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Abstract

Basal forebrain cholinergic neurons (BFCN) are key modulators of learning and memory and are high energy-demanding
neurons. Impaired neuronal metabolism and reduced insulin signaling, known as insulin resistance, has been reported in the
early phase of Alzheimer’s disease (AD), which has been suggested to be “Type 3 Diabetes.” We hypothesized that BFCN may
develop insulin resistance and their consequent failure represents one of the earliest event in AD. We found that a condition
reminiscent of insulin resistance occurs in the medial septum of 3 months old 3xTg-AD mice, reported to develop typical AD
histopathology and cognitive deficits in adulthood. Further, we obtained insulin resistant BFCN by culturing them with high
insulin concentrations. By means of these paradigms, we observed that nerve growth factor (NGF) reduces insulin resistance
in vitro and in vivo. NGF activates the insulin receptor substrate 1 (IRS;) and rescues c-Fos expression and glucose metabolism.
This effect involves binding of activated IRS; to the NGF receptor TrkA, and is lost in presence of the specific IRS inhibitor
NT157. Overall, our findings indicate that, in a well-established animal model of AD, the medial septum develops insulin
resistance several months before it is detectable in the neocortex and hippocampus. Remarkably, NGF counteracts molecular
alterations downstream of insulin-resistant receptor and its nasal administration restores insulin signaling in 3xTg-AD mice by
TrkA/IRS; activation. The cross-talk between NGF and insulin pathways downstream the insulin receptor suggests novel
potential therapeutic targets to slow cognitive decline in AD and diabetes-related brain insulin resistance.
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Introduction

The basal forebrain cholinergic system (BFCS) modulates
many important behaviors, through robust inputs to the cortex
and hippocampus [1, 2] and reciprocal feedback projections
[3]. In particular, the cholinergic neurons of the medial sep-
tum, corresponding to the Chl subregion of the BFCS, mod-
ulate attention, reference and spatial memories, as well as
learning in mice and humans [1, 4]. Early synaptic failure
and metabolic derangement in basal forebrain cholinergic neu-
rons (BFCN) have been reported to parallel memory deficits
in mild cognitive impairment (MCI) and in Alzheimer’s dis-
ease (AD) [5-7]. For this reason, it has been proposed as a
good predictor of MCI progression toward AD [§8]. BFCN
are considered an energy-demanding neuronal population
because of their dependency upon acetyl-CoA for biosyn-
thesis of both ATP and acetylcholine. In line with this,
their high metabolic profile has been suggested to be the
main cause of peculiar BFCN vulnerability in neurode-
generative diseases [9].

Neuronal metabolism and plasticity, and higher cognitive
functions are regulated by the insulin pathway in the central
nervous system [10, 11]. Insulin is both produced locally in
the brain [12] and transported from the circulation, concen-
trating in the cortex and forebrain tissues. Insulin receptors
(IR) and Insulin receptor substrates (IRS) are widely distrib-
uted in the mammalian forebrain [10, 13, 14]. In particular,
IRS; is the most studied isoform involved in the control of
glucose homeostasis and brain physiopathology [15]. The
docking of IRS to the IR upon insulin binding initiates a sur-
vival cascade mediated by PI3K/AKT and CREB, leading to
elevation of c-Fos expression, translocation of the glucose
transporters (Glut) to the plasma membrane [16, 17], and con-
sequent glucose uptake, boosting the neuronal activity [18].
On the other hand, neuronal metabolic impairment caused by
blunted or deficient insulin signaling, called insulin resistance,
affects neuronal functions and has been suggested to parallel
the onset and progression of AD pathology [19, 20]. High
IRS; phosphorylation at inhibitory serine residues is a general
consensus marker of brain insulin resistance [20]. Aberrant
IRS, phosphorylation at S312, S616 and/or S636 (equivalent
to rodent S307, S612 and S632, respectively) mainly exerted
by GSK3beta (feedback control) and by JNK1/2 ad PKC
zeta/lambda (feed-forward inhibition) [21, 22] is the result of
a chronic maladaptive mechanism that attenuates insulin sig-
naling. Elevated serine phosphorylated IRS; level has been
reported in the brain of a primate AD model as well as in
AD patients, and is associated with early synaptic dysfunc-
tions and late stage neurodegeneration in AD [23].

