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Essentials

• Delayed treatment with tranexamic acid results in loss

of efficacy and poor outcomes.

• Increasing urokinase activity may account for adverse

effects of late tranexamic acid treatment.

• Urokinase + tranexamic acid produces plasmin in

plasma or blood and disrupts clotting.

• a2-Antiplasmin consumption with ongoing fibrinolysis

increases plasmin-induced coagulopathy.

Summary. Background: Tranexamic acid (TXA) is an

effective antifibrinolytic agent with a proven safety

record. However, large clinical trials show TXA becomes

ineffective or harmful if treatment is delayed beyond 3 h.

The mechanism is unknown but urokinase plasminogen

activator (uPA) has been implicated. Methods: Inhibitory

mechanisms of TXA were explored in a variety of clot

lysis systems using plasma and whole blood. Lysis by tis-

sue plasminogen activator (tPA), uPA and plasmin were

investigated. Coagulopathy was investigated using

ROTEM and activated partial thromboplastin time

(APTT). Results: IC50 values for antifibrinolytic activity

of TXA varied from < 10 to > 1000 lmol L�1 depending

on the system, but good fibrin protection was observed in

the presence of tPA, uPA and plasmin. However, in

plasma or blood, active plasmin was generated by

TXA + uPA (but not tPA) and coagulopathy developed

leading to no or poor clot formation. The extent of coag-

ulopathy was sensitive to available a2-antiplasmin. No

clot formed with plasma containing 40% normal a2-anti-
plasmin after short incubation with TXA + uPA. Adding

purified a2-antiplasmin progressively restored clotting.

Plasmin could be inhibited by aprotinin, IC50 = 530

nmol L�1, in plasma. Conclusions: Tranexamic acid pro-

tects fibrin but stimulates uPA activity and slows inhibi-

tion of plasmin by a2-antiplasmin. Plasmin proteolytic

activity digests fibrinogen and disrupts coagulation, exac-

erbated when a2-antiplasmin is consumed by ongoing fib-

rinolysis. Additional direct inhibition of plasmin by

aprotinin may prevent development of coagulopathy and

extend the useful time window of TXA treatment.

Keywords: alpha-2-antiplasmin; fibrinolysis; hemorrhage;

tranexamic acid; urokinase type plasminogen activator.

Introduction

Tranexamic acid (TXA) is a potent antifibrinolytic that

has been in common use for many years with an excellent

safety record [1–3]. As a lysine analogue, TXA binds to

kringle domains that have an affinity for lysine residues

in proteins, and for fibrinolysis the relevant kringles are

in plasminogen and plasmin, and kringle 2 of tissue plas-

minogen activator (tPA) [4]. By blocking plasminogen–
fibrin interactions (and to a lesser extent tPA–fibrin inter-

actions [5]), TXA inhibits tPA-catalysed plasmin genera-

tion. By binding to plasmin kringles, TXA can inhibit

plasmin accumulation by fibrin and directly reduce fibri-

nolysis [6,7]. Antifibrinolytics, including lysine analogues

and the direct plasmin inhibitor aprotinin (TrasylolTM),

have been employed over many years to limit blood loss

and reduce volumes of blood and blood product transfu-

sions in a range of surgical procedures [8], in particular in

cardiopulmonary bypass and orthopedic surgery. Lysine

analogues can also be taken orally to help in the manage-

ment of menorrhagia [1,2,9] and have been explored as

adjuncts to clotting factor replacement therapy to treat

hemophilia [10,11]. Antifibrinolytics have been shown to
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be effective in the treatment of bleeding and reducing mor-

tality [12], particularly in two large trials on trauma

(CRASH-2 [13]) and post-partum hemorrhage (WOMAN

trial [14]). Subsequent subgroup analysis found early treat-

ment in under 3 h is most effective and later treatment

can be harmful [15]. A recent meta-analysis of > 40 000

acute severely bleeding patients provided a model indicat-

ing each 15 min of delay of TXA administration reduced

effectiveness by 10% until there was no benefit after 3 h

[16]. This analysis also confirmed that TXA treatment did

not increase risk of death from vascular occlusive events.

