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Abstract: Epigenetic mechanisms including DNA methylation are critical regulators of organismal development and 
tissue homeostasis. DNA methylation is the transfer of methyl groups to cytosines, which adds an additional layer 
of complexity to the genome. DNA methylation marks are recognized by the cellular machinery to regulate tran-
scription. Disruption of DNA methylation with aging or exposure to environmental toxins can change susceptibility 
to disease or trigger processes that lead to disease. In this review, we provide an overview of the DNA methylation 
machinery. More specifically, we describe DNA methylation in the context of prostate development, prostate cancer, 
and benign prostatic hyperplasia (BPH) as well as the impact of dietary and environmental factors on DNA methyla-
tion in the prostate.
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This review has been designed as an introduc-
tion to the field of DNA methylation for prostate 
researchers. We provide a historical perspec-
tive by following advances in DNA methylation 
research from the inception of the field to the 
recent discoveries involving DNA methylation 
and prostate cancer. We summarize the func-
tions of key elements of the DNA methylation 
machinery and their interactions with the his-
tone modification machinery. The role of DNA 
methylation as a dynamic regulator of develop-
ment, homeostasis and disease has been 
described using research carried out in several 
organ systems including the prostate. Aging is 
a major risk factor for prostate cancer and 
benign prostatic hyperplasia (BPH). This review 
touches on DNA methylation changes occurring 
during aging, prostate cancer and BPH. We also 
summarize research on how environmental  
toxins affect early prostate development with 
accompanying changes in DNA methylation 
and the impact of diets enriched with the meth-
yl donor folic acid on prostate homeostasis and 
susceptibility to prostate cancer. 

Epigenetics: historical perspective

Developmental biologists in the early-twentieth 
century grappled with the question of how cells 

containing the same genetic code could behave 
so differently and develop specialized func-
tions. The term epigenetics, meaning ‘above 
the genome’, was coined by Waddington in 
1942 to explain how non-coding changes to 
genetic material could direct cell specialization 
during development [1]. In recent times, defini-
tions of epigenetics have moved beyond devel-
opmental biology to encompass other fields 
including cancer biology and toxicology. One 
widely accepted definition states that epi-
genetics is “the study of changes in gene func-
tion that are mitotically and/or meiotically heri-
table and that do not entail change in DNA 
sequence” [2, 3]. The modern field of epi-
genetics has grown to include covalent modifi-
cations to histones and DNA as well as non-
coding RNAs which act together to finely modu-
late gene expression. 

Introduction to DNA methylation

DNA methylation is the addition of methyl 
groups to the 5’ position of cytosine bases in 
DNA, preferentially at CpG dinucleotide sites 
[4]. 60% of CpG dinucleotides in the mammali-
an genome are methylated [5]. CpG dinucleo-
tides often reside in clusters, or CpG islands, 
which are generally unmethylated and associ-
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ated with gene promoters. DNA methylation is 
initiated by a class of enzymes called DNA 
methyltransferases. DNA methyltransferase-1 
(DNMT1) preferentially carries out methylation 
at hemi-methylated DNA sites and preserves 
methylation patterns during cell replication. 
DNMT3A and DNMT3B have de novo methyla-
tion activity (methyl group addition to unmodi-
fied DNA) and are required for mammalian 
development [6]. Another DNMT3 family mem-
ber, DNMT3L is catalytically inactive, but coop-
erates with DNMT3A and DNMT3B during de 
novo methylation [7, 8].

Transfer of methyl groups to cytosines in DNA  
is a highly conserved process. Methyltransfe- 
rases bind to DNA, ‘flip’ out cytosine from the 
DNA helix and attach the methyl group from 
S-adenosyl methionine to the 5’ position of 
cytosine. The N-terminal regulatory domain of 
the DNMTs contains motifs for protein-DNA 
interactions, protein-protein interactions and 
nuclear localization. The C-terminal region con-
tains conserved motifs that define the enzyme 
active site. The N-terminal region of DNMT3L 
shares similarities with that of DNMT3A and 
DNMT3B but lacks the catalytic active site in its 
C-terminal domain. 

Adding methylation marks

Broadly, the division of labor between the  
DNA methyltransferases is clear. DNMT3A  
and DNMT3B methylate the genome de novo 
during early development and gametogenesis. 
DNMT1, with its preference for hemi-methylat-
ed DNA, propagates methylation patterns dur-
ing tissue growth. We will briefly summarize the 
cellular localization, binding partners and major 
functions of the DNA methyltransferases below:

DNMT1: DNMT1 is a large protein comprised of 
~1620 amino acids. During S-phase, DNMT1 
localizes to replication forks and assumes a 
distinct punctate nuclear staining pattern. Dur- 
ing other stages of the cell cycle, DNMT1 nu- 
clear staining is diffuse. The N-terminal region 
of DNMT1 contains a replication foci targeting 
sequence (RFTS) that targets it to sites of repli-
cation [9]. Autoinhibition of the methyltrans- 
ferase domain of DNMT1 by interaction with 
the RFTS domain determines substrate speci-
ficity. Conformational changes in the N-terminal 
region inhibit catalytic activity when DNMT1 is 
bound to unmethylated CpG substrates. This 

inhibition is released when DNMT1 is bound  
to hemi-methylated CpG substrates [10]. Pre- 
ferential localization to replication foci and  
substrate specificity for hemi-methylated DNA 
allows DNMT1 to stably propagate tissue- 
specific methylation patterns. DNMT1 protein 
abundance changes during the cell cycle (peak-
ing in S-phase) and is present but not particu-
larly abundant in non-replicating cells [11]. 
During fetal prostate development, Dnmt1 is 
initially expressed in the urethral mesenchyme 
but shifts to the developing epithelial prostate 
buds at later stages [12]. 

