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The heterogeneity of smallholder dairy production systems complicates service provision, information sharing, and dissemination
of new technologies, especially those needed to maximize productivity and profitability. In order to obtain homogenous groups
within which interventions can be made, it is necessary to define clusters of farmers who undertake similar management activities.
This paper explores robustness of production cluster definition using various unsupervised learning algorithms to assess the best
approach to define clusters. Data were collected from 8179 smallholder dairy farms in Ethiopia and Tanzania. From a total of
500 variables, selection of the 35 variables used in defining production clusters and household membership to these clusters was
determined by Principal Component Analysis and domain expert knowledge. Three clustering algorithms, K-means, fuzzy, and
Self-Organizing Maps (SOM), were compared in terms of their grouping consistency and prediction accuracy. The model with
the least household reallocation between clusters for training and testing data was deemed the most robust. Prediction accuracy
was obtained by fitting a model with fixed effects model including production clusters on milk yield, sales, and choice of breeding
method. Results indicated that, for the Ethiopian dataset, clusters derived from the fuzzy algorithmhad the highest predictive power
(77% for milk yield and 48% for milk sales), while for the Tanzania data, clusters derived from Self-Organizing Maps were the
best performing. The average cluster membership reallocation was 15%, 12%, and 34% for K-means, SOM, and fuzzy, respectively,
for households in Ethiopia. Based on the divergent performance of the various algorithms evaluated, it is evident that, despite
similar information being available for the study populations, the uniqueness of the data from each country provided an over-riding
influence on cluster robustness and prediction accuracy.The results obtained in this study demonstrate the difficulty of generalizing
model application and use across countries and production systems, despite seemingly similar information being collected.

1. Introduction

Despite the high potential of livestock keeping, Ethiopia
and Tanzania still suffer from low meat and milk produc-
tion given that most livestock populations are dominated
by low producing indigenous breeds [1, 2]. Smallholder
farmers dominate the livestock keeping enterprise in Africa,
accounting for about 50% of the total livestock production
[3]. Dairy farming is an important source of income for
smallholder farmers with high potentials for daily cash
flow [4]. Majority of these smallholder producers have not

reached their production potential in terms of yield and
commercialization. However, data from a recent large-scale
survey provides evidence that some farmers produce at a
level well beyond the average production (PEARL data, 2016;
unpublished). There are many constraints that contribute
to the unreached potential, including lack of appropriate
support in technologies and information dissemination.

Despite the constraints hindering smallholder dairy pro-
ductivity, milk obtained from smallholder dairy farmers
constitutes the bulk of supply available for sale in Eastern
Africa [4]. Among the hindering factors in the provision of
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appropriate support to the dairy sector and evolvement of the
dairy farmer beyond subsistence, is the lack of understanding
of the production system these farmers are operating in.
Characterization of farm typologies is a necessary first step in
designing appropriate interventions that allow these farmers
to improve farm output and performance. The characteriza-
tion of production systems and identification of homogenous
units that represent contemporary groups in management
terms allow us to understand the specific attributes associated
with drivers of productivity. This holds the key to unlocking
the ingredients of household evolvement through proper
planning, adoption, and utilization of appropriate improved
technologies and critical policy support [5].This study sought
to provide amechanism through which farmers that perform
similar production activities or have similar production
system attributes can be grouped together into production
clusters that describe their organization, needs, and outputs.

Given the huge diversity of practices seen in smallholder
farms, the need to formhomogenous units that group farmers
with near similar characteristics has been addressed in several
studies. Primarily, this has been done by domain experts allo-
cating farmers to various predetermined classes of farmers;
defining their place in the production ecosystem, as well as
statistical andmachine learning approaches [6–10].The latter
approach involves use of various supervised and unsuper-
vised algorithms to study, analyze, model, and predict trends
in smallholder production systems. Recently, unsupervised
learning algorithms have been applied in various studies to
understand production systems [11, 12]. Some of the more
popular unsupervised algorithms include hierarchical clus-
tering, nonhierarchical clustering (K-means), unsupervised
neural network algorithms (Self-Organizing Maps), Näıve
Bayes and fuzzy clustering algorithms. However, despite
their frequent use, unsupervised learning approaches suffer
greatly from lack of consistency and predictability [13].
Various attempts have been made to overcome this weakness,
including application of multiple algorithms to cluster farm
data and select the one with highly homogeneous groups
[14, 15].

In this study, three unsupervised machine learning (ML)
models were applied to classify and study the characteristics
of smallholder dairy production systems based on data
obtained frombaseline surveys in Ethiopia and Tanzania.The
aim of the study was to identify the most robust approach
to accurately assign diverse dairy farming households into
homogenous production units that reflect the differences in
production practice and performance.