However, as these authors pointed out, further research is

required on the mechanism of action of TXA to under-

stand the time dependence and risks.

In a controlled surgical setting where TXA can be

given before bleeding starts, a wide range of dose regimes

are found in different types of surgery, including cardiac,

gynecological, liver, orthopedic and neurosurgery [1,2,17].

Where it has been investigated, effective circulating con-

centrations of 10–150 lg mL�1 or 60–950 lmol L�1 are

quoted to give clinically significant levels of antifibri-

nolytic activity that reduce blood loss [2]. Higher levels of

TXA have been reported to cause seizures, which consti-

tute a significant risk factor after surgery [18]. However,

dosing guidelines for TXA have been developed empiri-

cally with little hard supporting evidence, so ideal dose

regimens have not been identified.

Better information is needed on effective concentrations

of TXA in vivo and how TXA activity in vitro relates to

the in vivo situation. With this information it may be pos-

sible to optimize TXA administration protocols to get

maximum antifibrinolytic activity with lowest risk of side-

effects. Possible mechanisms behind the 3-h window of

effectiveness of TXA observed in the CRASH-2 and

WOMAN trials have been considered [3], but clear evi-

dence is lacking. Generation of plasmin activity by uroki-

nase plasminogen activator (uPA) and TXA is the focus

of the current work, which builds on earlier physicochem-

ical and biochemical studies, and animal models. We

observe that the potential for proteolytic damage caused

by uncontrolled plasmin activity, generated by

uPA + TXA, is increased as a2-antiplasmin is consumed

during ongoing fibrinolysis. Targeting unwanted plasmin

activity may be a route to extending the useful therapeu-

tic time window of TXA.

Methods

Clot lysis methods

Many methods exist to investigate plasma clot lysis [19]

and in this study the procedure of Antovic et al. [20] was

the basis of most methods. Briefly, freeze-dried plasma

(NIBSC code 06/158; NIBSC, South Mimms, UK) was

reconstituted and 70 lL mixed with 50 lL of buffer

(66 mmol L�1 Tris/HCl pH 7.4 containing 130 mmol L�1

NaCl, 45 mmol L�1 CaCl2 and 0.01% Tween 20), con-

taining 0.1 IU mL�1 thrombin (01/578, NIBSC) and plas-

minogen activator (final concentrations are given in

Results). Then 10 lL of TXA (the range of concentra-

tions is shown in Results) and 20 pmol L�1 tissue factor

(14/230, NIBSC) were added to the mixture before clot-

ting. Plasminogen activators used were tPA (code 98/

714), uPA (11/184), single chain urokinase plasminogen

activator (scuPA) (92/714) or plasmin (13/206), all from

NIBSC. Euglobulin was prepared following the method

of Urano et al. [21] using reconstituted plasma (06/158).

Clotting and lysis curves, usually in duplicate, were gener-

ated by monitoring absorbance at 405 nm over time and

analyzed using online apps [22] to determine time to 50%

lysis. Inhibition by TXA was expressed as extension of

time to 50% lysis at each TXA concentration compared

with no added TXA, which involved the minimum of

data manipulation. Data were fitted to a one-site-specific

binding equation using GraphPad Prism (GraphPad Soft-

ware, La Jolla, CA, USA) to calculate IC50 values (�
standard error [SE] from curve fitting).

To measure release of plasmin from clots, plasma was

clotted as described above with incorporation of

2.5 nmol L�1 tPA or 5 nmol L�1 uPA in the clot but

without TXA. After 30 min, 10 lL of a mixture of

1.5 mmol L�1 S-2251 chromogenic substrate (H-D-Val-

Leu-Lys-pNA; Chromogenix, Milan, Italy) and TXA over

the range stated in Results was added to the formed clot

and change in absorbance was measured over time.