Knockout, mutation, and inhibition studies 
have provided key insights into the role of 
DNMT1 in maintaining global methylation. 
Targeted mutation of Dnmt1 in mouse embry-
onic stem (ES) cells reduces 5-methylcytosine 
(5mC) 3-fold without affecting cell viability. 
Mouse embryos carrying the same targeted 
mutation have a similar 3-fold reduction in 5mC 
levels but are not viable [13]. In contrast to 
mouse ES cells, DNMT1 knockout in human ES 
cells triggers apoptosis [14]. Conditional dele-
tion of Dnmt1 in mouse fibroblasts leads to 
severe hypomethylation, p53-dependent apop-
tosis and aberrant gene expression [15]. Loss 
of DNMT1 results in elevated mutation rates, 
genomic instability [16], microsatellite instabil-
ity [17], DNA damage [18] and cell cycle arrest 
[19, 20]. DNMT1 activity and expression is 
upregulated in prostate cancer, where it serves 
to methylate and suppress key tumor suppres-
sor genes [21].

Mutations in the RFTS domain of DNMT1 have 
been linked to two neurodegenerative syn-
dromes: autosomal dominant cerebellar atax-
ia-deafness and narcolepsy (ADCA-DN) and 
hereditary sensory neuropathy with dementia 
and hearing loss (HSN1E) [22-25]. These muta-
tions prevent DNMT1 from binding to hetero-
chromatin, leading to aberrant methylation  
patterns and DNMT1 protein aggregation in  
the cytosol [25]. There is increasing evidence 
for the association of single nucleotide poly-
morphisms of DNA methyltransferases with 
incidence of different tumor types, including 
prostate cancer [26-28]. 

DNMT3 family: The DNMT3 family of methyl-
transferases is comprised of DNMT3A, DNMT- 
3B and DNMT3L. Except for conserved motifs 
in the C-terminal catalytic region, the DNMT3 
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enzymes do not share much sequence similar-
ity with DNMT1 [29]. Their N-terminal domains 
are considerably shorter than that of DNMT1 
and lack the regulatory elements that confer 
specificity towards hemi-methylated DNA. As a 
result, DNMT3A and DNMT3B show no prefer-
ence for hemi-methylated DNA over unmethyl-
ated DNA and are called de novo methyl- 
transferases [30, 31]. DNMT3L is catalytically  
inactive but functions as a co-regulator with 
DNMT3A and DNMT3B. DNMT3A localizes to 
pericentromeric heterochromatin while DNMT- 
3B is diffusely localized in the nucleus [32]. 
DNMT3A and DNMT3B expression is abundant 
in undifferentiated embryonic cells but is barely 
detectable in differentiated and adult tissues 
[29]. DNMT3L is highly expressed during game-
togenesis [33].

DNMT3A and DNMT3B are essential for de 
novo methylation, transcriptional repression, 
and early embryonic development. Inactivation 
of Dnmt3a and Dnmt3b, simultaneously but 
not individually, blocks de novo methylation, 
suggesting that these enzymes have overlap-
ping functions. DNMT3B is essential for early 
embryonic development as Dnmt3b knockout 
mice are embryonic lethal. In contrast, Dnmt3a 
knockout mice live up to 4 weeks of age. 
Dnmt3a and Dnmt3b double knockout embry-
os die during mid-gestation. DNMT3A and 
DNMT3B participate in transcriptional repres-
sion in association with histone deacetylases 
[32]. DNMT3L, although lacking in catalytic 
activity, stimulates de novo methylation by 
DNMT3A [7]. In the developing prostate, Dnmt- 
3a and Dnmt3b are predominantly expressed 
in the urethral mesenchyme during fetal stages 
but localizes to prostate bud tips postnatally 
[12]. 

DNMT3A mutations have been observed in 
acute myeloid leukemia where they are associ-
ated with reduced survival [34, 35]. DNMT3B 
mutations are observed in patients with ICF 
(immunodeficiency, centromere instability and 
facial anomalies) syndrome. Loss of DNMT3B 
function in ICF syndrome is associated with 
changes in promoter methylation, altered his-
tone marks and aberrant gene expression [36]. 

Removing methylation marks

DNA methylation is a reversible modification. 
When DNMT1 is inhibited, cells passively lose 

methyl marks over several rounds of replica-
tion. The ten-eleven translocation (TET) family 
of methylcytosine dioxygenases catalyze the 
active removal of methyl marks from DNA inde-
pendent of replication. During early prostate 
development, Tet1 and Tet2 are expressed pre-
dominantly in the urethral mesenchyme while 
Tet3 is expressed in the urethral epithelium 
[12]. TET1, TET2 and TET3 catalyze the conver-
sion of 5mC to 5-hydroxymethylcytosine (5hmC) 
and subsequently into 5-formylcytosine (5fC) 
and 5-carboxylcytosine (5caC) [37, 38]. 5caC is 
recognized and excised by thymine DNA glyco-
sylase (TDG) [39]. 

There is increasing evidence that 5hmC partici-
pates in transcriptional regulation [40]. 5hmC 
is highly enriched in brain tissue where it is 
required for neuronal differentiation [41], learn-
ing and memory [42]. 5hmC marks are abun-
dant in embryonic stem cells, where they are 
enriched at enhancers and gene bodies [43]. A 
recent study has shown that 5hmC localizes to 
sites of DNA damage and promotes genome 
stability [44]. 5hmC levels are dramatically 
reduced in human cancers, correlating with 
impaired TET activity [45]. 5hmC is significant- 
ly reduced in prostate cancer and has been 
proposed as a biomarker for prostate cancer 
detection. In contrast, 5fC and 5caC are in- 
creased in prostate cancer [46, 47]. 

Active DNA demethylation can also be cata-
lyzed by 5-methylcytosine deaminases like  
activation-induced cytidine deaminase (AICDA) 
and apolipoprotein B mRNA editing enzyme 
catalytic subunit 1 (APOBEC1) [48]. Deamina- 
tion of 5mC yields thymine which is immediate-
ly replaced with unmethylated cytosine by DNA 
glycosylases like TDG [49]. 

Methyl CpG binding domain (MBD) proteins

The MBD proteins are readers of 5mC marks. 
The mammalian MBD family is comprised of 
MeCP2, MBD1, MBD2, MBD3 and MBD4 which 
possess a common Methyl CpG binding domain 
(MBD). MBD proteins bind to sites of DNA meth-
ylation and recruit enzymes for transcriptional 
repression [50]. 

DNA methylation and histone modifications

There are two major paradigms of gene silenc-
ing by DNA methylation. One, DNA methylation 
of CpGs in regulatory regions can prevent bind-
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ing of transcription factor complexes required 
for active gene expression. Second, methyl 
CpG binding domain (MBD)-containing proteins 
recruit chromatin modifiers to sites of DNA 
methylation to establish or maintain repressed 
chromatin states. Conversely, DNA methylation 
activity can be recruited to repressed chroma-
tin to methylate adjacent DNA and reinforce 
gene silencing.