2. Methodology

2.1. Dataset Preparation and Feature Selection. Data was
collected under the PEARL (Program for Emerging Agri-
cultural Research Leaders-Funded by the Bill and Melinda
Gates Foundation through the Nelson Mandela African
Institution of Science and Technology) project from June
2015 to June 2016 in Ethiopia and Tanzania. The total
number of households surveyed was 3,500 for Tanzania and
4,679 for Ethiopia. Data collection was undertaken using
questionnaires developed on the Open Data Kit (ODK)

platform. Data quality checks included removal of erroneous
data such as negative values, questionnaires whose total
collection time was below a defined threshold (16min), and
data collected at night (survey start time beyond 7pm). The
data cleaning process trimmed the datasets to 3317 and 4394
records for Tanzania and Ethiopia, respectively. From a total
of 500 unique variables (features) available for analysis, a
set of 46 variables were selected for inclusion in the cluster
analysis based on their relevance to productivity and farmer
evolvement.

Feature Selection. In order to identify the most unique fea-
tures among the 46 variables, Principal Component Analysis
(PCA) was undertaken to eliminate correlated variables.
The top 21 features (based on the load score) with the
lowest communality were then selected for further analysis.
An additional 14 variables related to feeding systems and
health management practices which are known to influence
productivity in smallholder dairy farming were included
based on expert domain knowledge, such that a total of 35
features were available for cluster analysis and farm type char-
acterization (Table 1). As a prerequisite for clustering,missing
values for continuous variables were identified and replaced
with population means, while missing values for categorical
values were replaced with mode value. The effect of location
(study site) for each country was removed from the response
variables by fitting a liner model (𝑦 = 𝜇 + 𝑠𝑡𝑢𝑑𝑦𝑠𝑖𝑡𝑒 + 𝑒𝑟𝑟𝑜𝑟)
and extracting adjusted values. Each quantitative variable was
tested for normality and scaled to have a mean of zero and
unit variance. Additionally, for each variable, outliers were
identified as values above or below the bounds estimated
using box plots. Outliers were removed to minimize bias and
misclustering. Specifically, bias was minimized by applying
the following filters.

The total number of cattle owned was restricted to a
maximum of 50 per herd for Ethiopian farmers and a
maximum of 30 per herd for Tanzanian farmers based on
livestock densities [1, 2]. Some smallholder farmers held land
holdings above 100 acres; all farmers with land holdings
greater than 100 acres were removed. The maximum amount
ofmilk sold by smallholder farmerswas restricted to 100 liters
per day, based on expert domain knowledge of the herd sizes
and yield per cow. It was assumed that an extension officer
could visit a farmer once each week. Any farmer who had
more than 54 visits per year was considered an outlier.

2.2. Clustering Algorithms. Three unsupervised learning
algorithms, fuzzy clustering, Self-Organizing Maps (SOM),
and K-means, were used for cluster analysis. In the analysis,
the number of groups (K) represented how many farm
typologies (clusters) could be defined for each dataset.
The number of clusters that best represented the data was
determined using the Elbow method (where a bend or
elbow in a graph showing decline of within cluster sum
of squares differences as the number of clusters increases
provides the best solution). Gap statistics and silhouette
separation coefficients were used in preliminary analysis to
validate the results from the Elbow method [16], while the
Euclidean distance was used to assess cluster robustness. The
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Table 1: Features used in cluster analysis.

S/No Feature Name Type Range
1 Exclusive grazing in dry season Boolean 0(no) or 1(yes)
2 Exclusive grazing in rainy season Boolean 0(no) or 1(yes)
3 Mainly grazing in dry season Boolean 0(no) or 1(yes)
4 Mainly grazing in rainy season Boolean 0(no) or 1(yes)
5 Mainly stall feed in dry season Boolean 0(no) or 1(yes)
6 Mainly stall feed in rainy season Boolean 0(no) or 1(yes)
7 Use of concentrates Discrete 1 – 12 (months)
8 Watering frequency Discrete 0 – 4
9 Distance to water source Continuous 0 – 15
10 Total land holding Continuous 0 – 100
11 Area under cash cropping Continuous 0 – 10
12 Area under food cropping Continuous 0 – 83.25
13 Area under fodder production Continuous 0 - 80
14 Area under grazing Continuous 0 - 13
15 Number of employees Discrete 1 - 10
16 Number of casual labors Discrete 1 – 10
17 Vaccination frequency Discrete 0 – 6
18 Deworming frequency Discrete 0 – 5
19 Self-deworming service Boolean 0(no) or 1(yes)
20 Membership in farmer groups Discrete 0 – 5
21 Experience in dairy farming Discrete 1 - 50
22 Years of schooling Discrete 0 – 21
23 Preferred breeding method Boolean 0 (bull) or 1(artificial insemination)
24 Distance to breeding service provider Continuous 0 - 100
25 Frequency of visit by extension officer Discrete 1 – 54
26 Herd size Discrete 1 – 50
27 Number of milking cows Discrete 1 – 20
28 Number of exotic cattle Discrete 1 - 48
29 Number of sheep Discrete 1 - 80
30 Peak milk production for the best cow Continuous 1 – 40
31 Amount of milk sold in bulk Continuous 1 – 100
32 Liters of milk sold Continuous 1 – 100
33 Distance to milk buyers Continuous 1 – 37
34 Total crop sale Continuous 0 – 21000 (Birr), 0 – 950000 (Tsh)
35 Distance to market Continuous 1 – 8

