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Mouse models of breast cancer in preclinical research
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Breast cancer remains the second leading cause of cancer death among woman, worldwide, despite
advances in identifying novel targeted therapies and the development of treating strategies. Classification
of clinical subtypes (ER+, PR+, HER2+, and TNBC (Triple-negative)) increases the complexity of breast
cancers, which thus necessitates further investigation. Mouse models used in breast cancer research
provide an essential approach to examine the mechanisms and genetic pathway in cancer progression
and metastasis and to develop and evaluate clinical therapeutics. In this review, we summarize tumor
transplantation models and genetically engineered mouse models (GEMMs) of breast cancer and their
applications in the field of human breast cancer research and anti-cancer drug development. These
models may help to improve the knowledge of underlying mechanisms and genetic pathways, as well as
creating approaches for modeling clinical tumor subtypes, and developing innovative cancer therapy. 
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Breast cancer is the second most common cancer in

Korean women [1], with 19,219 cases diagnosed in

Korea in 2015 [2]; it is also the second leading cause of

cancer-related death among women worldwide [3].

Developing and applying mouse models, using both

human tumor xenograft models and genetic modifications,

have led to our current understanding of molecular

mechanisms that operate during breast cancer progression

and metastasis [4]. Breast cancers are classified into five

intrinsic subtypes based on hormonal and Human

Epidermal growth factor Receptor-2 (HER2) receptor

status, namely luminal A (Estrogen Receptor (ER)/

Progesterone Receptor (PR)-positive major problem),

luminal B (ER/PR-positive, HER-negative, high Ki-67,

higher histological grade than luminal A), ER-negative/

HER2-positive, HER2-positive, and basal-like triple-

negative (ER/PR/HER2-negative) [5]. Treatment of

human breast cancer patients is based on the hormone

receptor status, specifically ER, PR, and HER2 [6,7],

and these hormonal therapies are effective for most

patients with hormonal receptor-positive breast cancer;

for example, tamoxifen for ER-positive breast cancer

and Pertuzumab (Perjeta), Trastuzumab (Herceptin), and

Docetaxel (Taxotere) for HER2-positive breast cancer

[8-11]. However, primary and acquired resistance to

hormonal treatments remains to be resolved [10,12,13].

Xenograft models are used to elucidate the underlying

mechanisms of resistance, and genetically engineered

mouse models (GEMMs) are also useful to understand

the mechanisms involved in the pathogenesis and

molecular processes of breast cancer and metastasis. In

this review, we summarize several mouse models used

in breast cancer research and drug development, and

their contribution to understanding the molecular pathways

in tumorigenesis and metastasis, providing us invaluable

insights into possible developments of innovative cancer
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therapy [14].

Tumor transplantation models

Cell-derived xenografts (CDX), patient-derived xenografts

(PDX), and a syngeneic model are well-established tools

for evaluating therapeutic efficacy and toxicity and for

applying to preclinical assessment (Table 1). CDX

transplantation models are useful for investigating breast

cancer and metastatic progress [15]. These models are

also convenient for investigating genetic alterations that

are associated with tumor initiation and growth, but

unfortunately show poor clinical predictability.

CDX transplantation models, in which tumor cells are

subcutaneously transplanted in nude mice, facilitate

straightforward monitoring of tumor growth. Cancer

cells in these models show primary tumor growth but do

not metastasize [16]. For example, models using BT474

cells (luminal B) [17], as well as MDA-MB-231 [18,19]

and MDA-MB-435 cells (triple negative) are well-

established [20]. Orthotopic CDX transplantation models

in which tumor cells are transplanted to a mammary fat

pad of NOD/SCID mice are suitable for studying metastatic

functions of genes of interest [21] and to investigate

malignant and metastatic phenotypes in mice [4]. Several

cancer cell lines, such as MDA-MB-231, MDA-MB-

435, and SUM1315 (triple negative), as well as MCF7

and T47D cells (luminal A), are used to generate

spontaneous metastasis models of breast cancer through

orthotopic injection [22-26]. Metastatic CDX transplantation

models in which cancer cells, such as MDA-MB-231

and SUM149 cells, are injected into mouse tail veins are

suitable for monitoring experimental metastasis. Taken

together, these CDX models allow validation of target

genes of interest, and facilitate evaluation of a candidate

anti-cancer drug and therapeutics for breast cancer.