Of interest for our study, insulin has been demonstrated to
regulate the expression of choline acetyltransferase (ChAT),
the key acetylcholine (Ach) biosynthetic enzyme, in SH-
SYS5Y neurons [24] and in the retina [25]. Indeed, also other
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insulin pathway activators, like IGFI, IGFII and PPAR ago-
nists, stimulate ChAT levels and sustain survival and differen-
tiation of cholinergic neurons [26, 27]. Accordingly, perturbed
insulin signaling is associated with swelling of cholinergic
neurites and reduced ChAT immunoreactivity in the medial
septum of 3xTg-AD mice, a common model of AD [28§, 29].
Impaired acetylcholine homeostasis has been also described in
streptozotocin (STZ)-treated rats, a rodent model of diabetes-
related insulin resistance [30]. Taken together, all these exper-
imental observations strongly indicate a cause-effect relation-
ship between insulin resistance and cholinergic damage.
Moreover, the insulin control of the cholinergic phenotype
implicates that insulin pathway perturbations may contribute
to cholinergic transmission deficits in AD. Hence, to ascertain
whether BFCN develop insulin resistance in the AD brain is
essential to understand the early molecular events underlying
the AD pathology. While central insulin resistance has been
recently observed in the neocortex and in the hippocampal
region in 3xTg-AD and Tg2576 mice [31], its potential im-
pact on the BFCS remains unexplored.

To investigate the insulin pathway in healthy and AD affected
BFCN, we nasally administered insulin to wild-type and 3xTg-
AD mice, and analyzed the activation of the insulin signaling in
the medial septum, a BFCN enriched region of the BFCS. Our
study shows that the classic insulin pathway is elicited by nasal
insulin administration in the medial septum of wild-type (wt)
mice but not of age and sex-matched 3xTg-AD mice, suggesting
a condition reminiscent of insulin resistance. Noteworthy, we set
up and fully characterized an in vitro model of insulin resistance
developed in cholinergic neurons, to study the underlying mo-
lecular events and assess candidate drug, like nerve growth factor
(NGF), for counteracting the insulin-resistant state of BFCN.

This cellular model may be of interest for the design of
novel therapeutic strategies in AD and brain-related metabolic
disorders. It enabled us to show that NGF not only elicits the
insulin pathway and controls glucose metabolism by Glut2
translocation to the plasmamembrane in healthy BFCN, but
it also reduces BFCN insulin resistance by re-activating the
IRS;-driven insulin pathway in vitro and in AD mice.

Methods
Rodent Strains

Triple transgenic AD (3xTg-AD) mice, harboring human APP
Swedish, presenilin M146V and tauP301L mutations [32],
and C57 BI16/J mice were purchased (Jackson Lab), and
housed in the Animal Facility of the Universita Cattolica
Medical School. Purchased Wistar rats (HARLAN
Laboratories Ltd., Fiillinsdorf, Switzerland) were housed at
the Animal Facility of the “Institute of Cellular Biology and
Neurobiology”, National Research Council (IBCN-CNR;
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Rome, Italy) at the European Center of Brain Research
(CERC). Animals were handled in compliance with the
National (D.Lgs26/2014) and European Union legislation
guidelines for animal welfare (2010/63/EU). All efforts were
made to minimize the number of animals used and suffering.

Reagents and Antibodies

Murine NGF was purified from submaxillary glands [33].
Bovine insulin (I12643; SIGMA, St. Louis, MO, USA) and
the specific IRS inhibitor tyrphostin NT157 (Axon
Medchem BV; Groningen, The Netherlands) were purchased.
NGF from Xiamen Bioway (Biotech Co., Ltd., China) was
also used in the study.