Chromatin modifiers add post-translational 
modifications to histones that relax or compact 
chromatin. Active transcription occurs from 
relaxed or euchromatin regions while transcrip-
tion is repressed in compacted heterochroma-
tin regions. Histone acetyltransferases acety-
late lysines on histones, which loosens the 
interaction between DNA and histones, result-
ing in an accessible, open chromatin configura-
tion. This is reversed by histone deacetylases 
(HDACs), resulting in gene silencing. Histone 
methyltransferases add methyl groups to 
lysines and arginines of Histone H3 and H4. 
H3K9 and H3K27 di- and tri-methylation and 
H4K20 tri-methylation repress transcriptional 
activity by blocking transcriptional factors from 
accessing DNA. 

MBD proteins (MECP2, MBD1, MBD2, MBD3, 
MBD4) bridge the gap between DNA methyla-
tion and histone modifications. MECP2 and 
MBD2 binds to methylated DNA and recruit 
HDAC activity to silence genes [51, 52]. MBD 
proteins can also recruit histone methyltrans-
ferases to sites of DNA methylation. MBD1 
recruits the SUV39H1-HP1 heterochromatin 
complex, which has histone methyltransferase 
activity, to sites of DNA methylation for tran-
scriptional repression [53]. DNMT1 itself has 
been shown to interact with chromatin modifi-
ers during DNA replication. DNMT1 forms a 
repressive complex by direct interaction with 
the transcriptional repressors HDAC2 and 
DMAP1 (DNMT1 associated protein). Through 
this complex, DNMT1 targets the transcription-
al repressors to replication foci to maintain het-
erochromatin regions after DNA replication 
[54]. Thus, DNA methylation and histone modi-
fications function coordinately in transcription-
al repression.

DNA methylation in development

Methylation dynamics in early development

For sexual reproduction, DNA methylation 
marks need to be erased and reset in early 

germ cells [55]. Following erasure, sperm- or 
oocyte-specific methylation patterns are re-
established. Imprinted genes, which are ex- 
pressed from either the maternal or paternal 
allele, are methylated during gametogenesis by 
the de novo methyltransferases DNMT3A and 
DNMT3B [8, 33, 56]. 

Following fertilization, the sex-specific methyla-
tion patterns of the sperm and oocyte are 
erased and reset in the zygote. The zygote 
undergoes a wave of global demethylation until 
it reaches the blastocyst stage. De novo meth-
ylation is carried out by DNMT3A and DNMT3B 
in the post-implantation embryo. Cells continue 
to gain DNA methylation as they differentiate. 
Inheritable methyl marks are maintained by 
DNMT1 during cell replication. 

Genomic imprinting

In mammals, there are over 100 genes that are 
expressed solely from the maternal or paternal 
allele. The expression of genes in a parent- 
of-origin specific manner is regulated by a pro-
cess called genomic imprinting [57]. Genomic 
imprinting controls the dosage of key genes 
involved in growth and metabolism [58]. 

Methyl marks are erased during gametogene-
sis and reset to indicate maternal (oocyte) or 
paternal (sperm) origin. This results in the gen-
eration of differentially methylated regions 
(DMRs) between the maternal and paternal 
genomes. The role of DNA methylation in 
genomic imprinting is best illustrated by the 
well-studied IGF2/H19 gene locus, a paternal 
DMR. IGF2 expressed from the paternal allele 
and H19 expressed from the maternal allele 
are located close to each other. The transcrip-
tional repressor CTCF binds to the unmethyl-
ated maternal chromosome while its binding it 
blocked on the methylated paternal chromo-
some. CTCF binding blocks IGF2 expression 
while driving H19 expression from the maternal 
allele. The absence of CTCF binding allows  
IGF2 expression from the paternal allele while 
blocking H19 expression [59]. 

Loss of imprinting at the IGF2 locus (expression 
from both alleles instead of one) occurs during 
aging and tumorigenesis in the prostate [60]. In 
mouse models, increased expression of the 
critical paracrine growth factor IGF2 by loss of 
imprinting drives prostatic neoplastic growth 
[61]. Reduction of CTCF expression and binding 
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activity as a function of age triggers Igf2 loss of 
imprinting in the prostate [62, 63]. Genomic 
imprinting is essential for normal development. 
Prader-Willi syndrome and Angelman syndrome 
occur from imprinting errors.

X-inactivation

To compensate for gene dosage differences, 
one X chromosome is inactivated in females in 
a process called X-inactivation. Re-activation of 
X-linked genes by pharmacological inhibition of 
DNA methylation provided the first evidence for 
X inactivation by DNA methylation [64]. The ini-
tiation and maintenance of X inactivation is 
regulated by the long non-coding RNA XIST. 
XIST is expressed only from the inactivated 
X-chromosome where it acts in cis to coat the 
inactive X-chromosome and repress transcrip-
tion. The methylation status of the XIST promot-
er corresponds to its expression levels. The 
XIST gene is demethylated and its expression 
upregulated in Dnmt1 male mutant embryos 
[65]. 

Silencing of transposable elements

Transposable elements or transposons can 
change location and copy number within the 
genome. Approximately 46% of the human 
genome and 37.5% of the mouse genome  
are derived from transposable elements [66]. 
Methylation suppresses the expression of 
transposons and these elements can be re-
expressed when hypomethylated. If unchecked, 
transposon expression can lead to mutations 
and genomic rearrangements. The mouse 
genome contains ~1000 intracisternal A parti-
cle (IAP) retroviruses that have Long Terminal 
Regions (LTRs) comprised of multiple repeat- 
ing DNA sequences. Methylation of the LTRs 
causes transcriptional silencing of IAPs in 
somatic cells. IAP transcripts are upregulated 
50-100 fold in Dnmt1 mutant mouse embryos 
[67]. Demethylation and activation of IAP genes 
are observed after treatment with DNA methyl-
ation inhibitors [68]. Changes in DNA methyla-
tion and expression of retrotransposon ele-
ments are observed in prostate cancer [69]. 
Hypomethylation and re-expression of LINE-1 
retrotransposons occur in BPH tissues [70].