Where present, aprotinin (Baxter, Vienna, Austria) was

also added to this solution, over the concentration range

shown in Results. Concentrations of aprotinin were

expressed in lmol L�1 using a conversion factor of

1.4 mg mL�1 as equivalent to 10 000 Kallikrein Inhibitor

Units (KIU) and 215 lmol L�1 (from Baxter product lit-

erature). Results were analyzed using an online app [22]

that determines rates of plasmin generation from chro-

mogenic substrate hydrolysis by calculating slopes of

plots of absorbance at 405 nm vs. time squared.

A modification of the halo method of Bonnard et al.

[23] was used to compare TXA inhibition of fibrinolysis

in whole blood. Briefly, a drop of blood is mixed with

clotting solution and smeared as a “halo” around the

base of a well in a microtitre plate, leaving the center of

the well clear. As lysis takes place, absorbance of the

solution in the well increases and is monitored. Clots were

made as described previously [23], except 15 lL of blood

was clotted with 5 lL of the clotting mixture described

above for clot lysis assays [20] and clotting was allowed

to proceed for 30 min. Mixtures, 80 lL of uPA or tPA

with TXA at the concentrations stated in Results, were

added to initiate clot lysis. This assay was also modified

to use plasma in place of blood. Freeze-dried plasma (06/

158, NIBSC) was reconstituted in water and to this was

added fluorescently labelled fibrinogen (Alexa Fluor-488;

Thermofisher Scientific, Waltham, MA, USA) to a final
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concentration of 0.15 mg mL�1. Lysis was monitored by

release of fluorescently labelled fibrin degradation prod-

ucts from the halo clot. Data were analyzed using an

online app specifically designed to analyze halo assay data

and provide values for times to 50% clot lysis with either

blood or plasma clots [24]. To investigate plasmin genera-

tion from plasma clots the same method was used as

described above, but without addition of fluorescent fib-

rinogen. Plasmin chromogenic substrate S-2251

(1.5 mmol L�1 final concentration) was included in the

mixture of TXA and plasminogen activator.

ROTEM delta (Werfen, Warrington, UK) equipment

was operated according to the manufacturer’s instructions

using Intem reagents supplied by the manufacturer. Blood

was collected from local donors, with approval of the

local ethical committee. Activated partial prothrombin

time (APTT) of plasma was determined using a KC4

Delta semiautomated coagulation analyzer supplied by

Trinity Biotech (Bray, Co Wicklow, Ireland). APTT-SP

reagents were from Instrumentation Laboratory (Milan,

Italy) and were used according to the manufacturer’s

instructions. Plasma used for APTT determinations was

freeze dried (06/158, NIBSC) or was fresh frozen thera-

peutic plasma (V.I. plasma) that had been treated with

solvent detergent (Octaplas LG, Octapharma, Stockholm,

Sweden). In some cases, V.I. plasma was supplemented

with purified, plasma-derived a2-antiplasmin (Merck,

Nottingham, UK). Plasmin digestion of fibrinogen was

identified by SDS PAGE and Coomassie staining using

4–12% Bis-Tris Plus gels. Where V.I. plasma was used,

fibrinogen digestion was followed by western blotting

using a polyclonal rabbit anti-human fibrinogen antibody

(A0030; Dako, Glostrup, Denmark).

Results

The effective range of TXA in vitro

In purified systems of fibrinolysis, kinetic models previ-

ously gave estimates of KD < 10 and 30 lmol L�1 for

glu- and lys-plasminogen, respectively [5]. The observed

values for IC50 in more complex experimental systems will

be affected by other components such as higher plasmino-

gen concentrations, the presence of fibrin and a2-antiplas-
min. In a plasma clot lysis system an IC50 = 150 (�
20) lmol L�1 for TXA was observed, as shown in

Fig. 1(A,B), using 2.5 nmol L�1 tPA as activator. In this

system, uPA or scuPA (data not shown) were less effec-

tive alone as an activator than tPA and no fibrinolysis

was seen with 10 nmol L�1 uPA or scuPA as sole
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Fig. 1. Plasma clot lysis with tissue plasminogen activator (tPA) or plasmin and inhibition by tranexamic acid (TXA). Plasma clots contained