Primary antibodies: anti-Trk (SANTA CRUZ, Santa Cruz,
CA, USA, sc7268), anti-ChAT (MILLIPORE, Temecula, CA,
USA, AB144P), anti pIR (tyr1150/1151) (CELL SIGNALING,
Danvers, MA, USA, 3024; ABCAM, Cambridge, UK,
ab5500), anti-IR (CELL SIGNALING, Danvers, MA, USA,
3024; MILLIPORE, Temecula, CA, USA, 05-1104), anti-pY
IRS; (Tyr608) (MILLIPORE, Temecula, CA, USA, 09432,
ABCAM, Cambridge, UK, ab66153), anti-pS IRS; (Ser307;
clone 24.6.2, MILLIPORE,Temecula, CA, USA, 05-1087),
anti-IRS; (Biorbyt), anti-IRS; THC-plus (LIFESPAN
BIOSCIENCES Inc., Seattle, WA, USA, LS-B1373), anti-
pAKT (Ser473) (CELL SIGNALING, Danvers, MA, USA,
4051), anti-AKT (11E7) (CELL SIGNALING, Danvers, MA,
USA, 4685), anti-pJNK1/2 (Thr183/Tyr185) (CELL
SIGNALING, Danvers, MA, USA, 9251), anti-JNK (CELL
SIGNALING, Danvers, MA, USA, 9252), anti-pGSK3(
(Ser9; CELL SIGNALING, Danvers, MA, USA, 9323), anti-
GSK3f (27C10) (CELL SIGNALING, Danvers, MA, USA,
9315), anti-Glut2 (ABCAM, Cambridge, UK, ab54460), and
anti-GLUT4 (ABCAM, Cambridge, UK, ab654). Secondary
antibodies: anti mouse-HRP and anti-rabbit-HRP
(PerkinElmer, Waltham, MA, USA); donkey anti mouse-546,
donkey anti rabbit-488, and donkey anti goat-647 (Life
Technologies, Carlsbad, CA, USA).

Nasal Insulin Administration

The procedure involves the immobilization of the mouse and
the direct administration of small volumes of the selected sub-
stances (2.5 pl per nostril) using a Gilson type P10 precision
pipette. Awake mice were gripped by the skin of their necks
and held gently, but firmly, upside-down in the palm of the
hand. The tip is placed near the nostril so that the animal can
inhale the drug directly from the tip. The operator makes a
slight pressure on the pipette piston in order to facilitate the
expulsion of the drug. The procedure is extremely rapid (about
1 min) and painless, and it does not require any anesthesia
[34]. Mice were intranasal administered with bovine insulin
(0.125 TU) or vehicle (saline) and sacrificed after 20’ or 40', to

assess the optimal treatment duration in order to achieve the
activation of the medial septum. The septum was surgically
removed from the brain and collected for further analysis. The
activation of the insulin pathway (IR-IRS-AKT) was analyzed
by western blotting (Suppl. Fig. 1 a-d) and showed that while
IR and IRS1 were phosphorylated already after 20’ and are
still elevated after 40" insulin treatment, AKT phosphorylation
required a longer treatment (40'). Based on these results, the
duration of the nasal treatment was set at an intermediate time
point (30) allowing the concomitant detection of all the mol-
ecules of interest. For the rescue experiment, vehicle, NGF
(40 pg), or insulin (0.125 IU) were nasally administered to
3xTg-AD mice and, after 30 min, mice were sacrificed. Brain
tissues were removed and frozen until further biochemical
analysis. Mice were starved for 14-16 h before intranasal
stimulation.

Primary Cholinergic Neurons

Cholinergic neurons were harvested from E17 Wistar rat em-
bryos, as previously described [35, 36]. Dissociated cells were
plated in Neurobasal medium supplemented with 2% B27
(Invitrogen Inc., Carlsbad, CA, USA) for 10 days (37 °C,
5% CO,) and then used for experiments (DIV10). To obtain
insulin resistant cholinergic neurons, DIV10 neurons were
daily incubated with insulin (2uM) for 72 h (DIV13) and then
used for experiments. Cholinergic neurons were first washed
three times with medium, then starved (90’), and treated with
insulin (10 nM, 30’) or NGF (100 ng/ml, 30’). Starvation by
replacement of culture medium with Neurobasal Medium
without B27 avoids confounding effects from B27-derived
insulin and insulin-related serum factors. Cells were seeded
as follows: 1.5 x 10° cells on poly-I-lysine (SIGMA) coated
35 mm plates (BD Falcon, Durham, NC, USA; 353001) for
western blotting analyses and 5 x 10* cells on glass coverslips
in 24-wells plates (BD Falcon; 351147) for immunofluores-
cence analyses and glucose uptake assay.

Western Blotting

Tissues samples and cultured neurons were digested in a RIPA
buffer with “complete protease and phosphatase inhibitory
cocktail” (Roche) and centrifuged (10,000 rpm, 20"). The su-
pernatants were collected, and the amount of total protein was
determined by Quick Start Bradford Dye Reagent. Each sam-
ple (40 ug) was separated by SDS-PAGE in precast 4-12%
Bis-Tris Plus gels (Bolt, Invitrogen), transferred to nitrocellu-
lose membranes (0.45 uM, GE Healthcare), and incubated for
1 h at room temperature with 10% non-fat dry milk in TBS-T
(10 mM Tris, pH 7.5, 100 mM NaCl, and 0.1% Tween-20).
The overnight incubation with primary antibody (4 °C) was
followed by incubation with the appropriate HRP-conjugated
secondary antibody (1:2000, Pierce, 1 h, RT) and the ECL
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substrate (32106; Pierce- Thermo Scientific). The films were
digitized using a professional scanner (HP Scanjet 4050) and
quantified by gel densitometry using the Image] software
(NIH). Measurements were standardized between the ex-
perimental groups using the same calibration system and a
fixed threshold over the background. Data are expressed
as percentage optical density relative to control group, and
presented as means = SEM.