Transcriptional control of differentiation

As a cell progresses from an undifferentiated 
to a differentiated state, its DNA methylation 

landscape changes dramatically. DNMTs play a 
central role in the transcriptional control of  
differentiation. DNMTs suppress the expres-
sion of differentiation genes to maintain stem 
cells in an undifferentiated state. Regulation of 
DNMT1 expression by the pluripotency factors 
OCT4 and NANOG maintains the undifferenti-
ated state of mesenchymal stem cells [71]. 
During differentiation, DNMTs methylate pluri-
potency factors like OCT4 and NANOG to pre-
vent the cell from reverting to an undifferenti-
ated state [72]. 

Cytidine nucleoside analogs like 5-azacytidine 
have been used to elucidate the role of DNA 
methylation in transcriptional control. 5-aza-
cytidine and its 2’-deoxy derivative 5-aza-2’- 
deoxycytidine can be incorporated into DNA 
where it inhibits DNA methyltransferase acti- 
vity and methylation of newly synthesized DNA. 
Non-myoblast mouse embryo cells change their 
phenotype drastically to form functional striat-
ed muscle cells after 5-azacytidine treatment 
[73, 74]. Swiss3T3 cells treated with 5-azacy- 
tidine or 5-aza-2’-deoxycytidine display new 
mesenchymal phenotypes of contractile mus-
cle, differentiated adipocytes and chondro-
cytes [75, 76]. 5-azacytidine treatment causes 
hypomethylation and reverts cells to a less dif-
ferentiated state from which new phenotypes 
can develop. 

5-aza-2’-deoxycytidine (5AzadC) has been used 
to study the role of DNA methylation in fetal 
prostate development. The prostate forms dur-
ing fetal development as solid epithelial buds 
arising from the urogenital sinus (UGS) epithe-
lium which grow into the surrounding mesen-
chyme. Epithelial cells of the developing pros-
tate bud downregulate expression of the epi-
thelial adhesion molecule E-cadherin (Cdh1)  
to achieve invasive growth into the mesen-
chyme. Treatment of UGS explants with 5AzadC 
decreased prostate bud elongation and out-
growth without affecting cell viability. 5AzadC 
treatment decreased Cdh1 promoter methyla-
tion and upregulated Cdh1 mRNA expression in 
prostate epithelial cells. Increased expression 
of Cdh1 constrained prostate bud elongation 
and invasive growth into the mesenchyme. 
Thus, methylation of the Cdh1 promoter down-
regulates Cdh1 expression to achieve prostate 
bud outgrowth [77]. 

Mesenchymal Androgen receptor (Ar) gene 
expression is required for prostate bud initia-
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Table 1. DNA methyltransferase deletion studies
Model Phenotype Reference
Global DNMT1 null mice 3-fold reduction in genomic 5mC levels [13]

Recessive embryonic lethal

Embryos are developmentally retarded

Embryos die at mid-gestation

DNMT3A-/- DNMT3A-/- mice appear normal at birth but become runted and die at around 4 
weeks of age

[6]

DNMT3B-/- mice DNMT3B-/- mice exhibit growth impairment, rostral neural tube defects and die 
at mid-gestation

DNMT1o knockout mice Heterozygous embryos from homozygous mutant females die during last third of 
gestation

[178]

Loss of methylation at imprinted loci

DNMT3L knockout mice Azoospermia in homozygous males [33]

Heterozygous embryos from homozygous mutant females die during mid-gesta-
tion

Loss of maternal methylation imprints

Cre-mediated homozygous DNMT1 deletion in 
fibroblasts

DNMT1 deletion leads to hypomethylation and aberrant expression of 10% of 
genes

[15]

DNMT1 depleted cells undergo p53-mediated apoptosis

Cre-mediated DNMT1 deletion in neuroblasts 95% of cells in the brain hypomethylated [179]

(CamK-cre) Die immediately after birth from respiratory distress; defects in neuronal respira-
tory control

Cre-mediated DNMT1 deletion in telencephalic 
precursors

Mutant mice viable but undergo severe neuronal cell death from E14.5-P21 [180]

(Emx1-cre) Deregulation of neuronal gene expression

Defects in neuronal morphology and excitability

shRNA knockdown of DNMT1 in primary human 
keratinocytes

DNMT1 depleted cells exit progenitor compartment, undergo premature dif-
ferentiation

[92]

DNMT1 loss results in upregulation of cyclin-dependent kinase inhibitors, cell 
cycle arrest and impaired proliferation

Cre-mediated DNMT1 deletion in hematopoietic 
stem cells (HSC)

Impaired HSC self-renewal [181]

(Mx-cre) Increased cell cycling and inappropriate expression of differentiation markers in 
myeloid progenitor cells

Cre-mediated DNMT1 deletion in pancreatic 
cells

DNMT1 loss results in de-repression of p53 [79]

(Pdx1-cre) G2/M cell cycle arrest and apoptosis

Pancreatic agenesis due to apoptosis of progenitors

Cre-mediated DNMT1 deletion in retinal cells Defective photoreceptor differentiation [182]

(Chx10-cre) Altered cell cycle kinetics; increased proportion of G1 phase cells

Increased apoptosis of post-mitotic photoreceptors and other neuronal types

Cre-mediated DNMT1 deletion in retinal cells Mice have smaller eyes [183]

(Rx-cre) Impaired differentiation of retinal pigment epithelium

Defects in photoreceptor outer segment morphogenesis

Cre-mediated DNMT1 deletion in intestinal cells Mice die few weeks after birth [80]

(Villin-cre) Induction of differentiation markers in progenitor cells

Impaired methylation and expression of DNA damage response genes and cell 
cycle regulators

Increased DNA damage and apoptosis of progenitor cells

Cre-mediated DNMT1 deletion in Keratin 14 
lineage cells 

Uneven epidermal thickness, altered hair follicle size [184]

(K14-cre) Impaired proliferation at hair follicles, progressive alopecia with age

Cre-mediated DNMT1 deletion in Shh lineage 
cells

Mice die shortly after birth; respiratory complications arising from severe lung 
hypoplasia

[81, 82]

(Shh-cre) Epithelial depletion of urethral and bladder epithelium

Premature differentiation and loss of bladder progenitors

Cell cycle arrest and apoptosis of prostate progenitors; reduction in prostate bud 
number
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tion from the UGS epithelium. The onset of 
mesenchymal Ar expression corresponds to a 
reduction in DNMT1 expression and a decrease 
in Ar promoter methylation. Treatment of UGS 
explants with 5AzadC inhibits DNMT1, reduces 
Ar promoter methylation and accelerates the 
onset of Ar expression, thereby increasing the 
number of prostate buds specified [78].

