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Monocarboxylate transporters (MCTs) mediate the proton-cou-
pled exchange of high-energy metabolites, including lactate and
pyruvate, between cells and tissues. The transport activity of
MCT1, MCT2, and MCT4 can be facilitated by the extracellular
carbonic anhydrase IV (CAIV) via a noncatalytic mechanism.
Combining physiological measurements in HEK-293 cells and
Xenopus oocytes with pulldown experiments, we analyzed the
direct interaction between CAIV and the two MCT chaperones
basigin (CD147) and embigin (GP70). Our results show that facili-
tation of MCT transport activity requires direct binding of CAIV to
the transporters chaperones. We found that this binding is medi-
ated by the highly conserved His-88 residue in CAIV, which is also
the central residue of the enzyme’s intramolecular proton shuttle,
and a charged amino acid residue in the Ig1 domain of the chaper-
one. Although the position of the CAIV-binding site in the chaper-
one was conserved, the amino acid residue itself varied among dif-
ferent species. In human CD147, binding of CAIV was mediated by
the negatively charged Glu-73 and in rat CD147 by the positively
charged Lys-73. In rat GP70, we identified the positively charged
Arg-130 as the binding site. Further analysis of the CAIV-binding
site revealed that the His-88 in CAIV can either act as H donor or H
acceptor for the hydrogen bond, depending on the charge of the
binding residue in the chaperone. Our results suggest that the
CAIV-mediated increase in MCT transport activity requires direct
binding between CAIV–His-88 and a charged amino acid in the
extracellular domain of the transporter’s chaperone.

The SLC16 gene family of monocarboxylate transporters
(MCT)3 comprises 14 isoforms, the first four of which

(MCT1– 4) carry high-energy metabolites, including lactate,
pyruvate, and ketone bodies together with H� in a 1:1 stoichi-
ometry across the plasma membrane (1–4). MCT1, which is
found in nearly every tissue, has a Km of 3–5 mM for L-lactate (1,
2). MCT2, which is primarily found in liver, kidney, testis, and
brain (5–7), has the highest affinity for L-lactate among all
MCTs with a Km of about 0.7 mM (8). In liver and kidney, MCT2
facilitates the uptake of lactate, which is then used for glyconeo-
genesis (3). In the brain, MCT2 is expressed in neurons, where
it facilitates the import of lactate, which is released by astro-
cytes and vascular endothelial cells via MCT1 and MCT4
(9 –12). Expression of MCT3 is restricted to retinal pigment
epithelium and choroid plexus epithelia, where it primarily
serves as a lactate exporter (13–15). MCT3 transports L-lactate
with a Km of about 6 mM (16). MCT4 is a low-affinity, high-
capacity carrier with a Km of 20 –35 mM for L-lactate (17), which
primarily acts as a lactate exporter in glycolytic cells and tissues
like astrocytes, skeletal muscle, and (hypoxic) tumor cells (3, 4,
18, 19). All MCTs have a 12 transmembrane-helix structure,
with both the C and N termini located intracellularly (3, 4).
Trafficking, but also regulation of transport activity of MCT1–4, is
mediated by ancillary proteins. MCT1, MCT3, and MCT4 are
associated with CD147 (also termed basigin, EMMPRIN, OX-47,
HAb18G, or HT7), whereas surface expression of MCT2 requires
GP70 (also termed embigin) (20–23). The ancillary proteins
remain tightly associated with the transporter in the membrane,
which is essential to maintain transporter activity (22, 24). Further-
more, the chaperones modulate the sensitivity of MCTs to differ-
ent inhibitors (22, 25, 26). Both chaperones are glycoproteins that
belong to the immunoglobulin superfamily. CD147 is a multifunc-
tional protein, which mediates various molecular events crucial to
many biological functions. CD147 is involved in spermatogenesis
and fertilization (27, 28), as well as neural network formation and
development (29, 30). It plays a central role in the inflammatory
response pathway and is used as a receptor by viruses, including
the human immunodeficiency virus (HIV) (31, 32). Furthermore,
CD147 is highly expressed on the surface of tumor cells, where it
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stimulates adjacent fibroblasts and tumor cells to produce matrix
metalloproteinases, leading to cancer progression (33).

CD147 comprises a transmembrane domain, a short intra-
cellular C-terminal tail, and two or three extracellular immu-
noglobulin (Ig)-like domains (34 –36). The general isoform,
CD147 Ig1–Ig2 (also termed basigin or basigin-2), features two
Ig-like domains, whereas the retinal-specific isoform CD147
Ig0 –Ig1–Ig2 (basigin-1) contains an additional Ig-like domain
distal to the transmembrane domain (35, 36). The Ig1–Ig2
domain of CD147 Ig1–Ig2 (used in this study) has been crystal-
lized, and the structure was solved at 2.8 Å resolution (37). The
N-terminal Ig1 domain (D1, residues 22–101) strongly resem-
bles the C2 set fold, whereas the C-terminal Ig2 domain (D2,
residues 107–205) shows strong homology to the Ig variable
domain (V set) (37). Both Ig domains are connected by a flexi-
ble, five amino acids long linker (37).

Like CD147, GP70 has a short intracellular C-terminal tail, a
single transmembrane domain, and a large extracellular N ter-
minus, containing two immunoglobulin-like domains (Ig1, res-
idues 88 –145; Ig2, residues 181–239) (26, 38). GP70 has been
reported to be a modulator of neuromuscular junction forma-
tion and enhancer of neuromuscular adhesion. Furthermore, it
facilitates integrin-mediated cell–to–substratum adhesion and
cell–to– extracellular matrix interactions (22, 39, 40). More-
over, recent studies demonstrated that GP70 is involved in the
progression of breast and pancreatic cancer (40, 41).

Xenopus oocytes, used in this study, endogenously express
CD147, which can mediate integration of heterologously ex-
pressed MCT1 and MCT4 into the oocyte plasma membrane,
whereas GP70, the preferred ancillary protein of MCT2, is not
endogenously expressed in these cells (25).

Mammalian carbonic anhydrases (CA) included in the �-class
of CAs, of which 16 isoforms are identified, catalyze the reversible
hydration of CO2 to HCO3

� and H� (42). CAIV, used in this study,
is anchored to the plasma membrane by a glycosylphosphatidyli-
nositol (GPI) anchor, with the catalytic domain facing the extra-
cellular space (43). CAIV is expressed in various organs and tis-
sues, including heart, lung, kidney, brain, retina, and erythrocytes
(44).

CAIV enhances transport activity of several other acid/base
transporters, including the Cl�/HCO3

� exchangers AE1–3
(45, 46), the Na�/HCO3

� cotransporter NBCe1 (47), and the
Na�/H� exchanger NHE1 (48). In all cases, interaction
between transporter and CAIV requires both CA catalytic
activity and the physical interaction between the enzyme and
an extracellular domain of the respective transporter.

CAIV further facilitates transport activity of the monocar-
boxylate transporters MCT1, MCT2, and MCT4 (49 –51). In
contrast to the “transport metabolons” described before, aug-
mentation of MCT activity by CAIV did not depend on the
catalytic activity of the enzyme, because neither application of
the CA inhibitor 6-ethoxy-2-benzothiazolesulfonamide nor
coexpression of the catalytically inactive mutant CAIV-V165Y
had any effect on the CAIV-mediated increase in MCT trans-
port activity (49). A similar type of interaction was also
observed between intracellular CAII and MCT1/MCT4 (52–
55). Because CAII catalytic activity is not required to facilitate
MCT transport function, it was hypothesized that CAII might

utilize parts of its intramolecular proton pathway to function as
a proton antenna for the transporter (55–57). Protonable resi-
dues with overlapping Coulomb cages could form proton-at-
tractive domains and could share a proton at a very fast rate,
exceeding the upper limit of diffusion-controlled reactions (58,
59). When these residues are located in proteins or lipid head-
groups at the plasma membrane, they can collect protons from
the solution and direct them to the entrance of a proton–
transfer pathway of membrane-anchored proteins, a phenom-
enon termed “proton-collecting antenna” (58, 60). The need for
such a proton antenna is based on the observation that H�

cotransporters, such as MCTs, extract H� from the surround-
ing area at rates well above the capacity for simple diffusion to
be replenished from their immediate vicinity. Therefore, the
transporter must exchange H� with protonable sites at the
plasma membrane, which could function as proton collectors
for the transporter (61). Proton transfer between transporter
and enzyme requires close proximity between the two proteins.
CAII binds MCT1 and MCT4 via a cluster of three glutamic
acid residues within the transporters’ C-terminal tails (MCT1,
489EEE (62), and MCT4, 431EEE (63)). In both cases, the two
outer glutamic acids form hydrogen bonds with the histidine at
position 64 in CAII (57).