2.5 nmol L�1 tPA or plasmin as shown with a range of TXA concentrations, and times to 50% lysis were determined. Panel A shows represen-

tative raw data for clot lysis time-courses for clots containing 2.5 nmol L�1 tPA. Panel B shows analysis of lysis profiles as extension of time

to 50% lysis at each TXA concentration used to calculate an IC50 = 150 lmol L�1 (� 20 lmol L�1 as the standard error [SE] of the fit).

Means and standard deviations [SDs] of duplicates are shown. Panel C summarizes lysis extension results as single-point estimates for clot lysis

curves where plasmin has been incorporated into the clots in place of tPA at the concentrations shown. Estimates of IC50 values ranged from 4

to 41 lmol L�1 TXA (SE for fitting was 0.3 lmol L�1 at the lowest KD up to 18 lmol L�1 at the higher IC50 values).
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activator, over the 5-h time-courses used in these experi-

ments. Plasmin incorporated into clots during clotting

was inhibited by TXA, as shown in Fig. 1(C). Plasmin

concentrations in the range of 115–577 nmol L�1 were

sensitive to TXA and IC50 values were 4–41 lmol L�1.

Plasma clots are stabilized by a2-antiplasmin, but in sit-

uations of ongoing fibrinolysis a2-antiplasmin may be

depleted and the system will be more susceptible to fibri-

nolysis. A series of experiments were performed using

clots made from euglobulin, which is known to have

reduced levels of inhibitors, including a2-antiplasmin [25].

Representative clot lysis profiles are shown in Fig. 2,

where 5 nmol L�1 scuPA, the single chain zymogen of

uPA, could catalyze fibrinolysis. Marked stimulation of

fibrinolysis was achieved by adding 0.6 nmol L�1 tPA to

scuPA (Fig. 2B, note the shorter time on the x axis).

Using euglobulin as substrate, the speed of fibrinolysis

correlated with the observed IC50 for TXA blocking fibri-

nolysis. For example, for 5 and 10 nmol L�1 scuPA

alone, estimates of IC50 values were 13 (� 3) and 214

(� 90) lmol L�1, and with the addition of 0.6 nmol L�1

tPA the IC50 values were 380 (� 144) and 490

(� 231) lmol L�1 (� values are SE for curve fitting).

Euglobulin clots were more sensitive to direct application

of plasmin compared with plasma clots, as shown in

Fig. 2(C), and IC50 vales for TXA were high, estimated

to be 600–1900 (� 31–90) lmol L�1. Thus, reducing

available intrinsic inhibitors of fibrinolysis increased the

concentration of TXA required to block fibrinolysis.

Halo and ROTEM methods

The recently described halo method [23] is a microtiter

plate-based method to measure fibrinolysis of clots made

from whole blood. We have adapted the method to inves-

tigate inhibition by TXA and also modified it by adding

fluorescent fibrinogen to plasma before clotting to investi-

gate plasma clot lysis under the same conditions.

Figure 3(A,B) shows inhibition by a range of TXA with

2.5 nmol L�1 tPA using the halo format. IC50 values

(� SE of fitting) were 44 (� 4) and 102 (� 16) lmol L�1

TXA for blood or plasma clots, respectively. Lysis by

10 nmol L�1 uPA was more sensitive to TXA and esti-

mates for IC50 values were 2–5 lmol L�1 TXA (see

Fig. 3C,D). One significant difference between the micro-

titer plate formats shown in Figs 1 and 3 is the amount

of fibrin present in the wells. In our version of the halo

assay only 15 lL of blood or plasma is used, whereas in

the clot lysis system used in Figs 1 and 2, 70 lL of

plasma or euglobulin is used. These factors may
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Fig. 2. Inhibition by tranexamic acid (TXA) of euglobulin clot lysis with single chain urokinase plasminogen activator (scuPA) or scuPA and

tissue plasminogen activator (tPA) or plasmin. Clots formed from euglobulin contained plasminogen activator or plasmin and a range of TXA

concentrations, and times to 50% lysis were determined. Panel A shows representative raw data for clots containing 5 nmol L�1 scuPA and