Tissue growth and organogenesis

The mid-gestational lethality of Dnmt1 knock-
out embryos prevents the study of organ sys-
tem development. To overcome this, context-
dependent roles of DNMT1 have been studi- 
ed in several organ systems by employing con-
ditional genetic approaches. This involves  
the use of tissue-specific Cre drivers to drive 
Dnmt1 deletion during development. Deletion 
of Dnmt1 in the developing pancreas results  
in global hypomethylation, growth arrest and 
tissue atrophy through p53-dependent apo- 
ptosis of pancreatic progenitors [79]. Intestine-
specific ablation showed that Dnmt1 is required 
for proliferation and crypt formation in the peri-
natal period. Loss of Dnmt1 in the intestinal 
epithelium led to increased DNA damage and 
apoptosis [80]. 

The role of Dnmt1 in the developing lower uri-
nary tract was assessed by conditionally ablat-
ing Dnmt1 in the epithelium of the bladder, ure-
thra and prostate. Similar to previous studies 
on Dnmt1 ablation, widespread DNA damage 
and p53-mediated apoptosis was observed. 
This was accompanied by a reduction in pros-
tate bud formation, highlighting the role of 
Dnmt1 in maintaining cell proliferation and  
survival of early prostate progenitors [81]. 
Dnmt1 deletion in the lower urinary tract led  
to the breakdown of the Wolffian duct-urethra 
junction which was permissive for the move-
ment of Wolffian duct cells into the urethra and 
bladder epithelium. These ectopic cells were 
then reprogrammed to acquire bladder charac-
teristics including Uroplakin expression [82]. 

DNA methyltransferase deletion studies con-
ducted in several organ systems have been 
summarized in Table 1. 

DNA methylation in adult homeostasis and 
disease

Changes in DNA methylation are associated 
with the formation of specialized tissue types in 
the mature organism. 

Genome-wide methylation patterns

Most methylated CpG nucleotides are scat-
tered throughout the genome and participate  
in the silencing of retrotransposons and repeti-
tive elements. Clusters of unmethylated CpGs, 
called CpG islands, are found at the trans- 
cription start sites of several housekeeping 
genes and a few tissue-specific genes. 72% of 
promoter sequences contain CpG islands [83]. 
Unmethylated CpG islands are associated with 
transcriptionally active genes, mostly house-
keeping genes and tumor suppressors [84, 
85]. The majority of CpG islands are unmethyl-
ated irrespective of whether the associated 
gene is transcriptionally active or inactive. How- 
ever, methylation of CpGs within CpG islands 
has been observed and this results in the sta-
ble silencing of genes [86]. 

Tissue-specific methylation patterns

Tissue-specific methylation patterns establish- 
ed during development coordinate specialized 
gene expression programs in multiple tissue 
types. Demethylation of developmentally meth-
ylated regions also contributes to the esta- 
blishment of tissue-specific methylation pat-
terns. Tissue-specific genes with CpG island 
promoters are usually unmethylated in all tis-
sue types, even when genes are inactive. In 
contrast, tissue-specific genes with non-CpG 
island promoters display tissue-specific meth-
ylation patterns. Broadly, DNA methylation at 
promoter regions is negatively correlated with 
gene expression [87, 88]. 

Promoters with “weak” CpG islands, which are 
intermediate between CpG-rich promoters and 
non-CpG promoters, display a high frequency of 
methylation. These weak CpG islands are more 
prone to de novo methylation during develop-
ment and contribute to the differential methy- 
lation observed between somatic and germ 
cells [89]. Tissue-specific differentially-methyl-
ated regions have also been identified in inter-
genic and intragenic regions of genes with non-
CpG island promoters [90]. 

Expression of DNA methyltransferases in adult 
tissues

Adult tissues express lower levels of DNA  
methyltransferases compared to embryonic tis-
sues although DNMT1, DNMT3A and DNMT3B 
expression is widespread across adult human 
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tissues, with DNMT1 expressed at the highest 
level [91]. In adult tissues, DNMT1 is highly 
expressed in rapidly-dividing somatic tissues 
including epidermis [92] and intestine [93]. 
DNMT1 regulates the fine balance between 
self-renewal and differentiation in adult stem 
cells. Differentiation involves demethylation 
and activation of tissue-specific genes with 
concomitant methylation and repression of 
stem cell genes. DNMT1 expression prevents 
differentiating cells from reverting back to an 
undifferentiated state [72]. In self-renewing 
somatic tissues, DNMT1 methylates and sup-
presses differentiation of gene promoters and 

prevents cell cycle exit in tissue progenitors 
[92]. DNMT1 is highly expressed in developing 
prostate tissue but its expression is consider-
ably reduced in the adult prostate. DNMT1 
expression is upregulated in cycling cells from 
prostates of castrated mice supplemented with 
testosterone (Figure 1). 

DNA methylation and aging

5’-methyl cytosine (5mC) levels gradually 
decline over the lifetime of an organism in a 
process called epigenetic drift. The rate of loss 
of 5mC is inversely correlated with the lifespan 

Figure 1. DNMT1 expression in the mouse and human prostate. Tissues sections from (A) young human (21 weeks 
of gestation), (B) young mouse (Postnatal day 9), (C) adult human (23 years) and (D) adult mouse (7 weeks) were 
labeled with antibodies to DNMT1 (in red) and E-cadherin (in green). Regions enclosed in white boxes within (A), (B), 
(C) and (D) are magnified in (A’), (B’), (C’) and (D’). Prostate tissue from (E) intact, (F) castrated and (G) castrated and 
testosterone supplemented mice were labeled with antibodies to DNMT1 (in red). DAPI staining is shown in blue. 
Abbreviations Ur: Urethra, Pr: Prostate. 
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of the organism and is determined by environ-
mental factors like diet [94]. Studies in humans 
have shown that centenarian DNA has 7%  
less methylated cytosines than a newborn. 
Centenarian genomes display loss of methyla-
tion at non-CpG island promoters and repetitive 
DNA sequences like LINE elements and LTR-
retrotransposons [95]. Sufficient DNA methyla-
tion levels are needed for healthy aging, as 
demonstrated using DNMT1 haplo-insufficient 
mice [96].