CAIV-mediated facilitation of MCT transport activity
required the enzyme to be localized on the extracellular surface
of the oocyte (49). Furthermore, the interaction of MCT2 and
CAIV was only detectable when MCT2 was coexpressed with
its ancillary protein GP70. From this, it was hypothesized that
MCT2 and CAIV may not interact directly with each other, but
may require GP70 as a mediator, possibly by allowing binding of
CAIV to one of the Ig domains.

In this study, we investigated the interaction between CAIV
and the two MCT chaperones CD147 and GP70. Our results
show that facilitation of MCT transport activity requires direct
binding of CAIV to the chaperone. Binding between the pro-
teins is thereby mediated by the highly conserved CAIV–His-
88, which is also the central residue of the enzyme’s intramo-
lecular proton shuttle, and a charged amino acid residue in the
Ig1 domain of CD147 and GP70, respectively.

Results

Facilitation of MCT transport activity by CAIV requires
the Glu-73 in the Ig1 domain of hCD147

We have previously shown that CAIV facilitates transport
activity of MCT1, MCT2, and MCT4 by a mechanism that is
independent from the enzyme’s catalytic activity, presumably
by functioning as a proton antenna for the transporter (49 –51).
Proton transfer between MCT and CAIV would require close
proximity between the proteins, which could be achieved by
direct binding. Intracellular CAII binds to MCT1 and MCT4
via a cluster of three glutamic acid residues within the trans-
porter’s C-terminal tail (MCT1, 489EEE (62), and MCT4,
431EEE (63)). In both cases, the two outer glutamic acids form
hydrogen bonds with the histidine at position 64 in CAII (57).
To investigate whether CAIV-mediated facilitation of MCT
transport activity requires binding of CAIV to the transporter’s
chaperon, we first searched for a possible CAIV-binding site in
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the human isoform of CD147, the chaperone of MCT1 and
MCT4. A structural model of the human MCT1–CD147 pro-
tein complex (26) revealed glutamic acid residues with a similar
arrangement to MCT1–489EEE and MCT4 –431EEE. Subse-
quent molecular docking of CAIV (PDB code 5JN9) to hCD147
(PDB code 3B5H) identified the two glutamic acid residues,
Glu-31 and Glu-73 in the Ig1 domain of hCD147 as potential
interaction partners for CAIV–His-88 (the analogous residue
to CAII–His-64) (Fig. 1A). To investigate whether Glu-31 and
Glu-73 are involved in the functional interaction between
MCT–CD147 and CAIV, we coexpressed hCD147–WT or a
mutant of hCD147, in which either Glu-31 or Glu-73, or both
residues, were mutated to glutamine, together with CAIV in
human embryonic kidney (HEK) 293 cells. Because HEK-293
cells express robust levels of endogenous MCT1 (64), no addi-
tional MCTs were expressed. MCT transport activity was
determined by measuring the rate of change in intracellular H�

concentration (�[H�]/�t) during application of 3 and 10 mM

lactate in HEK-293 cells, transfected with hCD147 alone or
together with CAIV (Fig. 1B). Coexpression of hCD147–WT
with CAIV resulted in a significant increase in �[H�]/�t, indi-
cating CAIV-mediated facilitation of MCT transport activity in
HEK-293 cells (Fig. 1C). Coexpression of hCD147–E31Q with
CAIV resulted in a similar increase in MCT transport activity.
However, no increase in MCT transport activity could be
observed when hCD147–E73Q or the double mutant hCD147–

E31Q/E73Q were coexpressed with CAIV (Fig. 1, B and C).
These results indicate that CAIV-mediated facilitation of MCT
transport activity requires Glu-73 in the Ig1 domain of hCD147.

To check whether expression levels of endogenous MCT1 in
HEK-293 cells were influenced by transfection of the cells with
hCD147 and CAIV, we performed a Western blot analysis of
MCT1 in HEK-293 cells, transfected with hCD147–WT or
hCD147–E31Q/E73Q either alone or together with CAIV (Fig.
2A). Quantification of the signal for MCT1 showed that expres-
sion of endogenous MCT1 was not significantly changed by
transfection with either one of the constructs (Fig. 2B). Expres-
sion levels of whole CD147 (endogenous protein and trans-
fected hCD147) as well as expression levels of the transfected
Myc-tagged hCD147 were assessed by Western blottings
against CD147 (Fig. 2C) and Myc tag (Fig. 2D). The blots against
CD147 showed a band at 55 kDa for all samples and some lower
molecular weight bands, which might indicate protein degra-
dation. The blots against Myc-tagged CD147 presented bands
at 40 kDa for cells transfected with the hCD147 variants with
and without CAIV, but not for the cells transfected with the
empty vector pcDNA3 (Fig. 2D, lane 1). The extra bands above
the expected molecular weight could be due to glycosylation of
the protein or oligomerization with degradation products.

To test whether Glu-73 in hCD147 functions as the binding
site for CAIV, we performed pulldown experiments with CAIV
and GST fusion proteins of the Ig1 domain of hCD147–WT,
hCD147–E31Q, and hCD147–E73Q, respectively (Fig. 3A).
GST alone was used as negative control. Pulldown of CAIV with
GST-hCD147–WT resulted in a robust signal for CAIV, indi-
cating direct binding of CAIV to the Ig1 domain of hCD147
(Fig. 3, A and B). Mutation of Glu-73 to Gln resulted in a signif-
icant reduction in the signal, which indicates loss of binding
between hCD147–E73Q and CAIV, whereas the mutation
E31Q had no significant influence on binding (Fig. 3, A and B).
From this, we conclude that binding of CAIV is mediated by
Glu-73 in the Ig1 domain of hCD147.

Interaction between CAIV and rat MCT1 requires Lys-73 in
rCD147

Interestingly, Glu-73, which mediates binding to CAIV in
human CD147, is not conserved among the mammalian spe-
cies. Although CD147 of human and rabbit feature glutamic
acid at position 73, CD147 from rat and mouse feature a lysine
at this position (Figs. 4 and 5A). To investigate whether func-
tional interaction between CAIV and rat MCT1 requires the
Lys-73 in rat CD147, we coexpressed rMCT1 together with
rCD147–WT, rCD147–E32A, or rCD147–K73A in Xenopus
oocytes. Cells either expressed rMCT1 � rCD147 alone or
together with CAIV. rMCT1 transport activity was determined
by measuring the rate of change in intracellular H� concentra-
tion (�[H�]/�t) during application of 3 and 10 mM lactate (Fig.
5, B and C). In the absence of CAIV, no significant differences in
�[H�]/�t could be detected when rMCT1 was coexpressed
with rCD147–WT, rCD147–E32A, or rCD147–K73A, indicat-
ing equal expression of all the three protein complexes (Fig.
5C). Coexpression of rMCT1 � rCD147–WT and MCT1 �
rCD147–E32A with CAIV resulted in an �2-fold increase in
rMCT1 transport activity. However, coexpression of CAIV