Panel B clots contain 5 nmol L�1 scuPA + 0.6 nmol L�1 tPA. Panel C shows single-point estimates of extension of time to 50% lysis with

increasing TXA concentrations at the plasmin concentrations shown. KD estimates from these data were in the range 600–1900 lmol L�1 (stan-

dard error [SE] of fitting 31–90 lmol L�1).
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contribute to the differences in effectiveness of TXA in

the two microtiter plate methods.

ROTEM experiments were performed using platelet-

poor and platelet-rich plasma and whole blood with

added tPA or uPA and TXA. Results were consistent

across different substrates. The range of activators

explored was between 2 and 10 nmol L�1 for both tPA

and uPA, and TXA down to 10 lmol L�1 was able to

protect clots from lysis during the timescales of the

ROTEM experiments, which is up to 1 h (data not

shown).

Plasmin generation by uPA and TXA

All results described above show that TXA can protect

fibrin from breakdown in a variety of formats when either

tPA or uPA is activator or with directly applied plasmin.

By adjusting the methods used in Figs 1 and 3 so that

plasmin chromogenic substrate was added to preformed

clots along with uPA or tPA, it was possible to detect the

generation of plasmin released from the clot. Figure 4(A)

shows results from the halo/plasma clot system (no added

Alexa Fluor fibrinogen in this case) and Fig. 4(B) shows

results from the other microtiter plate plasma clot lysis

system (shown in Fig. 1), now including S-2251. In both

formats, active plasmin was released by uPA, but not

tPA, in the presence of TXA. Stimulation begins above

10 lmol L�1 TXA and reaches a peak at around

100 lmol L�1, followed by a decline as shown in Fig. 4

(B), but this decline is not observed in the halo format,

Fig 4(A). Fig. 4(B) also shows that the plasmin inhibitor

aprotinin can block plasmin activity generated by uPA

and TXA. Calculations on the dose response of aprotinin

gave an estimated IC50 of 530 (� 119) nmol L�1 (see

Fig. 4B inset).

Free plasmin disrupts coagulation and can break down

fibrinogen in the presence of TXA

Having demonstrated that uPA + TXA can generate plas-

min activity in plasma, the consequences of this prote-

olytic activity for coagulation were explored. Disruption

of coagulation was observed in whole blood and plasma

in studies using ROTEM and APTT assay systems, as

summarized in Fig. 5. Many of the clotting parameters

determined in ROTEM studies were affected by pre-incu-

bations of 400 lmol L�1 TXA and 5 nmol L�1 uPA, but

not with TXA and 2.5 nmol L�1 tPA (before overnight

4

3

2

1

0
0 5000 10 000

Time, s

15 000

no clot

40

20

10

5

2.5

0

no tPA

no clot
500
250
62
16
4
0
no tPA

0
0

10 000

20 000

30 000

40 000

5000 10 000

Time, s

15 000

15 000

10 000

5000

0

15 000

10 000

5000

0
1 32

Le
ng

th
en

in
g 

of
 ly

si
s 

tim
e,

 s

Le
ng

th
en

in
g 

of
 ly

si
s 

tim
e,

 s
1024

tPA

uPA
tPA

uPA

TXA, µM
1 32 1024

TXA, µM

A
bs

or
ba

nc
e 

40
5 

nm

F
lu

or
es

ce
nc

e 
ar

b 
un

its

TXA µM
TXA µMA B

C D

Fig. 3. Clot lysis in the halo format by tissue plasminogen activator (tPA) with blood or plasma showing inhibition by tranexamic acid (TXA).