Alteration of DNA methylation patterns with age 
occur from cumulative environmental expo-
sures and lifestyle factors [97]. This is best 
exemplified by the phenotypic changes observ- 
ed in mono-zygotic twins with age. Monozygotic 
twins possess identical genomes and epig-
enomes early in life but display divergence in 
DNA methylation and histone modifications 
with age [98]. Aging-related changes in DNMT 
expression and availability of methyl donors 
contributes to epigenetic drift [99, 100]. Aging 
fibroblasts show a downregulation of DNMT1 
and significant overexpression of DNMT3B. 
These opposing changes in DNMT expression 
may explain the global hypomethylation and 
site-specific hypermethylation observed in 
aging cells [101, 102]. 

Oxidative stress associated with age has been 
shown to cause DNA hypomethylation in the 
prostate [103]. Both global hypomethylation 
and promoter hypermethylation can result in 
cellular transformation [97, 99]. Aging-related 
hypermethylation of autophagy genes has  
been linked to neurodegenerative diseases 
and chronic inflammation [104]. In the pros-
tate, aging has been linked to loss of imprinting 
at the IGF2 locus [63]. Despite widespread 
changes to the DNA methylome with age, it is 
not fully understood if these changes contrib-
ute to aging-related diseases in the prostate. 
Changes in DNA methylation have been defini-
tively linked to cancer, an age-related disease. 
However, it is not fully understood whether 
these DNA methylation changes are causes or 
consequences of prostate disease.

DNA methylation aberrations in disease

DNA methylation errors occur in several dis- 
eases including cancer, syndromes caused by 
imprinting errors (Prader-Willi, and Angelman 
syndromes), Fragile X syndrome and ICF syn-

drome [105]. Among these, the role of DNA 
methylation in cancer has been extensively 
studied. DNMT1 and DNMT3A are modestly 
overexpressed in several tumor tissues while 
DNMT3B is significantly overexpressed [91, 
106]. Paradoxically, cancer is associated with 
global hypomethylation and genomic instabi- 
lity, with significant reduction in methylation at 
repetitive elements. Several cancer types dis-
play aberrant hypermethylation at promoter-
associated CpG islands. Hypermethylation of 
genes involved in apoptosis, cell cycle regula-
tion, cell invasion and DNA repair provide can-
cer cells with survival advantages over normal 
cells. De novo methylation of imprint control 
regions can result in aberrant regulation of 
imprinted genes. Loss of imprinting, allowing bi-
allelic expression of growth promoting genes 
like Igf2, promotes prostate tumor growth 
[105]. 

DNA methylation and prostate disease

In this section we will briefly describe two dis-
ease conditions of the prostate: Prostate can-
cer and Benign Prostatic Hyperplasia (BPH) and 
the current knowledge of the role of DNA meth-
ylation in these diseases.

Prostate cancer and DNA methylation: Prostate 
cancer is characterized by malignant growth of 
the prostate and is the third most common  
cancer type in the United States. Age is a sig-
nificant risk factor for the development of pros-
tate cancer. Common treatment strategies in- 
clude anti-androgens (bicalutamide, flutamide, 
enzalutamide), androgen synthesis inhibitors 
(ketoconazole, abiraterone acetate), radiation 
therapy, chemical castration (LHRH agonists) 
and surgical intervention (www.cancer.gov/
types/prostate). 

Tissues from metastatic prostate cancer, but 
not non-metastatic cancer, have drastically 
reduced 5mC levels compared to normal  
tissues. This correlation between metastatic 
capacity and 5mC content suggests that 5mC 
levels can be used as a biomarker to detect 
metastatic tumors or that the reduction in 5mC 
contributes to metastatic progression [107]. 
Hypermethylation of the regulatory locus of pi-
class glutathione S-transferase gene GSTP1 is 
a recurrent change observed in prostate can-
cer precursor lesions and prostate adenocar- 
cinoma. GSTP1 encodes an enzyme that cata-
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lyzes cellular detoxification reactions [108, 
109]. CpG island hypermethylation of multiple 
genes, including APC, RASSF1A, and RUNX3, 
has been detected in prostate cancer [110-
112]. Methylation status of several genes, 
including APC and RPRM, correlate with bio-
chemical recurrence after radical prostatecto-
my [113]. Hypermethylation of specific CpG 
islands in prostate cancer correlates with hypo-
methylation of Alu and LINE-1 repetitive ele-
ments [114]. Genome wide methylation stud- 
ies have identified differentially-methylated 
regions (DMRs) in prostate cancer compared to 
benign tissues. These DMRs are enriched for 
binding by Enhancer of zeste homolog 2 (EZH2), 
a key driver of prostate cancer [115, 116]. 

Loss of Androgen receptor (AR) gene expres-
sion is a hallmark of castration resistant pros-
tate cancer. CpG methylation of the AR promot-
er has been observed in prostate cancer cells 
and is associated with loss of gene expression. 
Methylation-induced AR inactivation can be 
reversed by treating cells with DNA methylation 
inhibitors [117]. The estrogen receptor gene 
(ESR1) is also frequently methylated and inacti-
vated in prostate cancer [118]. 