Figure 1. Facilitation of MCT transport activity by CAIV in HEK-293 cells
requires Glu-73 in the Ig1 domain of the transporter’s chaperone CD147.
A, structure of the Ig1 domain of human CD147 (PDB code 3B5H (37)). Glu-31
and Glu-73 are labeled in blue and red, respectively. B, original recordings of
the change in intracellular H� concentration during application of lactate in
HEK-293 cells, transfected with hCD147–WT (gray traces), hCD147–E31Q (blue
traces), and hCD147–E73Q (red traces), respectively. Cells were either trans-
fected with hCD147 alone (light traces) or cotransfected with hCD147 and
human CAIV (dark traces). C, rate of change in intracellular H� concentration
(�[H�]/�t) during application of lactate in HEK-293 cells, transfected with
hCD147–WT (gray dots), hCD147–E31Q (blue dots), hCD147–E73Q (red dots),
and the double-mutant hCD147–E31Q/E73Q (green dots). Cells were either
transfected with hCD147 alone (light dots) or cotransfected with hCD147 and
human CAIV (dark dots). The significance indicators above the dots with CAIV
(dark dots) refer to the corresponding dots without CAIV (light dots of same
color).
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with rMCT1 � rCD147–K73A did not increase transport func-
tion (Fig. 5C). Catalytic activity of CAIV was controlled in each
oocyte by measuring �[H�]/�t during application of 5% CO2,
10 mM HCO3

� at the end of the experiment (Fig. 5B). In all three
batches of oocytes, expression of CAIV increased the rate of
CO2-induced acidification by a factor of �3, with no significant
difference between the batches, indicating equal expression of

CAIV protein in all three batches of oocytes (Fig. 5D). The
influence of CAIV on the expression level of rMCT1 was
already investigated in a previous study, which demonstrated
that coexpression of CAIV does not result in an increase in
rMCT1 protein level (50).

To test whether Lys-73 in rCD147 also functions as a binding
site for CAIV, we performed pulldown experiments with CAIV
and GST fusion proteins of the Ig1 domain of rCD147–WT,
rCD147–E32A, and rCD147–K73A, respectively (Fig. 5E). GST
alone was used as negative control. Pulldown of CAIV with
GST–rCD147–WT resulted in a robust signal for CAIV, indi-
cating direct binding of CAIV to the Ig1 domain of rCD147 (Fig.
5, E and F). Mutation of Lys-73 to Ala resulted in an almost
complete loss of the signal, which indicates that binding
between rCD147–K73A and CAIV failed, whereas the muta-
tion E32A had no significant influence on binding (Fig. 5, E and
F). Taken together, these results suggest that the functional
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interaction between rMCT1/rCD147 and CAIV requires direct
binding of the enzyme to Lys-73 in the Ig1 domain of rCD147.

Interaction between CAIV and rat MCT2 requires Arg-130 in
rGP70

Although MCT1 and MCT4 are associated with CD147, sur-
face expression and transport activity of MCT2 are facilitated
by GP70. To elucidate a possible CAIV-binding site of GP70, we
created a homology model of rGP70, based on the structure of
hCD147 (Fig. 6A). Thereby, we identified the two amino acids
Asp-95 and Arg-130 in the Ig1 domain of rGP70 as correspond-
ing to Glu-31 and Glu-73 in hCD147 for binding CAIV. Both
residues are conserved between the human and rat isoform of
GP70.

To investigate whether Asp-95 or Arg-130 is required for the
functional interaction between MCT2 � GP70 and CAIV, we

coexpressed rMCT2 together with rGP70 –WT, rGP70 –D95A,
or rGP70 –R130A in Xenopus oocytes. Cells either expressed
rMCT2 � rGP70 alone or together with CAIV. rMCT2 trans-
port activity was determined by measuring �[H�]/�t during
application of 0.3, 1, and 3 mM lactate (Fig. 6, B and C). In the
absence of CAIV no significant differences in �[H�]/�t could
be detected when rMCT2 was coexpressed with rGP70 –WT,
rGP70 –D95A, or rGP70 –R130A, respectively, indicating equal
expression of all the three protein complexes (Fig. 6C). Coex-
pression of rMCT2 � rGP70 –WT and rMCT2 � rGP70 –
D95A with CAIV resulted in an �2-fold increase in rMCT2
transport activity. However, coexpression of CAIV with
rMCT2 � rGP70 –R130A did not increase rMCT2 transport
function (Fig. 6C). Catalytic activity of CAIV was again tested in
each oocyte by measuring �[H�]/�t during application of 5%
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Figure 5. Functional interaction between rat MCT1 and CAIV in Xenopus oocytes requires direct binding of CAIV to Lys-73 in the Ig1 domain of
rCD147. A, homology model of the Ig1 domain of rat CD147 (based on human CD147, PDB code 3B5H (37)). Glu-32 and Lys-73 are labeled in blue and
red, respectively. B, original recordings of the change in intracellular H� concentration during application of lactate and CO2/HCO3

� in Xenopus oocytes,
expressing rMCT1 together with rCD147–WT (gray traces), rCD147–E32A (blue traces), and rCD147–K73A (red traces), respectively. Cells were either expressing
rMCT1 � rCD147 alone (light traces) or rMCT1 � rCD147 and human CAIV (dark traces). C and D, rate of change in intracellular H� concentration (�[H�]/�t)
during application of lactate (C) and 5% CO2, 10 mM HCO3

� (D) in Xenopus oocytes, expressing rMCT1 and rCD147–WT (gray dots), rCD147–E32A (blue dots), and
rCD147–K73A (red dots), respectively. Cells were either expressing rMCT1 � rCD147 alone (light dots) or rMCT1 � rCD147 and CAIV (dark dots). The significance
indicators above the dots with CAIV (dark dots) refer to the corresponding dots without CAIV (light dots of same color). E, representative Western blots of CAIV
(left blot) and GST (right blot), respectively. CAIV was pulled down with GST (lane 1), a GST fusion protein of the Ig1 domain of rCD147–WT (lane 2), a GST fusion
protein of Ig1 domain of rCD147–E32A (lane 3), and a GST fusion protein of Ig1 domain of rCD147–K73A (lane 4). Lysate of CAIV-expressing oocytes (lane 5) was
added as positive control. F, relative intensity of the fluorescent signal of CAIV. For every blot, the signals for CAIV were normalized to the corresponding signals
for GST–rCD147–WT. Each individual signal for CAIV was normalized to the intensity of the signal for GST in the same lane. The significance indicators above the
dots refer to GST–rCD147–WT.
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CO2, 10 mM HCO3
� (Fig. 6B). In all three batches of oocytes,

expression of CAIV increased the rate of CO2-induced acidifi-
cation by a factor of �3, with no significant difference between
the batches (Fig. 6D).

To test whether Arg-130 in rGP70 also functions as a binding
site for CAIV, we performed pulldown experiments with CAIV
and GST fusion proteins of the Ig1 domain of rGP70 –WT,
rGP70 –D95A, and rGP70 –R130A, respectively (Fig. 6E). GST
alone was used as negative control. Pulldown of CAIV with
GST–rGP70 –WT resulted in a robust signal for CAIV, indicat-
ing direct binding of CAIV to the Ig1 domain of rGP70 (Fig. 6, E
and F). Mutation of Arg-130 to Ala resulted in an almost com-
plete loss of the signal, which indicates loss of binding between
rGP70 –R130A and CAIV, whereas the mutation D96A had no
significant influence on binding (Fig. 6, E and F). Taken
together, these results indicate that the functional interaction

between rMCT2/rGP70 and CAIV requires direct binding of
the enzyme to Arg-130 in the Ig1 domain of rGP70.

