners. As described above, nutrient state affects occupancy of
KDM1A at CREBBP-bound autophagy genes via NR0B2/
SHP-dependent recruitment, and a similar indirect mechan-
ism of regulation could hypothetically concern other KDM1A
interactors related to autophagy.

Furthermore, KDM1A is a FAD-dependent amine oxi-
dase and FAD levels regulate KDM1A activity under certain
cellular conditions [72,84]. Lowering FAD content abro-
gates KDM1A activity and causes reduction of KDM1A
protein without affecting mRNA level, suggesting that bind-
ing to FAD might stabilize KDM1A [84]. We found that
inhibition of KDM1A by tranylcypromine, a mechanism-
based irreversible inhibitor that forms a covalent adduct
with FAD in the active-site cavity of the enzyme, reduces
KDM1A recruitment at the SESN2 promoter, suggesting
that inhibition of FAD activity might debilitate deposition
of KDM1A at target promoters [32]. Intriguingly, pharma-
cological inhibition of MTOR activity has been found to
decrease FAD levels [85]. It is likely that intracellular FAD
levels might affect KDM1A-mediated regulation of autop-
hagy-related gene expression.

Finally, several studies reported that KDM1A is sub-
jected to different post-translational modifications, which
may alter its activity or stability [86,87]. It has been
shown that acetylation of KDM1A by KAT8/MOF impairs
KDM1A ability to associate with nucleosomes, resulting in
enhanced expression of epithelial genes and suppressing
epithelial-to-mesenchymal transition [88]. Similarly, a reg-
ulatory feedback loop might occur during autophagy,
linking the downregulation of KAT8/MOF and the
KDM1A-mediated repression of ATG genes, to protect
cells against overstimulation of autophagic flux.
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Conclusions and future perspectives

As a major cytoprotective mechanism in response to environ-
mental adversity, autophagy is crucial for cellular homeostasis
and organismal survival under physiological conditions.
Dysfunction and dysregulation of this process contribute to
the pathogenesis in various human diseases, such as infec-
tions, neurodegenerative, cardiovascular and immune disor-
ders, diabetes, and cancer [89–91]. Targeting autophagy is an
attractive strategy for the treatment of many complex diseases.
Chemical inducers of autophagy were successfully employed
against hepatic fibrosis [92] and infections [93,94] and have
also been shown to exert a beneficial effect on the clearance of
mutant SNCA/α-synuclein and protect cells against apoptosis
in Alzheimer disease models [95].

Over the past several years, a nuclear network has
emerged in which a plethora of transcription and epigenetic
factors have a role in the control of autophagy-related gene
expression [13,14]. As dysfunctions of the autophagy pro-
cess are implicated in several diseases, it would be compel-
ling to understand how these transcriptional programs are
dysregulated in pathological contexts. Alterations in either
epigenetic or transcriptional regulation might coordinately
drive aberrant autophagy gene expression, contributing to
disease states, while their restoration or modification could
be beneficial to improve autophagy-based clinical
treatments.

Nuclear events represent suitable drug targets and provide
ways to both positively and negatively control autophagy.
Whereas transcription factors are generally considered inap-
propriate targets for drug design, and their inhibition is
often irreversible and ineffective, epigenetic enzymes are
suitable and promising drug targets for a wide variety of
diseases, including cancer, neurodegenerative disorders and
rheumatic diseases [96].

Epigenetic targeting is emerging as an efficient way to
regulate autophagy-related gene expression, and several
small molecule inhibitors of histone modifications have
been shown to be able to modulate autophagy so far
(Table 2). For example, S-adenosyl-L-methionine-compe-
titive EZH2 inhibitors are potent autophagy inducers
[22,97]; histone deacetylase inhibitors modulate autophagy
on several levels [98–101]; sirtinol, a class III histone
deacetylase inhibitor, induces autophagic cell death by
the downregulation of SIRT1/2 expression in breast cancer

cells [102]; ellagic acid treatment inhibits CARM1-induced
autophagy occurrence [17]; EHMT2 inhibition by small
molecules, such as BIX-01294, induces autophagy in a
wide number of cancer cells [103,104]. These studies
strongly suggest that pharmacological modulation of epi-
genetic patterns could be a promising therapeutic strategy
for diseases associated with defects in autophagy-lysoso-
mal pathways through the long-term regulation of autop-
hagy-related gene expression.

As highlighted in this review, recent publications have
suggested that KDM1A takes an important part in such a
regulatory network, attending different molecular mechan-
isms that affect the autophagy gene programs [32–34].
Although observed in a limited number of cell types,
these findings reveal that KDM1A participates in transcrip-
tional repression of genes involved in the autophagic pro-
cess, identifying KDM1A as a key modulator of autophagy
under physiological conditions. It is tempting to investigate
whether, in pathological conditions, aberrant expression of
KDM1A could contribute to its unscheduled recruitment to
these promoter elements, with subsequent establishment of
vicious epigenetic patterns.

Given its enzymatic activity and its association with many
human malignancies, including cancer [51] and neurological
disorders [105–108], there has been great interest in develop-
ing valuable and specific pharmacological inhibitors of
KDM1A. Several studies show that these small molecules
mimic KDM1A knockdown in autophagy activation in var-
ious model systems (Table 1) [32,53–57]. Among them, tra-
nylcypromine, a MAO (monoamine oxidase) inhibitor
previously used in the treatment of depression, and its deri-
vatives induce autophagy in a wide range of human cancer
cell lines [32,53,56,57]; JL1037, a selective and reversible
KDM1A inhibitor, increases autophagosome and autolyso-
some formation in acute myeloid leukemia cell lines as well
as in primary cells from acute myeloid leukemia patients [54];
treatment with NCL-1, a specific KDM1A inhibitor, induce
apoptosis and autophagy in prostate cancer cells [55].

Collectively, these results strongly argue in favor of future
evaluation of KDM1A inhibitors for therapeutic intervention in
human disorders associated with defective autophagy-lysosomal
pathways. Further studies will improve our understanding of the
role of KDM1A-mediated epigenetic regulation of autophagy
and its therapeutic potential in human diseases.

Table 2. Epigenetic-based drugs reported to affect the autophagy pathway.

Drug Epigenetic target Effect on autophagy Refs.

VPA (valproic acid) Pan-histone deacetylase (HDAC) inhibitor + [99,100]
SAHA (vorinostat) Reversible class I and II HDACs inhibitor + [101]
TSA (trichostatin A) Class I and II HDACs inhibitor + [98,99]
Sirtinol Class III HDACs (SIRTs) inhibitor + [102]
BIX-01294 EHMT2 and EHMT2-like protein histone methyltransferase inhibitor + [103,104]
UNC0638 EHMT2 and EHMT2-like protein histone methyltransferase inhibitor + [23]
GSK126 S-adenosyl-L-methionine-competitive inhibitor of EZH2 + [22]
GSK343 S-adenosyl-L-methionine-competitive inhibitor of EZH2 + [96]
Ellagic acid Histone H3R17 methylation inhibitor (CARM) - [17]
TCP (tranilcypromine) Nonselective, irreversible MAO inhibitor + [32,56,57]
S2101 TCP derivative + [53]
SP2509 Specific reversible KDM1A inhibitor + [32,57]
GSK-LSD1 Specific irreversible KDM1A inhibitor + [56]
JL1037 Specific reversible KDM1A inhibitor + [54]
NCL-1 Specific KDM1A inhibitor + [55]
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