Immunofluorescence Labeling and Microscopy

Primary cultures were fixed for 20 min in PBS containing 4%
paraformaldehyde, permeabilised with PBS plus 0.3% Tween,
and quenched by ammonium chloride (50 mM, 30’, RT).
Aspecific staining by the secondary antibody was blocked
by incubation with normal donkey serum (10%, 1 h, RT).
The overnight incubation (4 °C) with primary antibodies
was followed by the appropriate secondary antibodies
(1:2000, 1 h, RT).

Triple immunofluorescence with rabbit anti-IR (1:100),
mouse anti-IRS; (1:70), and goat anti-ChAT (1:200) antibod-
ies was performed, followed by incubation with a mixture of
donkey anti rabbit-Alexa488, anti-mouse Alexa546 and anti-
goat Alexa647 secondary antibodies. Rabbit anti-Glut2
(1:200) or rabbit anti-Glut4 (1:500) followed by donkey
anti-rabbit Alexa488 were used to characterize glucose metab-
olism. Moreover, mouse anti-Trk (1:100) plus rabbit anti-
pIRS; (1:100) or mouse anti-Trk (1:100) plus rabbit anti-
IRS; (1:70) antibodies followed by a cocktail of donkey
anti-mouse Alexa543 and donkey anti-rabbit Alexa488 were
used for double immunostaining, as control for primary anti-
body specificity in the PLA experiment. Neurons were also
counterstained with 4',6-diamidino-2-phenylindole (DAPI;
Life Technologies), mounted on coverslips with Prolong
Gold Antifade Mounting (Life Technologies) and kept at —
20 °C before image analysis. Confocal microscopy was per-
formed with the laser scanning confocal microscope TCS SP5
(Leica Microsystems, Mannheim, Germany) using a 40X
(NA =1.25) and a 63X (NA =1.4) oil-immersion lens. A
UV Diode laser operating at 405 nm, an Argon laser at
488 nm, a HeNe laser at 543 nm were used as excitation
sources. Representative images were chosen among 30 immu-
nostained neurons from at least 3 different experiments.

Nuclear c-Fos Staining and Analysis

c-Fos staining was performed by overnight incubation of con-
trol and insulin resistant cholinergic neurons with rabbit anti-
c-Fos antibody (1:500), followed by secondary anti-rabbit
Alexa Fluor-488 antibody (1:2000, 1 h, RT). Nuclei were
counterstained by DAPI (1:1000; 15 min, RT). c-Fos immu-
nofluorescence was acquired with an epifluorescent micro-
scope (Leica CTR5500; Leica Microsystems) equipped with
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a CCD camera (Leica). Images for direct comparison were
collected using the same settings. The number of c-Fos posi-
tive over the total number of DAPI stained nuclei per field
(field area=0.366 pum?; x20 objective) was measured in 5
different fields per coverslip, in at least three coverslips per
experimental group. The analysis was performed after cali-
brating for particle pixels size (50400 pixels) and applying
a fixed threshold over the background. Nuclei were counted
both by manual and automated counting methods (ImageJ
software, NIH) with comparable results. Data are expressed
as percentage to control group (CTR) and presented as mean
+sem.