DNMT1 excess has been described in prostate 
cancer cell lines and tissues [21, 119]. DNMT1 
expression is significantly upregulated in local-
ized and metastatic prostate cancer tissues 
compared to normal tissues [120]. Protein and 
mRNA expression of Dnmt1, Dnmt3a and 
Dnmt3b are increased in the transgenic adeno-
carcinoma of mouse prostate (TRAMP) model 
of prostate cancer [121]. Overexpression of the 
isoform DNMT3A2 and DNMT3B has also been 
observed in prostate tumors [122]. DNMT1 in- 
hibition with 5-azacytidine kills prostate tumor 
cell lines at high doses [123] while promoting 
metastatic invasion at lower doses [124]. Due 
to its effectiveness in reversing gene silencing, 
Azacytidine treatment is being studied in com-
bination with other therapeutic options for  
the treatment of advanced prostate cancer 
[125-127]. DNMT inhibition was shown to block 
tumorigenesis in the TRAMP mouse model of 
prostate cancer [128]. In a cohort of prostate 
tissue samples, DNMT1 expression was high-
est in poorly-differentiated prostate cancer and 
lowest in well-differentiated prostate cancer. 
DNMT1 expression was negatively correlated 
with expression of GSTP1 and APC, which are 
hyper-methylated in prostate cancer. This sug-

gests a role for DNMT1 in the methylation and 
repression of key genes during prostate cancer 
progression [129]. 

Benign prostatic hyperplasia and DNA methyla-
tion: Benign Prostatic Hyperplasia (BPH) is a 
non-malignant enlargement of the prostate. 
BPH growth initiates by the age of 30 and  
continues throughout the individual’s lifetime. 
The major risk factor for the development of 
pathological BPH is age. By the age of 50,  
50% of men develop pathological BPH [130]. 
Enlargement of the prostate in BPH results in 
urethral constriction and manifestation of lower 
urinary tract symptoms (LUTS). LUTS include 
storage (increased frequency, urgency, noctu-
ria) and obstructive symptoms (weak stream, 
incomplete voiding, urinary obstruction, over-
flow incontinence) [131]. BPH in association 
with LUTS are a significant financial burden 
[132, 133] and negatively impacts quality of  
life but does not lead to significant morbidity if 
treated. BPH is treated with three major class-
es of drugs, alpha adrenergic receptor block-
ers, 5-alpha reductase inhibitors and phospho-
diesterase-5 inhibitors [134-136].

Prostates with BPH have significantly lower lev-
els of global 5mC compared to normal tissue 
[107]. Dnmt1 is expressed at low levels in BPH 
tissue compared to prostate cancer. GSTP1 
and APC are hypermethylated in prostate can-
cer but hypomethylated in BPH [129]. Although 
BPH is characterized by global hypomethyl-
ation, recurrent hypermethylation of the tumor 
suppressor gene 14-3-3Sigma occurs in BPH 
tissues [137]. DNMT1 regulates the methyla-
tion and repression of SRD5A2 gene expres-
sion in BPH samples. DNMT1 expression in 
SRD5A2-silenced BPH tissues is regulated by 
the inflammatory mediators IL-6, TNFa and 
NF-kB [138, 139]. Methylation and repression 
of SRD5A2 results in an androgenic to estro-
genic switch. Decreased reliance of androgenic 
pathways in BPH could be behind the reduced 
efficacy of 5-alpha reductase inhibitors in some 
patients [140]. 

Impact of dietary and environmental factors 
on DNA methylation

DNA methylation is influenced by environmen-
tal factors including diet [141, 142], particulate 
pollution [143-145], carcinogens and benzene 
exposure [146]. The Developmental Origins of 
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Heath and Disease hypothesis (DOHaD) states 
that early life environmental influences can 
impact adult disease. DNA methylation is one 
mechanism by which signatures of early life 
exposures can be embedded in the genome. 
The heritable and stable nature of DNA meth-
ylation would allow these early changes to per-
sist into adulthood, where additional insults 
can trigger disease onset. The DOHaD hypoth-
esis originated from observations made in low 
birthweight infants. Infants with low birthweight 
were more prone to cardiovascular disease 
later in life, suggesting that poor fetal nutrition 
can increase adult disease susceptibility [147, 
148]. 

Maternal diet can influence DNA methylation 
patterns in offspring. This is best illustrated by 
the seminal Agouti mouse studies. Transcription 
from the agouti gene locus is associated  
with increased obesity and yellow coat color. 
Maternal diet enriched in methyl donors causes 
methylation and repression of agouti gene  
transcription and produces lean mice with 
brown coat color [149, 150]. The Dutch famine 
studies have demonstrated differential methyl-
ation of several metabolism genes, including 
the IGF2 locus, with prenatal exposure to poor 
nutrition. Exposed individuals have poor meta-
bolic regulation, increased body mass index 
and higher risk for developing schizophrenia in 
later life [151, 152]. 

Commonly occurring environmental toxins like 
Bisphenol A (BPA), Dioxin (TCDD), and phthal-
ates are capable of interfering with endocrine 
signaling and are called endocrine disruptors. 
Developmental exposures to hormones and 
endocrine-disrupting chemicals have been 
shown to alter prostate development. Early 
prostate development is dependent on andro-
gens (testosterone and dihydrotestosterone). 
Disrupting androgen action or exposure to 
estrogenic compounds alters early prostate 
development with long-term consequences to 
the adult prostate. Exposing pregnant mice to 
low doses of estrogen or estrogenic compounds 
(BPA or diethylstilbestrol) increases the num-
ber of prostate glands formed during fetal life 
and increases adult prostate size [153-155]. 
Developmental exposure to estrogens or BPA 
increases susceptibility to prostate cancer in 
an adult rat model of prostate cancer [156]. 
Prenatal exposure to the endocrine disruptor 
ethinylestradiol, found in oral contraceptives, 
pre-disposes male and female gerbils to pros-

tate lesions with aging [157]. Developmental 
exposure to estradiol and BPA alters DNA meth-
ylation patterns of several genes in the pros-
tate including phosphodiesterase type 4 vari-
ant 4 (PDE4D4), Pitx3, Wnt10b, Paqr4, Sox2, 
Chst14, Tpd52 and Creb3l4. These DNA methy-
lome changes persist into adulthood [156, 
158, 159]. Additional research is required to 
ascertain whether differential regulation of 
these genes contributes to prostate cancer. 

Maternal exposure to the persistent environ-
mental contaminant TCDD alters prostate bud 
specification by disrupting Aryl hydrocarbon 
receptor signaling [160, 161]. Exposure to 
TCDD during in utero and lactational stages 
decreases adult rat prostate size by impairing 
early prostate proliferation and differentiation 
[162]. In utero and lactational exposure to 
TCDD predisposes mice to urinary dysfunction 
in later life, but the exact mechanism is not 
known [163]. Early TCDD exposure can alter 
DNA methylation at imprinted loci in preim- 
plantation embryos [164]. Further research is 
required to link TCDD induced DNA methylation 
changes to defects in prostate growth and uri-
nary tract function. 