Elbow method was found to be robust and subsequently
used for the rest of the analysis. Given that the selected
algorithms have various methods with different convergence
rates, two methods for each algorithm were tested and those
that minimized convergence time were selected. The final
clustering methods used were (i) Fanny for fuzzy clustering
[17], (ii) superSOM with batch mode [18], and (iii) Hartigan-
Wong [19, 20] for K-means. Evaluation of the clustering
algorithms was done by considering ranking consistency
in the testing dataset, mean distance of observations from
central nodes, and mean silhouette separation coefficients
as well as accuracy of predicting observed values of select
response variables using amodel fitting the predicted clusters
as fixed effects. Other evaluation criteria for the clustering

algorithms were. Data analysis was done using both SAS
version 9.2 (SAS Institute Inc., Cary, NC, USA) and R
software (Kabacoff, 2011).

2.3. Clustering Models. Self-Organizing Maps (SOM) have
been used to characterize smallholder farmers due to their
ability to produce accurate typologies as explained by Nazari
et al. [15] and Galluzzo [21]. The SOM algorithm calculates
Euclidean distance by using (1) and the best matching unit
(BMU) satisfying (2) [21, 22].

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √ 𝑖=𝑛∑
𝑖=0

(V𝑖 − 𝑤𝑖)2 (1)
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where V and 𝑤 are vectors in an n dimension Euclidean space
relating to position of amember andneuron, respectively, and

∀𝑛𝑖 ∈ 𝑆 : 𝑑𝑖𝑓𝑓 (𝑛𝑤𝑖𝑛𝑛𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡, V) ≤ 𝑑𝑖𝑓𝑓(𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡, V) (2)

whereby v is any newweight vector, 𝑛𝑤𝑖𝑛𝑛𝑒𝑟𝑤𝑒𝑖𝑔ℎ𝑡 is the current
weight of the winning neuron, and 𝑛𝑖𝑤𝑒𝑖𝑔ℎ𝑡 is a weight of any
other 𝑖th neuron on the map.

The K-means algorithm has been widely used in non-
hierarchical clustering and characterizing smallholder dairy
farms [7, 8, 10]. Similar to SOMs, the algorithm uses
Euclidean distance measures to estimate weights of data
records. The algorithm is presented as. (3), with a segment
of the Euclidean distance as in (1).

𝐽 = 𝑘∑
𝑗=1

𝑛∑
𝑖=1

𝑥𝑗𝑖 − 𝑐𝑗2 (3)

where ||𝑥𝑗𝑖 −𝑐𝑗||2 computes the Euclidean distance as in (1); k=
number of clusters, n= number of observations, j =minimum
number of clusters, i= minimum number of observations, 𝑥𝑖
= Euclidean vector for any 𝑖th observation, and 𝑐𝑗 = cluster
center for any jth cluster.

Fuzzy analysis (fannymethod)was selected based on its
relatively short convergence time and goodmeasures for clus-
ters separation [17]. Various methods based on fuzzy models
have beenused for cluster analysis [23–26].The fannymethod
adds a fuzzier and a membership value to the common K-
means algorithm (see (3)). In addition, the model uses the
Dunn coefficient and a silhouette separation coefficient for
assessing the solution fuzziness and intercluster cohesion,
respectively. The general equation for fuzzy clustering [27] is
given in (4) and the Dunn definition of partitioning [28] is
given in (5).

𝐽 = 𝑘∑
𝑖=1

𝑛∑
𝑗=1

𝑈𝑚𝑖𝑗 𝑥𝑖 − 𝑐𝑗2 , 1 ≤ 𝑚 < ∞ (4)

where k = number of clusters, n = number of observations,
i= minimum number of clusters, j= minimum number of
observations, 𝑈𝑚𝑖𝑗 =membership coefficient, 𝑥𝑖 = Euclidean
vector for any 𝑖th observation, and 𝑐𝑗 = cluster center for any
jth cluster. Given (4), the Dunn definition of partitioning is
given by

𝐹𝑘 (𝑈) = (1𝑛)
𝑘∑
𝑖=1

𝑛∑
𝑗=1

𝑈𝑚𝑖𝑗 (5)

2.4. Cluster Validation and Prediction Accuracy. Production
clusters outputted from the clustering algorithms were vali-
dated in three ways: (1) assessment of cluster robustness, (2)
comparison of the cluster membership reallocation (differ-
ential allocation of households to clusters for training and
testing datasets), and (3) evaluation of the proportion of
variation explained by the clusters.