Panel A shows representative blood clot lysis time-courses for a series of reactions that included 2.5 nmol L�1 tPA and a range of TXA as

shown. Panel B is the same arrangements, except clots were made from plasma containing 0.15 mg mL�1 fluorescent fibrinogen. Panels C and

D are the corresponding plots for lengthening of 50% lysis time with tPA (circles) or urokinase plasminogen activator (uPA) (squares) at each

TXA with concentration in blood (C) and plasma (D), shown as means � SD of triplicate wells.
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incubation), as indicated in Table 1 and Fig. 5(A) for clot

formation time (CFT). Initiation of clotting (CT) was less

affected by pre-incubation with uPA + TXA than other

parameters that describe clot quality (CFT, maximum

clot firmness (MCF) and a-angle; see Table 1 for details

of these parameters). In agreement with ROTEM results,

extended plasma APTT values were observed in the pres-

ence of 5 nmol L�1 uPA and 400 lmol L�1 TXA, but

not tPA, as shown in Fig. 5(B). The importance of a2-
antiplasmin in suppressing liberated plasmin activity is

illustrated in Fig. 5(C) using treated plasma with a

reduced concentration of active a2-antiplasmin [26]. In

this case, a2-antiplasmin was 0.4 U mL�1, or 40% of nor-

mal (other coagulation factors, V, VIII and XI, were 1.0–
1.1 U mL�1, fibrinogen was 3.2 mg mL�1 and APTT was

28–32 s before any additions or pre-incubations). Clotting

was seriously impaired by low a2-antiplasmin, so at

0.4 U mL�1 no clot formed after 25 min incubation with

5 nmol L�1 uPA and 400 lmol L�1 TXA. Stepwise nor-

malization of clotting over these short incubation times

was achieved with addition of purified a2-antiplasmin to

50, 60, 80 and 100% of normal levels, as shown in Fig 5(C).

Fibrinogen degradation resulting from plasmin genera-

tion is likely to contribute to disrupted coagulation

(although other factors may also be proteolyzed), as

shown in Fig. 6. Mixtures of 5 nmol L�1 uPA and

400 lmol L�1 TXA are able to rapidly generate free plas-

min in a purified system containing fibrinogen and plas-

minogen, or in the same V.I. plasma as used in Fig. 5

(Fig. 6 panels A and C, respectively). The corresponding

Coomassie-stained SDS PAGE or western blot (B and D,

respectively) illustrates the plasmin digestion of fibrinogen

after 30 min of incubation with uPA + TXA. The corre-

sponding results using normal plasma are shown in sup-

plementary Figure S1. However, fibrinogen may not be

the only target of plasmin generated by uPA + TXA and

clotting may be further disrupted by proteolytic attack on

other coagulation factors.

Discussion

The loss of effectiveness of TXA with treatment delay is

established in meta-analysis of clinical trials [16], but the

mechanism is unknown. A role for uPA has been sug-

gested previously [5,27,28] and several possible mecha-

nisms may be involved. Firstly, TXA (or other lysine

analogues) has long been known to interact with a low-

affinity plasminogen kringle binding site, KD around 200–
600 lmol L�1, to induce a large conformational change,

accelerating plasmin generation catalyzed by uPA [29–31].
tPA or tPA serine protease domain is less sensitive to this

plasminogen conformational change [5,32]. Secondly,

TXA protects plasmin from inhibition by a2-antiplasmin

by slowing down the rate of inhibition, with effects

observed from 10 to 500 lmol L�1 TXA [33,34]. Accord-

ing to detailed structural and kinetic work [35], the lysine-

rich C-terminal peptide of a2-antiplasmin from Asn-410

to Lys-464 regulates initial complex formation with plas-

min, and its removal was found to reduce the rate of

complex formation 40-fold, as did the presence of

1 mmol L�1 aminohexanoic acid. A third line of evidence

for a potential role for uPA in trauma comes from animal

models. A model of traumatic brain injury in mice

revealed a rapid spike of tPA release up to 12 nmol L�1

measured in cerebrospinal fluid, 1 h after injury, which

was followed by a slow release of uPA, peaking at

8 nmol L�1, 8 h after injury (mirrored by lower concen-

trations of tPA and uPA in blood) [27]. The release of

plasminogen activators was associated with intracranial

hemorrhage, which increased if TXA was administered

8 h after the traumatic event, as uPA levels peaked. A

model of cerebral hypoxia/ischemia in pigs also showed
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increases in uPA concentrations in cerebrospinal fluid

after injury, up to 2.5 nmol L�1, 4 h post-injury [36]. The

authors concluded that tPA is initially released from

stores, but uPA is synthesized de novo by brain cells.