Binding of CAIV to GP70 is mediated by His-88 in CAIV

We have shown previously that binding of intracellular CAII
to the C-terminal tail of MCT1 and MCT4 is mediated by the
His-64 in CAII (57, 62, 63). The analog residue to CAII–His-64
in CAIV is His-88 (sometimes also termed CAIV–His-64, in
analogy to the His-64 in CAII). Because His-88 also serves as the
central residue of the enzyme’s intramolecular proton shuttle,
and is fundamental for CAIV enzymatic activity, it is conserved
along all mammalian species. The position of His-88 is depicted
in Fig. 7A. To investigate the role of CAIV–His-88 in the inter-
action with the MCT– chaperone complex, we coexpressed
rMCT2 and rGP70 with CAIV–WT or CAIV–H88A in Xeno-
pus oocytes. rMCT2 transport activity was determined by mea-

Figure 6. Functional interaction between rat MCT2 and CAIV in Xenopus oocytes requires direct binding of CAIV to Arg-130 in the Ig1 domain of
rGP70. A, homology structure of the Ig1 domain of rat GP70 (based on human CD147, PDB code 3B5H (37)). Glu-95 and Arg-130 are labeled in blue and red,
respectively. B, original recordings of the change in intracellular H� concentration during application of lactate and CO2/HCO3

� in Xenopus oocytes, expressing
rMCT2 together with rGP70 –WT (gray traces), rGP70 –D95A (blue traces), and rGP70 –R130A (red traces), respectively. Cells were either expressing rMCT2 �
rGP70 alone (light traces) or rMCT2 � rGP70 and human CAIV (dark traces). C and D, rate of change in intracellular H� concentration (�[H�]/�t) during
application of lactate (C) and 5% CO2, 10 mM HCO3

� (D) in Xenopus oocytes, expressing rMCT2 and rGP70 –WT (gray dots), rGP70 –D95A (blue dots), and
rGP70 –R130A (red dots), respectively. Cells were either expressing rMCT2 � rGP70 alone (light dots) or rMCT1 � rGP70 and human CAIV (dark dots). The
significance indicators above the dots with CAIV (dark dots) refer to the corresponding dots without CAIV (light dots of same color). E, representative Western
blots of CAIV (left blot) and GST (right blot), respectively. CAIV was pulled down with GST (lane 1), a GST fusion protein of the Ig1 domain of rGP70 –WT (lane 2),
a GST fusion protein of Ig1 domain of rGP70 –D95A (lane 3), and a GST fusion protein of Ig1 domain of rGP70 –R130A (lane 4). F, relative intensity of the
fluorescent signal of CAIV. For every blot, the signals for CAIV were normalized to the corresponding signals for GST–rGP70 –WT. Each individual signal for CAIV
was normalized to the intensity of the signal for GST in the same lane. The significance indicators above the dots refer to GST–rGP70 –WT.
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suring �[H�]/�t during application of 1 and 3 mM lactate (Fig.
7, B and C). Although transport activity of rMCT2 was again
increased �2-fold in the presence of CAIV–WT, CAIV–H88A
failed to facilitate rMCT2 transport activity. Catalytic activity of
CAIV was determined by application of 5% CO2, 10 mM HCO3

�

(Fig. 7, B and D). Coexpression of rMCT2/rGP70 with
CAIV–WT increased the rate of CO2-induced acidification by
a factor of �7, whereas coexpression with CAIV–H88A
increased �[H�]/�t only by a factor of �4, indicating a reduc-
tion in CAIV–H88A catalytic activity. Western blot analysis,
however, indicated no significant difference in the expression
levels of CAIV–WT and CAIV–H88A (Fig. 7E).

To test whether the His-88 in CAIV serves as binding site, we
pulled down CAIV–WT and CAIV–H88A, with a GST fusion
protein of the Ig1 domain of rGP70 –WT (Fig. 7F). Although
pulldown of CAIV with GST–rGP70 –WT again resulted in a

signal for CAIV, almost no signal could be observed when
GST–rGP70 –WT was pulled down with CAIV–H88A (Fig. 7, F
and G). This indicates that binding between CAIV and GP70 is
indeed mediated by the His-88 in CAIV.

His-88 in CAIV can function both as proton donor and proton
acceptor

It can be concluded from our results that direct interaction
between CAIV and the MCT chaperones CD147 and GP70 is
mediated by the His-88 in CAIV and Glu-73, Lys-73, and Arg-
130 in hCD147, rCD147, and rGP70, respectively. Although the
negatively charged glutamic acid residue could only function as
a proton acceptor in a hydrogen bond, the positively charged
lysine and arginine residues could only serve as a proton donor.
Therefore, His-88 in CAIV has to function both as a proton
donor and acceptor, depending on the charge of its binding

Figure 7. Functional interaction between rat MCT2 and CAIV in Xenopus oocytes requires direct binding of rGP70 to His-88 in CAIV. A, structure of
human CAIV (PDB code 5JN9 (79). The amino acid residue His-88 is labeled in red. B, original recordings of the change in intracellular H� concentration during
application of lactate and CO2/HCO3

� in Xenopus oocytes, expressing rMCT2 � rGP70 alone (black trace), together with human CAIV–WT (blue trace), or together
with the CAIV mutant H88A. C and D, rate of change in intracellular H� concentration (�[H�]/�t) during application of lactate (C) and 5% CO2, 10 mM HCO3

� (D)
in Xenopus oocytes, expressing rMCT2 � rGP70 –WT (gray dots), rMCT2 � rGP70 –WT � CAIV–WT (blue dots), and rMCT2 � rGP70 –WT � CAIV–H88A (red dots),
respectively. The black significance indicators above the dots with CAIV refer to the corresponding dots without CAIV (gray dots). The blue significance indicators
above the dots for CAIV–H88A refer to the corresponding dots with CAIV–WT (blue dots). E, relative amount of CAIV in CAIV–WT- and CAIV–H88A– expressing
oocytes, as determined by Western blot analysis. The inset shows a representative Western blotting against CAIV for Xenopus oocytes expressing CAIV–WT (left
lane) and CAIV–H88A (right lane), respectively. F, representative Western blots of CAIV (left blot) and GST (right blot), respectively. CAIV–WT was pulled down
with GST (lane 1), and a GST fusion protein of the Ig1 domain of rGP70 –WT (lane 2). The mutant CAIV–H88A was pulled down with a GST fusion protein of the
Ig1 domain of rGP70 –WT (lane 3). Lanes 1 and 2 in the blots are identical to lanes 1 and 2 in Fig. 8D. G, relative intensity of the fluorescent signal of CAIV. For every
blot, the signals for CAIV were normalized to the corresponding signals for GST–rGP70 � CAIV–WT. Each individual signal for CAIV was normalized to the
intensity of the signal for GST in the same lane. The significance indicators above the dots refer to GST–rGP70 � CAIV–WT.
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partner. To test this hypothesis, we combined different muta-
tions in CAIV and rGP70 as depicted in Fig. 8A: Fig. 8A1 shows
the interaction between rGP70 –WT and CAIV–WT. In this
scenario, Arg-130 in rGP70 and the His-88 in CAIV form a
hydrogen bond, with the positively charged Arg-130 function-
ing as proton donor (blue) and His-88 functioning as proton
acceptor (red). Fig. 8A2 shows the interaction between rGP70 –
R130E and CAIV–WT. In this scenario Glu-130 in rGP70 and
His-88 in CAIV form a hydrogen bond, with the His-88 now
functioning as a proton donor (blue) and the negatively charged
Glu-130 functioning as a proton acceptor (red). Fig. 8A3 shows
the interaction between rGP70 –WT and CAIV–H88K. In this
scenario, no hydrogen bond could be formed, because both the
Arg-130 in rGP70 and the Lys-88 in CAIV can only function as

a proton donor (blue). Fig. 8A4 shows the interaction between
rGP70 –R130E and CAIV–H88K. In this scenario Glu-130 in
rGP70 and Lys-88 in CAIV form a hydrogen bond, with Lys-88
functioning as a proton donor (Fig. 8A4, blue) and Glu-130
functioning as a proton acceptor (red). The four scenarios were
first verified experimentally by expression of rMCT2 together
with rGP70 –WT/R130E and CAIV–WT/H88K in Xenopus
oocytes. Transport activity of rMCT2 was determined by mea-
suring �[H�]/�t during application of 1 and 3 mM lactate (Fig.
8B). rMCT2 transport activity was facilitated in all cases where
a hydrogen bond could be formed between rGP70 and CAIV
(rGP70 –WT � CAIV–WT, rGP70 –R130E � CAIV–WT,
and rGP70 –R130E � CAIV–H88K). Only the combination
rGP70 –WT � CAIV–H88K, where no hydrogen bond could