Validation of cluster robustness was first undertaken
by comparing three metrics: total within sum of square

differences, mean Euclidean distance of observations from
the cluster nodes, and the silhouette separation coefficients.
Based on these parameters, the most suitable clustering
model was identified. In the second stage of validation, the
ability of the clustering models to allocate the same group of
households into clusters in both training and testing datasets
was tested. If all cluster members are colocated in one cluster
in training and testing datasets, the reranking is 0 (the rank
correlation between the two clusters is 1), and the model
would be deemed the most accurate and robust. Parameters
considered for evaluation were correlation coefficient, AIC,
and residual deviance. The third stage of validation involved
fitting linear (or logistic as appropriate) regression models
with a set of fixed effects on milk yield, sales, and choice of
breeding method. The first model (see (6) and (9)) included
the clusters as one of the fixed effects while a second model
did not include the clusters (see (7) and (10)). The difference
in variance between the two models represented the pro-
portion of total variance in the response variable accounted
for by the clusters. The logistic model for choice of breeding
method was fitted with only the cluster of production (see
(8)) for Ethiopian data while two models were fitted for
Tanzania (see (11) and (12)). In preliminary analysis, a model
fitted with cluster of production yielded best fit results in the
Ethiopia dataset and very low variances as a result of under
fitting for the Tanzania dataset. For that reason, two models
were fitted for Tanzania and one for Ethiopia to predict the
binary variable. Class labels for the logistic regression were 0
and 1 for choice of bull method and Artificial Insemination,
respectively. For assessing prediction accuracy, one-third of
the records for the response variables were removed so that
they could be predicted.The predicted values were correlated
with the actual values to obtain an estimate of the prediction
accuracy. These latter prediction accuracies were compared
with those obtained in the previous validation step to help
evaluate the algorithms’ consistency and clusters’ robustness.

𝑦𝑖 = 𝑥𝑒 ∗ 𝛾𝑒 + 𝑐𝑒 + 𝑒𝑒 (6)

𝑦𝑖 = 𝑥𝑒 ∗ 𝛾𝑒 + 𝑒𝑒 (7)

The logistic model used to predict choice of breeding method
is shown in

𝑦𝑗 = 𝑐𝑒 + 𝑒𝑒 (8)

For Tanzania, predictive models were given by

𝑦𝑖 = 𝑥𝑡 ∗ 𝛾𝑡 + 𝑙𝑡 + 𝜎𝑡 + 𝑐𝑡 + 𝑒𝑡 (9)

𝑦𝑖 = 𝑥𝑡 ∗ 𝛾𝑡 + 𝑙𝑡 + 𝜎𝑡 + 𝑒𝑡 (10)

And choice of breeding method was given by (see (11) and
(12))

𝑦𝑗 = 𝑥𝑡 + 𝛾𝑡 + 𝑐𝑡 + 𝑒𝑡 (11)

𝑦𝑗 = 𝑥𝑡 + 𝛾𝑡 + 𝑒𝑡 (12)

where yi is milk yield or milk quantity sold and yj is choice
of breeding method. For the Ethiopia models, ce is cluster
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Figure 1: Graph showing four optimal clusters for the Ethiopia
dataset.
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Figure 2: Graph showing six optimal clusters for the Tanzania
dataset.

of production, ee is the error term, xe is experience in dairy
farming, and 𝛾𝑒 is years of schooling. For the Tanzania
models, ct is cluster of production, et is the error term, xt is
experience in dairy farming, 𝛾t is years of schooling, lt is total
land size, and 𝜎t is area under fodder production.

For all model validation steps, prediction accuracies were
obtained by developing the clustering model in a training
dataset (70%of all records) and the resulting model reapplied
to a testing dataset (remaining 30%). The model with the
least reallocation of households between clusters for the
training and testing datasets was considered the most robust.
Rank analysis using the spearman correlation coefficient was
used to evaluate the level of household reallocation between
clusters.

3. Results

3.1. Clustering. Based on the Elbow method, a four cluster
solution was found to be optimal for the Ethiopia dataset and
was fitted in the clustering models (Figure 1). The SOM and
K-means algorithms clustered the households in the Ethiopia
dataset into four groups, while the fuzzy model assigned all
households into three clusters, with nomembers in the fourth
cluster. Table 2 shows the cluster densities for each algorithm.
For Tanzania, six clusters were defined based on the Elbow
method (Figure 2). However, at K=6, the fuzzy model had
highly fuzzy cluster memberships of 0.09 and 0.18 for each
member. Such low membership values imply an unstable
cluster solution. The fuzzy model was therefore discarded
for the Tanzania dataset and analysis proceeded with the K-
means and Self-Organizing Maps (SOM) algorithms. Cluster
densities associated with the six clusters are provided in
Table 3.