Glucose Uptake Assay

Primary cholinergic neurons were seeded at 2-5x10%cells/
well on a glass coverslips. Neurons were starved (90') by
incubation with Neurobasal medium without B27 supple-
ment (37 °C, 5% CO,). The glucose uptake measurement
was performed by means of the “GluTracker Glucose
Uptake cell-based Kit” following manufacturer’s instruc-
tions (K681; Biovision Inc.). The bright green fluorescence
generated by the fluorescent 2-deoxy-glucose conjugate
(GluTracker) is proportional to the amount of glucose tak-
en up by cells and can be used as a direct measure of the
fluorescent glucose analogue (GluTracker) uptake. Briefly,
the GluTracker mix was prepared as follow and added to
each well: 376 ul of neurobasal medium, 4 pl GluTracker
Reagent, and 20 pl of GluTracker Enhancer. Cholinergic
neurons were incubated at 37 °C with 5% CO, for 30 min.
After incubation, the cells were washed once with ice-cold
1X Analysis Buffer (500 ul), and then replaced with fresh
1X Analysis Buffer (200 pl). Then, neurons were fixed for
20 min in PBS containing 4% paraformaldehyde, counter-
stained with DAPI (Life Technologies), and mounted on
coverslips with Prolong Gold (Life Technologies).
Images were acquired with an epifluorescent microscope
(Leica CTR5500; Leica Microsystems) using a blue exci-
tation fluorescence filter (excitation range: 420-495 nm)
and a x 20 objective. The total immunofluorescence inten-
sity per field (field area=0.366 um?) was measured in 5
different fields per coverslips, in at least 4 coverslips per
experimental group. Data reported in the graphs are
expressed as percentage relative to control group and pre-
sented as mean + sem.

In Situ Proximity Ligation Assay (PLA)

The interaction of TrkA with pIRSIYGO8 and IRS; were
detected by PLA assay, a sensitive technique allowing de-
tection of direct binding (<40 nM distance) between en-
dogenous proteins [37]. Specific primary antibodies
(working dilution: 1:100) and species-specific secondary
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antibodies (PLA probes), each conjugated to a unique short
DNA strand (MINUS and PLUS) were used. Briefly, once
MINUS and PLUS PLA probes are in close proximity, the
DNA strands interact and the subsequent addition of two
other circle-forming DNA oligonucleotides takes place,
leading to DNA amplification reaction, detected by
Texas red fluorescence. As previously reported [38],
DIV10 cholinergic neurons were fixed in 4% PFA for
15 min and subjected to in situ PLA according to the
manufacture’s instruction (Duolink In Situ Detection
Reagents Red kit, Sigma Aldrich, DU092008). To stain
the nuclei dried coverslips were mounted with mounting
medium (DUO82040). At the end of the procedure, every
single event of PLA generated a fluorescent red spot.
Fluorescence images were acquired on a TCS-SP5 confo-
cal laser scanning microscope (Leica Microsystems
GmbH Wetzlar, Germany) using 63 x 1.35 NA oil immer-
sion objective. High resolution images were acquired as z-
stack with a 0.5 um z-interval (at least 10 planes), and
converted to maximum projection images (LASAF soft-
ware platform; Leica Microsystems). High-resolution im-
ages were analyzed by Image] and the number and inten-
sity of PLA dots per neuron were measured. A manual
threshold was set up and applied to all images to eliminate
the background fluorescence. Objects larger than 5 pm2
were rejected, thereby effectively removing nuclei. The
remaining objects were counted as PLA puncta. At least
20 neurons in five non-overlapping fields, and from 3
independent experiments, were randomly chosen by a
blind observer. As a control for primary antibodies spec-
ificity, double immunolabelings with anti-TrkA and anti-
pIRSlY608 or anti-TrkA and anti-IRS; antibodies (working
dilution: 1:100) were run in parallel to each set of PLA
experiments (Suppl. Fig. 3a and Suppl. Fig. 3b, respec-
tively). PLA dots were undetectable following omission
of the primary antibodies (Suppl. Fig. 4).

Viability Assay

Neuronal viability was assessed by the 3-(4,5-dimethyl-
thiazol-2-yl1)-2,5-diphenyltetrazolium bromide (MTT) assay,
as previously described [39].

Statistical Analysis

Tissues from at least n =3 animals per experimental group
were analyzed. All experiments using primary neurons
were performed at least three times independently, each
in triplicate. The graphs were generated using PRISM
(GraphPad Software, Inc., San Diego, CA, USA), and the
data are presented as the mean + sem. ANOVA followed by
Student’s T test or Tukey-Kramer post hoc was used to
analyze the data, depending on the number of variables

and groups (Statview-SAS, Cary, NC, USA). A p value
<0.05 was considered statistically significant.

Data Availability The authors declare that all the data
supporting the findings of this study are available within the
article, and from the corresponding author upon reasonable
request.