In PDX transplantation models, primary human breast

carcinomas or tumor fragments are implanted into immune-

deficient mice (e.g., nude, NOD/SCID, or NOD/SCID/

IL2-receptor null (NSG) mice) subcutaneously or

orthotopically [27]. Resulting tumors have characteristics

that are similar to those of the original patients’ tumors

with respect to histology, genomic signature, and

heterogeneity, as well as high predictive drug response

[14,28-32]. These models are used to identify biomarkers

for personalized drug selection, and to overcome the

limitation of CDX transplantation in clinical therapies

[33]. While subcutaneous PDX transplantation models

have been used in studies to measure primary tumor

growth, orthotopic PDX transplantation models are suitable

for mechanistic studies of metastasis and therapeutic

resistance [34].

Syngeneic mouse models in which murine cancer

cells, such as 4T1, are injected into immune-competent

mice (e.g. BALB/c) show more effective metastasis, with

characteristics similar to those of breast cancer patients.

Advantages of these models over CDX transplantation

models include the use of immune-competent mice with

normal immune cells and immune system, enabling

investigation and development of various immune

therapies, for example, with anti-PD-1/PD-L1. These

models are also useful to investigate the anti-tumor and

anti-metastatic effects of multiple drugs due to the high

invasiveness of murine cancer cells [35-39]. While CDX

transplantation models, in which human cancer cells are

injected into immunocompromised mice, are well-

established in the study of tumor growth and metastasis

and the validation related gene profiles, human cancer

cells in these models poorly metastasize and show

poorly predictable metastatic characteristics.

Collectively, CDX, PDX, and syngeneic models are

well-established for evaluating therapeutic efficacy and

toxicity and for applying to preclinical assessment.

These models could be critical tools for understanding

breast cancer progression, and for evaluating responses

to targeted therapeutics, in order to predict therapeutic

outcomes for breast cancer patient.

Genetically engineered mouse models

GEMMs of breast cancer have greatly contributed to

cancer research, improving understanding and validating

human cancer genes, genetic pathways, and therapeutic

approaches for cancer, as well as investigating cancer

progression and metastasis [40]. They are also essential

tools for gene expression profiling in breast cancer

progression and metastasis. Histopathological features in

over 25 different murine GEMMs of breast cancer have

been reported [41]. Promoters frequently used in GEMMs

of breast cancer are the mouse mammary tumor virus-

long terminal repeat (MMTV-LTR), C3(1), and the whey

acidic protein (WAP) promoter, which are used to drive

mammary expression of oncogenes, such as neu/ErbB2,

cyclin D1, Ras, Myc, and Wnt1 [42]. Promoters, origins,

activations, active proteins, incidences, latencies, and

pathology subtypes of GEMMs of breast cancer are

summarized in Table 2.

ErbB2 (neu/HER2) is the EGFR family of receptor
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Table 1. Brief overview of breast cancer cell line-derived xenograft (CDX), patient-derived xenograft (PDX) and syngeneic mouse models

Implantation site Mice strain Cell line Subtype ER PR HER2 References

CDX model

subcutaneous
CDX

Subcutaneous BALB/c, Nude

MDA-MB-231 Basal - - - [18]

MDA-MB-435 Basal - - - [54]

BT-474 Luminal B + + + [55]

Orthotopic CDX Mammary fat pad NOD/SCID

MDA-MB-231 Basal - - - [22]

MDA-MB-435 Basal - - [23]

SUM1315 Basal - - [24]

MCF7 Luminal A + + [25]

T47D Luminal A + + [26]

Metastatic
CDX

Tail vein NOD/SCID
MDA-MB-231 Basal - - - [56]

SUM149 Basal - - [57]

PDX model

Subcutaneous BALB/c, Nude [58]

Mammary fat pad NOD/SCID [59]

Mammary fat pad NSG [60]

Humanized Mammary fat pad NOD/SCID [61]

Syngeneic model Mammary fat pad BALB/c 4T1 - - - [38]

Table 2. Examples of genetically engineered animal tumor models in breast cancer

Promoter Origin Activation Transgene Active protein

Primary tumor Metastasis

Pathology SubtypeIncidence 
(%)

Latency
(week)

Incidence 
(%)

Latency
Metastatic 

site

MMTV-
LTR

Mouse mammary 
tumor virus

Steroid 
hormones

neu/ErbB2 Receptors 100 30 75 32 Lung Adenocarcinoma, metastatic luminal [62]

PyMT
Viral 

oncogenes
100 4-8 84-90 14

Lung,
lymph node

Multifocal adenocarcinomas [63]

Cyclin D1 Cell cycle 40 88 - - - Mammary gland adenocarcinomas [64]