For the Ethiopian data, cluster densities given in Table 2
indicate the presence of one unchanging cluster for both K-
means and SOM models (with the exact same list of 487
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Figure 3: Household allocation to four clusters using the K-means
model for Ethiopia dairy farmers.

members). The number of members in the other clusters
varied, indicating households being reassigned to different
clusters. Figures 3, 4, and 5 represent the cluster visualization
for each algorithm in the Ethiopia dataset. Clusters obtained
using K-means were well separated and showed significant
intracluster adhesion (Figure 3), while spatial distribution
of SOM clusters (Figure 4) indicated significant overlap
between two of the 4 clusters (clusters in red). Cluster
densities for Tanzania are displayed in Table 3.

Figures 4(a) and 4(b) are a heatmap representation of
cluster densities and dendrogram from the SOM model,
respectively. Figure 4(a) shows counts of households within
clusters while Figure 4(b) indicates cluster relationship and
separation. The numbers on the colored plane indicate
number of members in each cluster. Two clusters had equal
number of farmers (shown in red color) and on the den-
drogram these are categorized as clusters 1 and 4. These
two clusters seemingly had few differentiating features since
they originate from the same parent node.This phenomenon
can also be observed in Figure 3 for the K-means model
(clusters 2 and 4). These clusters appear to be joined into
one cluster in the fuzzy model (cluster 3 in Figure 5). The
fuzzy model resulted in 3 clusters, each with a significant
number of outliers (Figure 5). The outliers were however
more pronounced for cluster 2 than clusters 1 and 3.

Presence of the outliers and cluster overlap in the fuzzy
model was supported by a low value of the Dunn coefficient
(0.3014) which corresponds to a high level of fuzziness.

Based on the results obtained, the cluster composition
parameters related to intercluster adhesion and intracluster
cohesion indicated that clusters from the K-means model
were better separated (higher mean silhouette value) and
more compact (lower mean distance from central node) than
in the other models for Ethiopia (Table 4).

For Tanzania, the mean silhouette separation coefficients
were not significantly different (0.66 and 0.64 for K-means
and SOM, respectively) as shown in Table 5. However, there
was a tendency for the SOM to have better defined clusters
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Table 2: Cluster densities (number of households allocated to the cluster) for the Ethiopia dataset.

Cluster K-meansmodel SOMmodel Fuzzy model
1 342 487 2673
2 875 2084 411
3 2689 1217 1309
4 487 605

Table 3: Cluster densities (number of households allocated to the cluster) for the Tanzania dataset.

Cluster K-meansmodel SOMmodel Fuzzy model
1 811 1180 2506
2 452 952 811
3 374 203
4 616 295
5 372 516
6 692 171

given its lower within cluster sum of squares as well as lower
mean distance from central node. The spatial distribution is
illustrated in Figures 6 and 7.

For Tanzania clusters’ separation and intactness can be
observed through Figures 6 and 7. No significant difference
can be observed with regard to the intercluster adhesion
between K-means and SOM (Table 5).

Figure 6 shows clusters visualization from the K-means
model for Tanzania dataset. Cluster 4 and 5 overlap and
are in close proximity to cluster 6, indicating that they have
few differentiating characteristics. This overlapping is equally
observed in the SOMmodel (Figure 7).

The numbers on the colored bar in Figure 7(a) indicate
densities of members in each cluster. There are only four
well separated clusters based on density (from left: red,
orange, yellow, and light gold). However, the dendrogram
(Figure 7(b)) shows that three clusters, branching from the
same node, which also are also seen as the overlapping
clusters (clusters 4, 5, and 6) in the K-means plot (Figure 6)

3.2. Cluster Validation

3.2.1. Cluster Membership Reranking. Ranking correlation
was used to study the levels of household relocation for the
training and testing datasets. Generally, the clusteringmodels
applied to the Ethiopia dataset indicated low membership
relocation. Table 6 summarizes the results for Ethiopiawhere,
despite a lower Akaike Information Criteria (AIC) estimate,
the fuzzy model had the highest number of members reallo-
cated to other clusters (32%) compared to the K-means and
SOM.Thehigh correlation coefficients for SOMandK-means
indicate lower reallocation of cluster members. In contrast,
results fromTanzania indicated very high reranking of cluster
membership between training and testing datasets (Table 7).