Figure 8. CAIV–His-88 can function both as a proton donor and a proton acceptor for protein binding. A1– 4, structural model of the direct interaction
between human CAIV (PDB code 5JN9 (79)) and the Ig1 domain of rat GP70 (based on human CD147, PDB code 3B5H (37)). Amino acids that function as a
proton donor are labeled in blue; amino acids that function as proton acceptor are labeled in red. A1, model of the interaction between CAIV–WT and rGP70 –WT.
In this scenario CAIV–His-88 and rGP70 –Arg-130 can form a hydrogen bond with Arg-130 as a proton donor and His-88 as a proton acceptor. A2, model of the
interaction between CAIV–WT and rGP70 –R130E. In this scenario CAIV–His-88 and rGP70 –Glu-130 can form a hydrogen bond with His-88 as proton donor and
Glu-130 as proton acceptor. A3, model of the interaction between CAIV–H88K and rGP70 –WT. In this scenario, CAIV–Lys-88 and rGP70 –Arg-130 cannot form
a hydrogen bond because both residues can only function as a proton donor, thereby missing a proton acceptor. A4, model of the interaction between
CAIV–H88K and rGP70 –R130E. In this scenario CAIV–Lys-88 and rGP70 –Glu-130 can again form a hydrogen bond with Lys-88 as a proton donor and Glu-130
as a proton acceptor. B and C, rate of change in intracellular H� concentration (�[H�]/�t) during application of lactate (B) and CO2/HCO3

� (C) in Xenopus oocytes,
expressing rMCT2 � rGP70 –WT (gray dots), rMCT2 � rGP70 –WT � CAIV–WT (light blue dots), rMCT2 � rGP70 –R130E � CAIV–WT (dark blue dots), rMCT2 �
rGP70 –WT � CAIV–H88K (light red dots), and rMCT2 � rGP70 –R130E � CAIV–H88K (dark red dots), respectively. The significance indicators above the dots with
CAIV refer to the corresponding dots without CAIV (gray dots). D, representative Western blots of CAIV (upper blot) and GST (lower blot), respectively. CAIV–WT
was pulled down with GST (lane 1), a GST fusion protein of the Ig1 domain of rGP70 –WT (lane 2), and a GST fusion protein of the Ig1 domain of the mutant
rGP70 –R130E (lane 3). The mutant CAIV–H88K was pulled down with a GST fusion protein of Ig1 domain of rGP70 –WT (lane 4), and a GST fusion protein of the
Ig1 domain of the mutant rGP70 –R130E (lane 5), respectively. Lanes 1 and 2 in the blots are identical to lanes 1 and 2 in Fig. 7F. E, relative intensity of the
fluorescent signal of CAIV. For every blot, the signals for CAIV were normalized to the corresponding signals for GST–rGP70 � CAIV–WT. Each individual signal
for CAIV was normalized to the intensity of the signal for GST in the same lane. The significance indicators above the dots refer to GST–rGP70 –WT � CAIV–WT.
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be formed between the two proteins failed to facilitate rMCT2
transport function. Catalytic activity of CAIV was determined
by application of 5% CO2, 10 mM HCO3

� (Fig. 8C). Coexpres-
sion of rMCT2 � rGP70 with both CAIV–WT and CAIV–
H88K increased the rate of CO2-induced acidification by a fac-
tor of �3, with no significant differences between the batches
(Fig. 8C). Binding between the different combinations of rGP70
and CAIV was examined by pulldown assay (Fig. 8D). In all
cases where a hydrogen bond could be formed between rGP70
and CAIV (rGP70 –WT � CAIV–WT, rGP70 –R130E �
CAIV–WT, and rGP70 –R130E � CAIV–H88K), binding
between the two proteins could be observed. Only the combi-
nation rGP70 –WT � CAIV–H88K, where no hydrogen bond
could be established between the two proteins, failed to bind
(Fig. 8, D and E).

Discussion

Our previous studies had demonstrated that intracellular
CAII binds to MCT1 and MCT4 via a cluster of three glutamic
acid residues within the transporter’s C-terminal tail (MCT1,
489EEE (62), and MCT4, 431EEE (63)). In both cases, the two
outer glutamic acids form hydrogen bonds with the histidine at
position 64 in CAII. The extracellular portions of MCT1,
MCT2, and MCT4 seem to lack an analogous binding site. Fur-
thermore, CAIV was only able to facilitate transport activity of
MCT2 when the transporter was co-expressed with its chaper-
one GP70 (49). These results suggested that CAIV may interact
with MCTs via their chaperones. To investigate whether CAIV
directly interacts with the MCT chaperones, we first searched
for a putative CAIV-binding site in the human isoform of
CD147, the chaperone of MCT1 and MCT4. Molecular dock-
ing experiments identified the two glutamic acid residues
Glu-31 and Glu-73 in the Ig1 domain of hCD147 as potential
interaction partners for CAIV. Subsequent measurements on
HEK-293 cells and pulldown experiments revealed that binding
of CAIV to hCD147 is mediated by a hydrogen bond between
Glu-73 in hCD147 and His-88 in CAIV (Fig. 9A), whereas
Glu-31 does not participate in the interaction between the two
proteins.

Although CAIV–His-88 is highly conserved among all mam-
malian species, the identity of the amino acid that mediates
binding in the chaperone does vary. In fact, binding of human
CD147 to CAIV is mediated by the acidic glutamic acid residue
at position 73, whereas binding of rat CD147 to CAIV is medi-
ated by an alkaline lysine residue at the same position
(rCD147–Lys-73). In rat GP70, binding to CAIV is mediated by
the alkaline Arg-130 (which is conserved in the human iso-
form). These results suggest that hydrogen bond formation
with CAIV–His-88 can be mediated by both acidic and alkaline
residues. Formation of a hydrogen bond between two residues
always requires one residue functioning as a proton donor and
one residue functioning as a proton acceptor. Because the neg-
atively charged glutamic acid residue could only function as a
proton acceptor in a hydrogen bond, whereas the positively
charged lysine and arginine residues could only serve as a pro-
ton donor, His-88 in CAIV has to function both as a proton
donor and acceptor, depending on the charge of its binding
partner. This assumption was confirmed experimentally by sys-
tematic exchange of the binding residues in CAIV and rGP70.
CAIV–WT could bind to both rGP70 –Arg-130 (WT) and
rGP70 –Glu-130 (mutant). Arg-130 would serve as a proton
donor and His-88 as a proton acceptor, whereas Glu-130 would
serve as a proton acceptor and His-88 as a proton donor. When
His-88 in CAIV was mutated to lysine (which could only func-
tion as proton donor), CAIV was only able to bind to rGP70 –
Glu-130 (proton acceptor) and not to rGP70 –Arg-130, because
no hydrogen bond could apparently be established between two
proton donors.