In studies on trauma patients, limited information is

available on changes in uPA, with much more focus on

tPA, PAI-1, D-dimer and plasmin- a2-antiplasmin (PAP)

complexes. Normally, there is no active uPA in the circu-

lation, and single chain, inactive scuPA is present at 2–
4 ng mL�1 or around 10�10 M [37], although higher con-

centrations are measured in cancer patients. However,

some trauma patients show increased levels of uPA over

time [38] or in the most severe cases [39], but correlations

with poor survival have not been demonstrated. The dan-

gers of disturbed fibrinolysis in trauma-induced

coagulopathy are accepted, and hyperfibrinolysis, which is

present in a minority of patients, represents a major risk

factor for early death. For example, Raza and co-workers

investigated fibrinolysis proteins in patients demonstrating

normal, moderate and severe hyperfibrinolysis [40]. Signif-

icant findings in this study included a 5-fold rise in tPA

concentrations to 0.6 nmol L�1, along with 30–40%
decreases in circulating a2-antiplasmin and fibrinogen in

severely affected patients. PAP increased around 19-fold,

emphasizing the significant generation of plasmin in these

patients with parallel consumption of a2-antiplasmin.

These snapshots do not provide a complete picture of

how fibrinolysis and coagulation proteins can change over

time or what effects TXA would have. In the current

study, the risk of coagulopathy associated with depletion
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of endogenous a2-antiplasmin and the presence of

uPA + TXA is highlighted in Figs 5 and 6. Furthermore,

results in Fig. 2 suggest scuPA in combination with tPA,

as expected in vivo, is much more potent than scuPA

alone. The potential to generate free plasmin and the

development of overt hyperfibrinolysis in trauma is

likely to be regulated by increased concentrations of tPA

and scuPA, alongside decreased a2-antiplasmin and fib-

rinogen concentrations. The concentrations of tPA and

uPA used in the current study were selected to rapidly

initiate fibrinolysis in normal plasma or blood. Initial

studies suggest much lower concentrations of tPA and

(sc)uPA are necessary to produce rapid plasmin genera-

tion when a2-antiplasmin is depleted, but further work is

needed to explore these concentration dependencies in

detail.

The data presented in Fig. 4 illustrate generation of

free plasmin activity by TXA + uPA, and the potential of

aprotinin to substitute for a2-antiplasmin and block this

activity in plasma. The concentrations of aprotinin

required to control plasmin activity were quite high,

> 500 nmol L�1, in this assay system, in the context of

the high affinity of plasmin for aprotinin (KD around

2 nmol L�1) [41]. However, aprotinin up to 3 lmol L�1

has been used in high dose regimes in cardiac surgery

[42,43].