3.2.2. Prediction Accuracy. Tables 8 and 9 summarize the
results for predicting missing values for milk yield, sales, and
breeding choice. Results for Ethiopia dataset indicate that
model fitting fixed effects of clusters derived from the fuzzy

model had higher accuracies for peak milk yield (0.77), milk
sales (0.48), and probability of choosing AI (0.55) as shown in
Table 8, while for Tanzania, higher accuracies were obtained
for milk production and sales (0.46 and 0.41) while fitting
clusters were obtained from the K-means model (Table 9).

For the Tanzania dataset, clusters from the K-means
model achieved high prediction accuracies for both milk
yield and sales (at 46% and 41%, respectively). However,
the K-means clusters had lower prediction accuracy for
choice of breeding method (29%). Clusters from the SOM
model performed poorly on the quantitative traits but had
higher probability (46%) for correctly assigning the choice of
breeding method.

3.2.3. Cluster Variances. In order to assess whether the clus-
ters defined by the various algorithms reflect differences in
production characteristics between households, we evaluated
the variance accounted for by these cluster on select perfor-
mance measures. For Ethiopia, total variance was 1.015 and
0.988 for milk yield and sales, respectively, while in Tanzania,
the total variance was 1.076 and 1.09 for milk yield and
sales, respectively. The differences between residual variances
for two linear models (see (6) versus (7) for Ethiopia and
(9) versus (10) for Tanzania) were significant (p < 0.00001).
Results show that, for Ethiopia data, the fuzzy model clusters
accounted for 89% and 70% of the total variance in milk yield
and milk sales, respectively. On the other hand, the K-means
clusters accounted for 71% and 65% of the total variation
in milk yield and milk sales, respectively. Tables 10 and 11
summarize the proportion of variances accounted for by the
clusters for each clustering model.

4. Discussion

4.1. Characterization of Smallholder Farmers. Unsupervised
learning models have been used to characterize smallholder
farmers despite the fact that these models lack consistency
and are highly unpredictable [13]. In this study, the perfor-
mance of three commonly used algorithms for clustering
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Figure 4: Node counts for household clusters derived using the SOMmodel for Ethiopia (a) and dendrogram for super clusters (b).

Table 4: Cluster composition parameters (intercluster adhesion and intracluster cohesion) for Ethiopian households.

Model No. Clusters Within sum of
square

Mean distance from
central nodes

Mean silhouette
separation

K-meansmodel 4 20758 0.74 0.66
SOMmodel 4 23178 0.92 0.51
Fuzzy model 3 21655 0.89 0.56

Table 5: Cluster composition parameters (intercluster adhesion and intracluster cohesion) for Tanzania households.

Model No. Clusters Within sum of square Mean distance from central nodes Mean silhouette separation
K-meansmodel 6 12628 2.1 0.66
SOMmodel 6 11772 1.7 0.64

Table 6: Cluster model parameters and ranking accuracy (membership reallocation) based on spearman rank correlation for the Ethiopia
dataset.

Model AIC Residual deviance Ranking accuracy (r)
K-meansmodel 102 2.7e∧-2 0.85
SOMmodel 102 2.8e∧-2 -0.88
Fuzzy model 68.09 9.35e∧-2 0.68

Table 7: Cluster model parameters and ranking accuracy (membership reallocation) based on spearman rank correlation for the Tanzania
dataset.

Model AIC Residual deviance Ranking accuracy (r)
K-meansmodel 200 0.001 -0.21
SOMmodel 200 0.006 0.39

Table 8: Estimates of prediction accuracy for models fitting cluster of production for milk yield, milk sales, and choice of breeding method
in Ethiopia.

Accuracy of prediction (r) 0 ≤ p ≤ 1
Algorithm/Response Variable Milk yield Milk sold Preferred breeding method
K-means 0.68 0.40 0.54
SOM 0.66 0.38 0.54
Fuzzy 0.77 0.48 0.55

Table 9: Estimates of prediction accuracy for models fitting cluster of production for milk yield, milk sales, and choice of breeding method
in Tanzania.

Accuracy of prediction (r) 0 ≤ p ≤ 1
Algorithm/ Response Variable Milk yield Milk sold Preferred breeding method
K-means 0.46 0.41 0.29
SOM 0.32 0.31 0.46
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Table 10: Proportion of variance accounted for by cluster of production in Ethiopia.

Fitted model Total Variance∗ Residual variance -2log likelihood P value Variance accounted
for by cluster

K-means

Milk yield
Model with cluster 1.015 0.239 1867.4 <0.00001 73%

Model without cluster 0.977 3718.4
Milk sales

Model with cluster 0.988 0.222 1770.1 <0.00001 54%
Model without cluster 0.76 3388.6

SOM

Milk yield
Model with cluster 1.015 0.283 2091.8 <0.00001 68%

Model without cluster 0.977 3718.4
Milk sales

Model with cluster 0.988 0.258 1969.8 <0.00001 51%
Model without cluster 0.76 3388.6

Fuzzy

Milk yield
Model with cluster 1.015 0.074 337 <0.00001 89%

Model without cluster 0.977 3718.4
Milk sales

Model with cluster 0.988 0.073 319.4 <0.00001 70%
Model without cluster 0.76 3388.6

∗Data scaled to have unit variance and mean of zero.