We cannot fully exclude that introduction of the single-site
mutations leads to misfolding of the proteins. However, this
scenario seems rather unlikely for several reasons. 1) None of
the mutations of the chaperons did influence MCT transport
activity in the absence of carbonic anhydrase. If mutation of the
Ig1 domain would alter folding of the chaperon, this misfolded
chaperon would most likely not be able to interact with MCTs
and allow full MCT transport function. 2) As shown in Fig. 8,
the effect of single-site mutations in rGP70 can be rescued by

Figure 9. A, structural model of the direct interaction between CAIV and CD147. CAIV (green cartoon) binds to the Ig1 domain of hCD147 (ochre cartoon) by
formation of a hydrogen bond (dotted line) between CAIV–His-88 and CD147–Glu-73 (red sticks) with a distance of 3.2 Å. B, hypothetical model of the functional
interaction between MCT, CD147/GP70, and CAIV. CAIV (green circle), which is tethered to the extracellular site of the plasma membrane via a GPI anchor (small
green circles), binds MCTs via the Ig1 domain of their chaperones CD147 and GP70 (light ochre structure). This binding brings CAIV close enough to the
transporter pore to shuttle protons between transporter and surrounding protonable residues (gray circle). On the intracellular site, CAII (light blue circle), which
binds to the C-terminal tail of MCT1 and MCT4 (57, 62, 63), facilitates the exchange of protons between transporter and intracellular protonable residues (light
gray circle) in a similar fashion as CAIV. By this noncatalytic mechanism, intracellular and extracellular carbonic anhydrases could facilitate proton-coupled
lactate flux across the cell membrane.
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mutations in CAIV and vice versa. If the mutation would lead to
misfolding of one protein, it would be unlikely that this misfold-
ing could be rescued by mutation of another protein. 3) In case
of CAIV, all CAIV mutants show the same catalytic activity as
CAIV–WT. It seems unlikely that a misfolded enzyme shows
the same catalytic activity as the WT form.

CAIV–H88K was not only able to bind GP70 –R130E but also
to enhance activity of MCT2 when the transporter was coex-
pressed with the mutated chaperone. We have previously sug-
gested that CAIV–His-88 (the central residue of the enzyme’s
intramolecular H� shuttle) could also mediate H� transfer
between CAIV and MCT (49, 50). Mutation of CAIV–His-88 to
lysine should disable H� shuttling, because lysine has a consid-
erably higher pKa value than the imidazole ring in histidine,
which does not allow fast protonation/deprotonation reactions
at physiological pH. However, CAIV–H88K does still facilitate
MCT2 transport activity (when coexpressed with GP70-
R130E) to the same extent as CAIV–WT. This result indicates
that His-88 may not be involved in proton transfer between
MCT and CAIV, but instead mediates binding of the enzyme to
the transporter’s chaperone. However, lysine residues that are
buried in the protein interior could display considerably lower
pKa values than in water (65). Therefore, it is possible that
CAIV–H88K retains enough shuttling activity to facilitate
MCT-mediated lactate transport. An analogue phenomenon
we recently described for the interaction between MCT1/4 and
intracellular CAII (57) is as follows. To investigate whether
CAII–His-64 mediates binding or proton shuttling between
MCT1/4 and CAII, or both, the histidine at position 64 was
exchanged either to alanine or to lysine. Mutation of His to Ala
should disable both intramolecular H� shuttling in CAII and
binding of the enzyme to the glutamate residues in the C-ter-
minal tail of MCT1/4. Mutation of His to Lys also disables H�

shuttling, but still enables CAII to bind to the transporter. Anal-
ogous to these findings, MCT transport activity was not
enhanced by CAII–H64A, whereas CAII–H64K facilitated
MCT transport activity to the same extent as CAII–WT. These
results lead to the conclusion that His-64 may not be involved
in proton transfer between MCT and CAII, but instead medi-
ates binding of the enzyme to the transporter. Instead, proton
shuttling between transporter and the carbonic anhydrase is
mediated by CAII–Glu-69 and CAII–Asp-72, which could
function as surface proton antenna for the enzyme (57, 66). For
the cancer-associated CAIX, another extracellularly located
CA isoform, the proteoglycan-like domain, which is unique to
CAIX among the CAs, and which contains a total of 26 gluta-
mate and aspartate residues, was identified as intramolecular
H� shuttle (67). CAIV, however, neither features a proteogly-
can-like domain nor has an analogue proton shuttle to CAII–
Glu-69/Asp-72 been identified so far. Therefore, it remains
unclear which amino acids in CAIV could mediate the proton
transfer between MCT and CAIV.

Even though the intermolecular proton shuttle in CAIV has
not been identified so far, it appears likely that CAIV facilitates
MCT transport activity by an analogous mechanism as
described for intracellular CAII and extracellular CAIX. In that
case, binding of CAIV to the transporter’s chaperone would
bring the enzyme close enough to the transporter to rapidly

exchange protons between transporter pore and protonable
residues at the extracellular face of the plasma membrane. By
this mechanism, CAIV would counteract the formation of pro-
ton microdomains at the extracellular entrance of the transport
pore to facilitate proton-coupled lactate transport across
MCTs (Fig. 9B). Indeed, in this study, loss of binding between
CAIV and the chaperone always resulted in the loss of CAIV-
mediated increase in MCT transport activity. These results
show that binding of CAIV to the transporter’s chaperone is
necessary for the functional interaction between the proteins.
However, we cannot fully exclude that the observed increase in
MCT transport activity in the presence of CAIV derives from
changes the sub-cellular distribution of the transport proteins.
Further experiments are required to answer this question.

CAIV also binds to, and enhances, transport activity of sev-
eral other acid/base transporters. CAIV binds to the 4th extra-
cellular loop of the Cl�/HCO3

� anion exchanger AE1 (45). Sub-
sequent mutation studies suggested that the amino acid cluster
Ser-643–Leu-655 within this loop has a folded structure that is
inaccessible to hydrophilic reagents, whereas the Arg-656 –Ile-
661 region had an open structure with maximum accessibility
at Arg-656 (45). From this it was concluded that CAIV might
interact with AE1 within the 656RSEFPI cluster. The exact AE1-
binding site in CAIV is yet unknown. However, if we assume
that binding between AE1 and CAIV follows the same principle
as binding between CD147/GP70 and CAIV, CAIV–His-88
might either bind to Arg-656 or Glu-658 in AE1. Interestingly,
both Arg-656 and Glu-658 are subject to point mutations that
induce blood group antigens (Moa (R656H), Hga (R656C), and
Wra (E658K) (68, 69)). Corresponding to the findings in this
study, mutation of AE1–Arg-656 to either cysteine or histidine
could be predicted to lead to a loss of binding between AE1 and
CAIV, which would result in functional impairment of AE1
transport activity, whereas mutation of AE1–Glu-658 to lysine
should still allow binding between transporter and enzyme,
without affecting AE1 transport function. Therefore, it appears
likely that AE1–Glu-658 serves as binding site for CAIV. These
assumptions, of course, require experimental validation.

Pulldown assays demonstrated physical binding between
CAIV and a GST fusion protein of the 4th extracellular loop of
hNBCe1 (47). However, binding to the loop was abolished
when glycine at position 767 was mutated to threonine. There-
fore, it was suggested that CAIV binds within the amino acid
cluster 766RGW, which is conserved in the bicarbonate trans-
porters (47). According to our present findings, glycine itself
would not form a hydrogen bond with the His-88 in CAIV, but
the arginine at position 766 might be a potential candidate for
the direct interaction with CAIV–His-88. The mutation of Gly-
767 to the more bulky threonine might therefore hinder bind-
ing of Arg-677 to His-88. This might be interesting to be tested
experimentally.

We previously found that CAIV also facilitates transport
activity of rMCT1 and rMCT4, when the transporters are
expressed without rCD147 in oocytes (50, 51). Xenopus oocytes
express endogenous CD147, which has been suggested to inter-
act with the transporters (22). The sequence alignment
between the Xenopus CD147 homologue and rat CD147 shows
that the Xenopus CD147 features the Thr-75 at the homolog

CAIV binds to the MCT chaperones CD147 and GP70

602 J. Biol. Chem. (2019) 294(2) 593–607



position to rCD147–Lys-73 (Fig. 10). However, threonine
should also be able to form a hydrogen bond with CAIV–His-
88. Therefore, it is possible that the CAIV-induced facilitation
of MCT1/4 transport activity can be mediated by binding of
CAIV to the Xenopus CD147 when MCT1/4 are expressed
without ancillary protein in the oocytes. It has also been shown
that rMCT2 can interact with endogenous neuroplastin, when
heterologously expressed in Xenopus oocytes (70). The Xeno-
pus neuroplastin homologue, which has 39% sequence identity
with rCD147, features Glu-94 at the position analogue to
Lys-73 in rCD147 (Fig. 10). However, we have previously shown
that transport activity of MCT2 can only be enhanced by CAIV
when the transporter was coexpressed with rGP70 in oocytes,
but not when MCT2 and CAIV were coexpressed without the
ancillary protein (49). It appears questionable that CAIV can
directly interact with endogenous neuroplastin to facilitate
MCT2 transport activity in Xenopus oocytes.