The optimum concentration of TXA

Tranexamic acid is able to protect fibrin from degrada-

tion by plasmin, but the effective concentration and IC50

in vitro is variable. Protection is seen where tPA or uPA

is activator or where plasmin is applied directly to clots,

supporting a mechanism where kringle-dependent plas-

minogen and plasmin binding is blocked by TXA to inhi-

bit fibrinolysis. Direct application of plasmin resulted in

the lowest TXA IC50 values (4–41 lmol L�1) using

plasma clots (Fig. 1C) and the highest IC50 values in

euglobulin clots (600–1900 lmol L�1). These differences

could be dependent on several factors, including the

amount of plasmin or plasminogen or a2-antiplasmin

available. Fibrinolysis in the ROTEM system was sensi-

tive to TXA as low as 10 lmol L�1, even using whole

blood. A factor here could be that ROTEM monitors the

early stages of fibrinolysis, at a time where plasmin only

begins to develop, which may reduce the requirement for

TXA. The results highlight the variability inherent in dif-

ferent experimental set-ups. In a purified system, we pre-

viously estimated the KD of TXA for plasminogen that

blocked plasminogen activation by tPA or uPA to be

around 10 lmol L�1 or less for glu-plasminogen, or

30 lmol L�1 for lys-plasminogen [5]. Therapeutic concen-

trations of TXA used in cardiopulmonary bypass and

other elective surgical procedures that are easier to con-

trol than traumatic bleeding, aim for TXA in circulation

around 100 lmol L�1 or higher [1,2,8]. Considering allT
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our results, it seems unlikely there will be an ideal con-

centration that could provide adequate fibrin protection

in all situations in vivo but be insufficient to induce

the plasminogen conformational change (above 100 lmol

L�1) that enhances uPA activity.

Trauma-induced coagulopathy, disseminated intravascular

coagulation and fibrinolysis shutdown

Disseminated intravascular coagulation (DIC) may be

categorized as being a hemorrhagic or thrombotic pheno-

type [44–46]. Guidelines for the diagnosis of DIC, such as

those prepared by the ISTH/SSC, rely on a scoring sys-

tem for low platelet count, low fibrinogen, prolonged

clotting time and elevated D-dimer (e.g. see [47,48]).

However, anatomopathologic diagnosis of DIC, seen as

widespread accumulation of microthrombi, is also viewed

as the diagnostic reference standard for thrombotic DIC

[49]. The accumulation and consequences of micro-

thrombi in trauma are proposed as a mechanism to

explain the observed increased risk of delayed TXA

administration. According to this theory, early stages of

trauma, involving bleeding with rapid release of tPA and

increased fibrinolysis, are likened to DIC with a hemor-

rhagic phenotype. Subsequently, a thrombotic phenotype

may develop, associated with increased PAI-1, leading to

suppressed fibrinolysis, increasing the risk of accumula-

tion of microvascular thrombi, organ failure and death.

[46]. This risk could be further increased by late treatment

with TXA. However, it is noteworthy that meta-analysis

of clinical trials of TXA in bleeding patients generally

does not find increased risk of vascular occlusive events

[16], and TXA has an excellent safety record across a

range of applications despite its capacity to efficiently

shut down fibrinolysis. Furthermore, in one detailed study

of organs recovered from autopsies of severely injured

trauma patients, no pathologic evidence of microthrombi

in small and mid-size vessels could be found [49]. Conclu-

sive evidence is lacking for delayed fibrinolysis shutdown

being responsible for the failure of TXA to improve mor-

tality when given after 3 h.

Conclusions

We hypothesize that uPA and a2-antiplasmin are key fac-

tors in the mechanism accounting for loss of efficacy of

TXA in controlling bleeding after treatment delay. Hem-

orrhage associated with trauma, childbirth and surgical

interventions will lead to activation of clotting and fibri-

nolysis and generation of tPA and uPA and subsequently
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plasmin. Importantly, ongoing fibrinolysis causes deple-

tion of a2-antiplasmin. Application of TXA is very effec-

tive at protecting fibrin, but TXA can stimulate

plasminogen activation by uPA and protect plasmin in

circulation from a2-antiplasmin. Free plasmin can induce

coagulopathy by proteolyzing coagulation factors, includ-

ing fibrinogen ([50] and Fig. 6), FV and FVIII [51–53]
and FXIII [54] and can damage the blood–brain barrier

[55]. At the stage where there is overt hyperfibrinolysis,

direct inhibition of plasmin by exogenous inhibitors may

be necessary. However, more information is needed on

the time-course and magnitude of uPA production in

trauma patients, particularly the minority that develop

life-threatening hyperfibrinolysis.

Addendum
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