Table 11: Proportion of variances accounted for by cluster of production in Tanzania.

Fitted model Total variance∗ ResidualVariance -2log likelihood P value Variance accounted
for by cluster

K-means

Milk yield
Model with cluster 1.076 0.0027 -2981 <0.00001 71%

Model without cluster 0.771 2584.2
Milk sales

Model with cluster 1.09 0.018 -1084.3 <0.00001 65%
Model without cluster 0.723 2520

SOM

Milk yield
Model with cluster 1.076 0.294 1633 <0.00001 44%

Model without cluster 0.771 2584.2
Milk sales

Model with cluster 1.09 0.228 1381.6 <0.00001 45%
Model without cluster 0.723 2520.2

∗ indicates data scaled to have unit variance and mean of zero.

farming households; namely, K-means, fuzzy, and SOM were
compared. A set of validation criteria to assess the robustness
of the defined clusters is proposed. This approach is seldom
used for similar studies.

In Africa, smallholder farming systems have been char-
acterized using common hierarchical and nonhierarchical
clustering algorithms. Work done by Mburu et al. [29],
Bidogeza et al. [30], Dossa et al. [10], and Kuivanen et al. [7, 8]
utilized the ward and K-means methods to define clusters
for smallholder households. In addition to the machine
learning approaches, use of expert knowledge to validate

cluster based characterization is highly recommended [7, 8].
In some studies, the local knowledge has been used in a
participatory approach to accurately estimate farm types.
Furthermore, complex clustering approaches have also been
explored in studying smallholder farm types as done by
Salasya & Stoorvogel [23], Pelcat et al. [31], Galluzzo [21],
and Paas & Groot [12]. These studies present use of fuzzy
clustering, Neural Networks, and Näıve Bayes algorithms,
respectively. Although all clustering assigns farmers into
some types, the fuzzy clustering presents a soft clustering
approachwhere a farm canbelong tomore than one farm type
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Figure 6: Household allocation into six clusters using the K-means
model for Tanzania dairy farmers.

or none [31]. However, from the analyzed previous researches
clusteringmodels’ robustness and their ability to predict farm
types remains uncharted. Following up on Goswami et al.
[5] study of smallholder farmers needs to be subjected into
formulation of predictive farm types. As such, evolvement of
farmers in the homogeneous groups can be predicted because
the clusters’ stabilities are known.

4.2. Clustering Algorithms Evaluated. The determination of
putative number of clusters that best define the data (K)
presents the foremost need in cluster analysis. Bad estimates
of K may result into unstable clusters and presence of many
members appearing as outliers. Since the goal is to obtain
highly homogeneous groups, the within group sum of square
difference is commonly used to evaluate how compact the
clusters are. We adopted recommendations given by Kassam-
bara [16] and employed the Elbow, Gap statistics, and average
silhouette methods to assess the best K for the datasets. The
Elbow and Gap statistics estimate a value of K that minimizes

the within groups sums of square (WSS) differences such
that any additions to the estimated value of K will not
significantly change the WSS. Since the study goal was to
arrive at highly homogeneous groups, the measure of within
sum of square differences seemed most important. However,
a common method to estimate optimal number of clusters
from other studies is to try out different values of K while
observing the silhouette separation or manual inspection
of dendrogram produced in hierarchical clustering [15, 16].
While the Elbowmethod andGap statistics use within groups
sum of square differences, the silhouette method compares
the average clusters separation.

The application of the three separate algorithms revealed
differences in their performance based on data type and
structure. Where observations were highly identical, soft
clustering (fuzzy model) failed to categorize the records into
appropriate number of clusters. The fuzzy model allocated
households into only 3 clusters despite four clusters being
determined as appropriate for the Ethiopia dataset (Figure 5).
The other models converged at 4 clusters (Figures 3 and 4).
Similarly, for the Tanzanian dataset, the fuzzy model could
not converge even after many iterations. It would appear that
the fuzzy model is best suited to situations where data is
highly heterogeneous. Otherwise it does not lend itself well
to cluster identification.