Experimental procedures

Molecular docking of CD147/GP70 and CAIV

There is no solved crystal structure of either rCD147 or
rGP70, and therefore, in silico models were generated based on
their respective sequences. The on-line software Swiss-Model
was used to generate the rCD147 and rGP70 Ig domain models
utilizing hCD147 (PDB code 3B5H) as the template. Swiss-
Model generates protein models based on previously solved
structures of highly homologous proteins (71). Using the inter-
active graphical program Coot (72), hCD147 (PDB code 3B5H)
and rGP70 models were manually docked onto to CAIV (PDB
code 5JN9) active-site domain to maximize surface interac-
tions. Energy minimization was then performed in the crystal-
lography and NMR system program (CNS) to achieve a local
minimum energy at the complex interface (73). Complexes
were further analyzed, and figures were generated using the
graphics software PyMOL (Schrödinger).

Constructs

Human CD147, cloned into the mammalian vector pCMV6-
Entry, was purchased from OriGene Technologies (RC203894).
The construct carries a C-terminal Myc-DDK tag. Rat CD147
and rat GP70, both cloned into oocyte expression vector
pGEM-He-Juel, which contains the 5�- and the 3�-untran-
scribed regions of the Xenopus �-globin, flanking the multiple
cloning site, were kindly provided by Dr. Andrew Halestrap,
University of Bristol, UK (21, 25). Rat MCT1 and rat MCT2,
cloned into oocyte expression vector pGEM-He-Juel, were pro-
vided by Dr. Stefan Bröer, Australian National University, Can-
berra (2, 8). Human CAIV was provided by Dr. William S. Sly,
St. Louis, MO, and subcloned into pGEM-He-Juel, as described
previously (49).

Site-directed mutation

Site-directed mutation of hCD147, rCD147, rGP70, and
CAIV was carried out by PCR using Phusion High-Fidelity DNA
polymerase (ThermoFisher Scientific) and modified primers,
which contained the desired mutation. Primers used for creation
of the different mutants are shown in Table 1. hCD147, cloned into
the expression vector pCMV6-Entry, rCD147, rGP70, and CAIV,
cloned into the oocyte expression vector pGEM-He-Juel, were
used as template. PCR was cleaned up using the GeneJET PCR
purification kit (ThermoFisher Scientific), and the template was
digested with DpnI (Fermentas FastDigest DpnI, ThermoFisher
Scientific) before transformation into Escherichia coli DH5� cells.
Successful mutation of the construct was confirmed by sequenc-
ing (SEQ-IT; Macrogen Europe).

Protein expression in HEK-293 cells

2.8 �g of cDNA encoding hCD147–WT, hCD147–E31Q,
hCD147–E73Q, and hCD147–E31Q/E73Q (cloned into
pCMV6-Entry) and CAIV (cloned into pcDNA3) were tran-
siently transfected using the calcium phosphate method (74).
HEK-293 cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 5% (v/v) fetal bovine
serum, 5% (v/v) calf serum, and 1% (v/v) penicillin/streptomy-
cin/glutamine. Cells were incubated at 37 °C in 5% CO2, 95% air
in humidified cell culture incubators. Experiments were carried
out 42–56 h after transfection. At this time, cells reached max-
imum DNA expression and 85–90% confluency.

Measurement of intracellular H� concentration in HEK-293
cells

Transport activity of MCT1 was measured by a fluorescent
assay, slightly modified from Ref. 75. In brief, HEK-293 cells,
grown on poly-L-lysine– coated coverslips (placed on 100-mm
dishes), were transiently transfected with cDNA as described
above. Two days after transfection, coverslips were rinsed in
serum-free DMEM and incubated in 2 ml of serum-free
DMEM, containing 2 �M 2�,7�-bis(2-carboxyethyl)-5-(and -6)-
carboxyfluorescein, acetoxymethyl ester (BCECF-AM) at room
temperature for 15 min in the dark. Coverslips were then
mounted in a fluorescence cuvette and were perfused with
HEPES-buffered solution (140 mM NaCl, 25 mM sodium gluco-
nate, 5 mM potassium gluconate, 1 mM calcium gluconate, 5 mM

glucose, 1 mM MgSO4, 10 mM HEPES, 2.5 mM NaH2PO4, pH
7.4) in the nominal absence of CO2/HCO3

�. In lactate-contain-
ing saline, NaCl was replaced by an equimolar amount of

Figure 10. Alignment of the amino acid sequence surrounding the puta-
tive CAIV-binding site of rat CD147 (AAH59145.1), Xenopus CD147
orthologue (NP_001089604.1), and the Xenopus neuroplastin ortho-
logue (NP_001082482). The putative CAIV-binding site is marked in red.

Table 1
Primers used to generate mutants
Shown are the sense primers for single-site mutation of hCD147, rCD147, rGP70,
and CAIV. Nucleotides that differ from the wildtype sequence are labeled in bold.
The antisense primers had the inverse complement sequence of the sense primers.

Mutant Primer sequence (5�3 3�)

hCD147–E31Q CAGTCTTCACTACCGTACAAGACCTTGGCTCCAAG
hCD147–E73Q CCGGCCAGAAAACGCAGTTCAAGGTGGACTC
rCD147–E32A GTAACCTCTGTCCAGGCAGTTGACTCCAAGACACAG
rCD147–K73A CCCGATCTACAGATGGCGTACACGGTGGATGC
rGP70-D95A CGTTCACGGCAACTGAGGCTGTGATGTCAATG
rGP70–R130A GGGGACACCTTATACAGTCAATACGCGTTCACCG
rGP70–R130E GGACACCTTATACAGTCAATACGAATTCACCG
CAIV–H88A GGACTGTCCAAAATAACGGGGCCTCAGTGATG
CAIV–H88K GGACTGTCCAAAATAACGGGAAGTCAGTGATG
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sodium L-lactate. To check the expression of CAIV, a short CO2
pulse was applied. For this solution, sodium gluconate was
replaced by 25 mM NaHCO3, and the solution was bubbled with
air containing 5% CO2.

Fluorescence was monitored using an RCR fluorometer
(Photon Technologies International Inc.) at excitation wave-
lengths of 440 and 502.5 nm and an emission wavelength of
528.7 nm. The system was calibrated by the use of nigericin (1
�M). The rate of change in [H�]i was calculated by determining
the slope at each lactate or CO2/HCO3

� application. All calcu-
lations were performed with the program OriginPro 8.6
(OriginLab Corp.).

Analysis of protein expression in HEK-293 cells by Western
blotting

Two days after transfection, cells were lysed in immunoprecipi-
tation buffer (10 mM Tris-HCl, pH 7.5, 1% Nonidet P-40, 5 mM

EDTA, 0.15 mM NaCl, 0.5% sodium deoxycholate), containing
complete protease inhibitor mixture and 5 mM phenylmethylsul-
fonyl fluoride. The protein concentration was determined by BCA
assay. 50 �g of each sample were loaded per lane on a 12% acryl-
amide gel and transferred to nitrocellulose membranes. Proteins
of interest were labeled with rabbit anti-MCT1 (1:200, AB-3538p,
Millipore), mouse anti-MYC (1:4000, 05-724, Millipore), mouse
anti-CD147 (1:500, sc-21746 Santa Cruz Biotechnology), and
mouse anti-GAPDH (1:5000, SC-47724, Santa Cruz Biotechnol-
ogy), followed by incubation with horseradish peroxidase-conju-
gated secondary antibodies (1:1000, goat anti-rabbit and sheep
anti-mouse, Santa Cruz Biotechnology). Immunoblots were devel-
oped with Luminata Crescendo Western horseradish peroxidase
reagent (Millipore) and visualized using a biomolecular imager
(ImageQuant LAS4000, GE Healthcare). Quantitative densitome-
try analyses were performed with ImageJ. To allow comparison of
different Western blottings, all measured protein concentrations
on one blot were normalized to the concentration of GAPDH on
the same blot.