DNA methyltransferase co-factor S-adenosyl 
methionine (SAM) is the source of methyl 
groups for DNA methylation. Following removal 
of the methyl group, SAM is converted to S- 
adenosyl homocysteine (SAH) and homocyste-
ine. Homocysteine re-methylation to replenish 
pools of SAM requires several methyl group 
donors like methyl-folate, methionine and beta-
ine. Availability of methyl donors in the diet  
can influence DNA methylation. This is elegant-
ly illustrated by studies in the Agouti mouse 
model. Early life exposure to BPA hypomethyl-
ates the IAP retrotransposon element upstream 
of the agouti gene and shifts coat color to yel-
low. Maternal diet supplementation with methyl 
donors reverses BPA-induced hypomethylation 
and shifts coat color back to brown [165]. 

Dietary folate is a well-studied methyl donor. 
Folates are water soluble vitamins that partici-
pate in one-carbon transfer, DNA synthesis, cell 
growth, hematopoiesis and metabolism. While 
folates occur naturally in the diet, folic acid is 
the synthetic form that is supplemented in forti-
fied food stuffs or consumed as dietary supple-
ments. Folates and folic acid are converted to 
5-methyl tetrahydrofolate which provides meth-
yl groups for the conversion of homocysteine to 
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Table 2. Studies examining the effects of folic acid on prostate homeostasis and disease
Study Findings Reference
Animal models of folic acid supplementation

4 mg/kg or 24 mg/kg folic acid throughout gestation and lifetime (12-fold higher than 
recommended) in mice

Folic acid supplemented males mice show improvement of urinary symptoms in a hormone induced 
model of urinary obstruction

[176]

4 mg/kg or 24 mg/kg folic acid throughout gestation and lifetime (12-fold higher than 
recommended) in mice

Folic acid supplemented mice show reduced response to castration induced prostate involution. 
Prostates of castrated folic acid supplemented mice are larger than prostates from castrated control 
diet mice

[177]

2 mg/kg folic acid (control), 0.3 mg/kg (deficient) and 20 mg/kg (10-fold higher than 
recommended) fed to TRAMP mice after weaning

Folate deficient diet blocks prostate cancer progression [173]

Folate supplementation had no effect on prostate cancer growth

Clinical studies on the interaction of folic acid with prostate cancer

Plasma levels of folates were tested for association with prostate cancer risk (Northern 
Sweden Health and disease cohort)

Increasing levels of plasma folate positively correlated with prostate cancer risk [185]

Prostate cancer occurrence was assessed after folic acid supplementation (Aspirin/
Folate polyp prevention study)

Folic acid supplementation increased the long-term probability of being diagnosed with prostate 
cancer

[186]

Plasma levels of folates were tested for association with prostate cancer risk (ProtecT 
study)

Folate levels showed a positive correlation with prostate cancer risk [172]

Serum folate levels were tested for association with prostate cancer cell proliferation in 
biopsies (University of Pittsburgh)

Patients with increased serum folate levels had greater cancer proliferation as measured by Ki67 
positivity in biopsy tissue

[187]

Oral folic acid supplementation was tested for association with increased cancer risk 
(Meta-analysis of multiple studies)

Increased prostate cancer risk after folic acid supplementation compared to placebo [171]

Serum folate levels were tested for association with prostate cancer risk (JANUS cohort, 
Norway)

High serum folate concentration associated with moderate increase in prostate cancer risk [170]

Meta-analysis of published randomized trial data to study the association of folic acid 
supplementation on cancer risk

Folic acid supplementation does not have a significant association with prostate cancer incidence [175]

Meta-analysis of randomized trial data to study the association of folic acid supplemen-
tation with cancer incidence

Folic acid supplementation does not have a significant effect on prostate cancer incidence [174]
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methionine. Methionine is converted to SAM, 
the methyl donor for DNA methylation reac-
tions. Adequate consumption of folates is 
required to maintain SAM pools. 

In 1998, the United States mandated folic acid 
fortification in cereal grains. Folic acid fortifica-
tion has raised serum folate levels in popula-
tions of several age groups, most significantly 
in children and older populations [166, 167]. In 
addition to participating in methylation, folates 
are important players in nucleotide biosynthe-
sis and polyamine synthesis. The complex role 
of folates in the body could yield protective or 
deleterious effects depending on the context. 
High gestational folic acid has been shown to 
have adverse effects on offspring in rodent 
studies [168, 169]. Multiple clinical trials have 
associated folic acid supplement consumption 
with increased risk of prostate cancer [170-
172]. Moreover, studies in the TRAMP prostate 
cancer mouse model have shown that dietary 
folic acid deficiency can suppress tumor growth 
[173]. However, a few meta-analysis studies 
using combined data across multiple random-
ized trials have failed to identify an association 
between folic acid supplementation and pros-
tate cancer risk [174, 175]. 

Despite contradictory data, the prevalence of 
folic acid supplement consumption warrants 
further research into the interaction between 
folic acid supplementation and prostate dis-
ease. Maternal supplementation, food grain 
fortification and consumption of multi-vitamin 
supplements have resulted in populations that 
have been exposed to high levels of folic acid 
throughout their lifetime. A study modeling this 
lifetime folic acid exposure in mice, showed 
that folic acid supplementation from gestation 
relieves lower urinary tract symptoms in mice 
with hormone-induced urinary dysfunction 
[176]. Further, folic acid supplementation slows 
down prostate shrinkage in mice after castra-
tion [177]. It is important to fully understand 
the consequences of folate supplementation at 
various stages of development and during dis-
ease processes in the prostate. Rodent models 
and clinical studies examining the impact of 
folic acid on the prostate are summarized in 
Table 2. 

Conclusions

This review provides an overview of the DNA 
methylation machinery and the dynamic chang-

es in DNA methylation that occur during devel-
opment, tissue growth and ultimately aging and 
disease. DNA methylation is at the confluence 
of the genome and environment. Early life-
changes in DNA methylation patterns are over-
laid on our genomes and can affect disease 
susceptibility later in life. We hope that this 
review can be used as an introduction to the 
field by prostate researchers interested in 
studying DNA methylation. 
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