Myc Cell cycle 60 - - - Mammary gland adenocarcinomas [65]

Wnt1 Differentiation 60 32 * Mammary gland adenocarcinomas [66]

C(3)1
Rat prostate 
steroid-binding 
protein (PSBP)

Estrogen SV40 Tag
Viral 

oncogenes
90 21 *

Lung,
lymph node

Mammary gland adenocarcinomas Basal [50]

WAP Whey acidic protein
Lactogenic 
hormones

Ras Others 100 24 14 - Lung
Adenocarcinoma
genomic instability

[53]

*Metastasis/tumor appearance but not incidence was reported.
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tyrosine kinases (RTKs) [43], which form homo- and

hetero-dimers in response to ligand stimulation, leading

to proliferation, differentiation, cell survival, and apoptosis.

ErbB2 functions as a prognostic marker, especially in

tumors from patients with lymph node metastasis, and

predicts poor survival and early relapse in patients [44,

45]. Transgenic mice develop multifocal adenocarcinomas

by 30 weeks of age, which metastasize to the lungs

[46,47].

Mammary gland-specific expression of the polyoma

middle T antigen (PyMT) -under the control of the

MMTV promoter- exhibits multifocal adenocarcinomas

with a short median latency, high penetrance, and metastasis

to the lungs and lymph nodes. These transgenic mice

develop palpable tumors at 4-8 weeks of age, and 84-

90% of them show pulmonary metastasis by 14 weeks

of age [46]. Pathology of these mice is very similar to

that of human breast cancer, regarding hyperplasia,

adenoma, and early or late carcinoma [46].

Cyclin D1 has been known to play a critical role in the

development of normal alveolar mammary gland tumors

induced by c-neu, v-Ha-ras, and other oncogenes. As the

expression of Cyclin D1 gene is associated with poor

prognosis of estrogen receptor (ER) positive patients,

which is supported by relapse-free and overall survival,

tumor growth in MMTV-Cyclin D1 models is expected

to be ER-positive and estrogen-dependent [48,49]. In

MMTV-Cyclin D1 mice, mammary adenocarcinoma

develops by 22 months of age, which is observed in 40%

of the transgenic mice. As Cyclin D1 is a weak oncogene,

its expression causes long latency and low incidence of

breast cancer in the transgenic mice, and co-expression

with potent oncogenes is required for carcinogenesis.

Wnt signaling in human breast cancer has been known

to be related to the overexpression of β-catenin. It was

also reported that human breast cancers highly express

β-catenin which is correlated with poor prognosis of

breast cancer patients. In MMTV-Wnt1 transgenic mice,

mammary adenocarcinoma develops by 32 weeks of

age, which is observed in 60% of the mice, and metastasis

to lymph nodes and lungs is observed.

In C3(1)/Tag mice, the SV40 large T-antigen (Tag) is

expressed by the regulatory control of the rat prostatic

steroid binding protein C3(1) gene, leading to development

of prostate tumors in male mice or mammary gland

adenocarcinomas in female mice [50]. Characteristics of

these models include short latency (~21 weeks) and high

penetrance (>90%) (Table 2), which is useful for colony

management, as well as nonclinical therapeutic trials. In

the transgenic mice, mammary adenocarcinoma develops

by 21 weeks of age, which is observed in 90% of the

mice. Identification of conserved gene expression features

and DNA somatic alterations between the C3(1)/Tag

models and human breast tumors suggests that this

transgenic model recapitulates human Basal-like cancer

(BLBC) [51].

WAP (whey acidic protein) promoter is activated by

lactogenic hormones in mammary tumors of mice. Ras

oncogene has been known to contribute to human cancer

development, and the expression of H-ras oncogene

driven by the WAP promoter causes genomic instability,

adenocarcinoma, and pulmonary metastasis in mice

[52,53]. In the transgenic mice, mammary gland tumors

develop at 24 weeks of age (Table 2).

Taken together, GEMMs of breast cancer are essential

nonclinical models to understand the expression profile

of target genes and to validate novel therapeutic strategies.

Conclusion

Breast cancer is the most common type of cancer in

females. Despite recent advances in its diagnosis and

effective therapeutic strategies, further investigations

into tumorigenesis, metastasis, and resistance are urgently

required. In this review, we provide an overview of

tumor transplantation models and GEMMs in order to

understand the molecular mechanisms underlying breast

cancer progression and metastasis, and to validate the

association of human breast cancer with clinical therapeutic

trials. Technological advances in order to develop novel

mouse models would give us new insights for developing

innovative breast cancer therapeutics.
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