Heterologous protein expression in Xenopus oocytes

cDNA coding for human CAIV, rat MCT1, rat MCT2, rat
CD147, and rat GP70, respectively (all cloned into the oocyte
expression vector pGEM-He-Juel), was transcribed in vitro
with T7 RNA-polymerase (mMessage mMachine, Ambion
Inc., Austin, TX), as described earlier (76, 77). Xenopus laevis
females were purchased from the Radboud University, Nijme-
gen, Netherlands. Segments of ovarian lobules were surgically
removed under sterile conditions from frogs anesthetized
with 1 g/liter ethyl 3-aminobenzoate methanesulfonate (MS-
222, Sigma) and rendered hypothermic. The procedure was
approved by the Landesuntersuchungsamt Rheinland-Pfalz,
Koblenz (23 177-07/A07-2-003 §6) and the Niedersächsisches
Landesamt für Verbraucherschutz und Lebensmittelsicherheit,
Oldenburg (33.19-42502-05-17A113). As described earlier (76,
77), oocytes were singularized by collagenase (Collagenase A,
Roche Applied Science) treatment in Ca2�-free oocyte saline
(pH 7.8) at 28 °C for 2 h. The singularized oocytes were left
overnight in an incubator at 18 °C in Ca2�-containing oocyte
saline (pH 7.8) to recover. Oocytes of stages V and VI were
injected with 5 ng of cRNA coding for rMCT1 or rMCT2,

together with 10 ng of cRNA coding for rCD147–WT or a
mutant of rCD147, or 10 ng of cRNA coding for rGP70 –WT or
a mutant of rGP70, and 1 ng of cRNA coding for CAIV–WT or
a mutant of CAIV. Measurements were carried out 3– 6 days
after injection of cRNA. The oocyte saline had the following
composition: 82.5 mM NaCl, 2.5 mM KCl, 1 mM CaCl2, 1 mM

MgCl2, 1 mM Na2HPO4, 5 mM HEPES, titrated with NaOH to
the desired pH.

Measurement of intracellular H� concentration in Xenopus
oocytes

All measurements were carried out in oocyte saline (pH 7.0)
in the nominal absence of CO2/HCO3

�, containing around
0.008 mM CO2 from air and hence a HCO3

� concentration of
less than 0.2 mM. In lactate-containing saline, NaCl was
replaced by an equivalent amount of sodium L-lactate. To check
for CAIV catalytic activity, a short CO2 pulse was applied. For
this solution, NaCl was replaced by 10 mM NaHCO3, and the
solution was aerated with 5% CO2, 95% O2.

To measure intracellular H� concentration and membrane
potential, single-barreled microelectrodes were used; the man-
ufacture and application have been described in detail previ-
ously (77, 78). Briefly, a borosilicate glass capillary of 1.5 mm in
diameter was pulled to a micropipette and was silanized with a
drop of 5% tri-N-butylchlorosilane in 99.9% pure carbon tetra-
chloride, backfilled into the tip. The micropipette was baked for
4.5 min at 450 °C on a hot plate. H�-sensitive mixture (Fluka
95291, Fluka) was backfilled into the silanized tip and filled up
with 0.1 M sodium citrate, pH 6.0. To increase the opening of
the electrode tip, it was beveled with a jet stream of aluminum
powder suspended in H2O. The reference electrode was filled
with 3 M KCl. Calibration of the electrodes was carried out in
oocyte salines with a pH of 7.0 and 6.4. As described previously
(2), optimal pH changes were detected when the electrode was
located near the inner surface of the plasma membrane. During
all measurements, oocytes were clamped to a holding potential
of �40 mV using an additional microelectrode, filled with 3 M

KCl and connected to an Axoclamp 2B amplifier (Axon Instru-
ments). All experiments were carried out at room temperature
(22–25 °C). The measurements were stored digitally using cus-
tom-made PC software based on the program LabView
(National Instruments). The rate of change of the measured
[H�]i was analyzed by determining the slope of a linear regres-
sion fit using the spreadsheet program OriginPro 8.6 (Origin-
Lab Corporation). Conversion and analysis of the data have
been described in detail previously (77).

Pulldown of CAIV with GST fusion proteins

To create GST fusion proteins, cDNA sequences encoding the
Ig1 domain of hCD147–WT (amino acids 23–105), rCD147–WT
(amino acids 23–105), rGP70–WT (amino acids 24–163), or
mutants of the chaperones were subcloned into the bacterial
expression vector pGEX-2T (GE Healthcare) and transformed
into E. coli BL21 cells. Protein expression was induced by addition
of 0.8 mM isopropyl �-D-thiogalactopyranoside. 3 h after induc-
tion, cells were harvested, resuspended in PBS, supplemented with
2 mM MgCl2 and protease inhibitor mixture tablets (PBS�), and
lysed by addition of 1 volume of lysis buffer (catalog no. 21516,
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ThermoFisher Scientific). Bacterial lysates were centrifuged for 15
min at 4 °C, 12,000 � g, and the supernatant, containing the GST
fusion protein (bait protein), was collected for further use.
CAIV–WT and mutants of CAIV, respectively, were expressed in
Xenopus oocytes. For each experiment, 20 oocytes were lysed in
PBS� � lysis buffer. Oocyte lysates were centrifuged for 15 min at
4 °C, 12,000 � g, and the supernatant (prey protein) was collected
for further use.

The pulldown experiment was carried out using the Pierce GST
protein interaction pulldown kit (ThermoFisher Scientific).
Briefly, for immobilization of GST fusion protein, bacterial lysate
was added to GSH-agarose and incubated for 2 h at 4 °C with end-
over-end mixing. After incubation, the excess bait protein was
removed by centrifugation, and the beads were washed five times
with PBS�. 400 �l of oocyte lysate, containing CAIV, was added to
the column and incubated overnight at 4 °C with end-over-end
mixing. After incubation, the excess prey protein was removed by
centrifugation, and the beads were washed two times with wash
buffer. Protein was eluted from the beads with 250 �l of elution
buffer (10 mM GSH in PBS, pH 8.0).

To determine the relative amount of GST and CAIV, an
equal volume of the samples was analyzed by Western blotting.
GST was detected using a primary anti-GST antibody (dilution
1:400; anti-GST tag mouse monoclonal IgG, 05-782, Millipore)
and a goat anti-mouse IgG horseradish peroxidase-conjugated
secondary antibody (dilution 1:2000; sc-2031, Santa Cruz Bio-
technology). CAIV was detected using primary anti-CAIV anti-
body (1:300 mouse anti-human CAIV mAb, MAB2186, R&D
Systems) and a goat anti-mouse IgG horseradish peroxidase-
conjugated secondary antibody (dilution 1:2000; Santa Cruz
Biotechnology).

Imaging of the blots was carried out with an Odyssey� Fc Imag-
ing system (LI-COR Inc.) and the software Image StudioTM. Opti-
mal exposure times were automatically selected by the software,
and all bands were controlled for overexposure. Quantification of
the band intensity was carried out with the software ImageJ. To
overcome variations in the signal intensity between different
blots, signal intensity of each band for CAIV was normalized to the
signal intensity of the band from the pulldown of CAIV–WT with
the GST fusion protein of the WT chaperone on the same blot. To
account for variations in the amount of GST fusion protein, each
normalized signal for CAIV was divided by the corresponding nor-
malized signal for GST.

Calculation and statistics

Statistical values are presented as means � S.D. For calcula-
tion of significance in differences, Student’s t test was used. In
the figures shown, a significance level of p � 0.05 is marked with
*, p � 0.01 is marked with **, and p � 0.001 is marked with ***.
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