Balakrishnan (1994) compared K-means and SOM algo-
rithms in cluster identification within specific criterion of
intracluster similarity and intercluster differences. In addi-
tion, the dataset had known cluster solutions; so, the only
target was to find out performance differences between
the two algorithms. Results indicated that the K-means
algorithm had good performance over the SOM algorithm.
Mingoti & Lima [32] compared K-means and SOM mod-
els’ performance by using smallholders’ farm data. Results
indicated that K-means were more robust. In this study,
the SOM performed poorly compared to the fuzzy and K-
means for the Ethiopia dataset having higher within cluster
dispersion, as well as lower separation between clusters. For
the Tanzania dataset, the SOM performed similarly as the
K-means algorithm. Results from our study show that the
performance of SOM is concordant with that of Nazari et al.
[15] who characterized dryland farming systems. In contrast
to observations by Mingoti & Lima [32], the fuzzy model
used in their study failed spectacularly for both datasets.
This reinforces observations by Xu [33] who concluded that
the performance of clustering algorithms is subject to the
nature of data and area of application. More studies need to
be undertaken to see how the fuzzy algorithm can be best
adapted to farming datasets.

4.3. ClusterMembershipReallocation andPredictionAccuracy.
A good clustering model should be able to repeatedly allocate
a majority of households into the same clusters, even when
the volume of data changes. In order to be sure that ourmodel
definitions represented a collection of the most important
features that describe each cluster, we tested the ability of the
models to redefine the same clusters between training and
testing datasets. This strategy aligns well with Xu [33], who
recommends that a good clustering model should have the
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Figure 7: Node counts for household clusters derived using the SOMmodel for Tanzania (a) and dendrogram for super clusters (b).

ability to deal with new data cases without the need to relearn.
The spearman rank correlation was used to measure the
degree of reranking. For the Tanzania data, the SOM model
provided the best cluster allocation thatminimizes reranking.
The rank correlations seen in Tanzania were very low for
both theK-means and SOMmodels. Given the above premise
and the spectacular failure of the fuzzy model in Tanzania,
a pattern emerges to suggest a fundamental problem with
the Tanzanian dataset rather than issues to do with model
suitability. It is possible that there is no significant differ-
entiation between households in Tanzania and the extreme
homogeneity proves a challenge because each household can
be allocated to any cluster. Such a scenario could occur
due to flawed data collection strategies. We suspect that,
due to requirements to finalize data collection within set
timelines, groups of farmers were interviewed collectively
while data was entered as if it were for an individual
farmer.

The fuzzy model in Ethiopia had the best fit, indicated by
the lowestAIC value despite highermembership reallocation.
Given a standard prediction problem, this would be the best
model for the data. This is also corroborated by the fact that
the variance accounted for by the clusters was also highest
for the fuzzy model. However, given that our intention is to
maximize correct reassignment of individuals into clusters,
the K-means and SOM models would be preferred for
household membership allocation.

Three response variables (milk yield, sales, and choice of
breeding method) were selected for the prediction exercise
because of their vital role in smallholder dairy farm evolve-
ment. They generally represent the commercial orientation
of a smallholder farm. Evaluation of prediction accuracies for
selected response variable indicated a very different scenario
from the clustering problem.When the clusterswere included
in themodels to predictmilk yield, sales, or breedingmethod,
the fuzzy model-derived clusters had the highest prediction
accuracies compared to K-means and SOM clusters for
Ethiopia data. For Tanzania data, the SOM model clusters
yielded the best prediction accuracies for the binary trait,
choice of breeding method, while K-means model performed
the best for the quantitative traits. However, the prediction
accuracies for the Tanzania data were low, underscoring the
earlier assertions about data structure and integrity. Given the
predictive power of the clusters on select response variables,

the fuzzy clustering model performed the best, with defined
clusters accounting for significantly higher variations in the
response variable than other clustering models.

Based on the results from Ethiopia, where all the models
could be evaluated, it would seem that model choice depends
on the problem that needs to be solved. For a clustering
problem, where the intention is to obtain robust membership
allocation, then the K-means algorithm would be the most
appropriate, to ensure maximal homogeneity within clusters.
The use of this model would minimize reranking when
applying the model to new datasets without need for new
learning. However, in the event that clusters are to be used
in prediction models, the fuzzy algorithm would be the best
for clusters definition.

5. Conclusion

The goal of the reported study was to identify the most
robust approach to correctly classify diverse households
into homogenous groups of farmers with similar production
systems and management activities. The reason for the char-
acterization was to use the defined groups in order to design
interventions and strategies that facilitate the evolvement of
smallholder dairy farmers beyond subsistence in Ethiopia
and Tanzania. Results from this study demonstrate the use
of unsupervised learning models in cluster definition for
smallholder dairy farmers as well as strategies to assess
the models’ suitability and cluster robustness. Performance
varied across the tested models, underscoring the need to
find an appropriate method depending on data structure and
questions being answered. The results obtained from this
study are a necessary first step in understanding smallholder
farmer production systems and the study of household
evolvement from subsistence to full commercial orientation.
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