Results

Insulin Resistance Occurs in the Medial Septum
of 3 Months Old 3xTg-AD Mice

Brain insulin resistance is known to affect cognition and
occurs at early stage in forebrain of different AD mouse
models [19, 40]. Within the basal forebrain, the medial
septum is well-known for being a primary target of AD
neuropathology [4, 7, 8, 29]. However, insulin responsivity
in the presymptomatic septum from AD mice has not been
investigated so far.

For this reason, we analyzed insulin responsivity in pre-
symptomatic (3 months old) 3xTg-AD and age-matched wt
mice (C57/Bl6J background) by nasal administration of
0.125 TU insulin. Intranasal route of insulin delivery to the
brain allows the effective bypassing of the blood-brain barrier
to treat brain pathologies, AD in particular [41]. Activation of
the insulin pathway was investigated by western blotting anal-
yses of key downstream signaling molecule phosphorylation
(Fig. 1a, f). In particular, the phosphorylated and total levels of
IR, IRS;, and AKT were measured after insulin administra-
tion. Nasal insulin administration to wt mice (wt+ INS) in-
duced the rapid phosphorylation of IRY''>%1151 (1822 +
15.6% wt+ veh, **p <0.01; Fig. 1b), IRS;Y**® (166.9 +
59.4% wt + veh, *p <0.05; Fig. 1¢), and AKT in the medial
septum (172.6 +6.2% wt+ veh, **p <0.01; Fig. le).
Conversely, medial septum response to insulin administration
was blunted in 3xTg-AD mice (3xTg + INS), as compared to
vehicle administered 3xTg-AD mice (3xTg + veh). In partic-
ular, pIRY'5Y1151 (86 4 + 8 8% of 3xTg + veh, p = 0.194; Fig.
1f-g), pIRS; %% (86.9+£9.0% of 3xTg + veh; p =0.283; Fig.
1f, h) and pAKT (100.4 + 6.1% of 3xTg + veh, p = 0.954; Fig.
1f, j) levels were unaffected by insulin. Moreover, insulin
administration reduced pIRS;%*%7 level in wt mice (83.9 +
4.9% of wt+veh, *p<0.05; Fig. 1a, d) but not in AD
mice (109.9+10.6% of 3xTg+ veh, p=0.402; Fig. 1f,
i). These data demonstrate that, in response to nasal insu-
lin delivery, the basal forebrain area of the medial septum
activates the canonical insulin signaling pathway in the
normal mouse brain, but not in the pre-symptomatic
3xTg-AD mice, thus showing a condition reminiscent of
insulin resistance.
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Fig. 1 Basal forebrain system responsivity to insulin in wild-type and AD
mice (a—j) Lysates of medial septum from nasal insulin and vehicle-
treated 3 months old 3xTg-AD (3xTg+INS and 3xTg+ veh,
respectively; 30") and age-matched wild-type (wt+INS and wt+ veh,
respectively; 30') mice were analyzed by WB for the level of
phosphorylated and total IR (f, g and a, b; respectively), IRS; Y% (f, h
and a, c; respectively) IRSlS3 o7 (f, i and a, d; respectively) and AKT (f, j
and a, e; respectively). The level of pIRY 3”115 bIRS,Y%%® and pAK T in
insulin treated mice were measured by WB using specific antibodies and
[3-actin, as loading control. The respective ratios over total IR, IRS;, and
AKT levels were calculated and expressed as percentage of the vehicle
treated mice. (a—e) Representative WB (a) and bar graphs (b—e) showing
the rapid activation of the canonical insulin pathway in the medial septum
of wt mice upon insulin administration, with increased phosphorylation

Cholinergic Neurons Express IR and IRS;, Are Insulin
Sensitive, and Respond to NGF by Activating
the Insulin Pathway

Medial septum contains different type of neurons, including

cholinergic, GABAergic and glutamatergic neurons [4]. Thus,
to specifically investigate insulin responsivity in the
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of IRY!ISUIISL (18 2+ 15.6% of wt + veh; *#p < 0.01; Fig. 1b), IRS, Y6%
(166.9 +59.4% of wt+ veh; *p < 0.05; Fig. 1c) and AKT (172.6 £ 6.2%
of wt+ veh; *#*p <0.01; Fig. le). (fj) Representative WB (f) and bar
graphs (g—j) indicate a blunted insulin response in the medial septum of
3xTg AD mice as a response to nasal stimulation. In fact, level of
pIRY!SYIIST (86 4+ 8.8% of 3xTg + veh, p=0.194; Fig. 1g), pIRS;

Y608 (86.9+9.0% of 3xTg + veh; p=0.283; Fig. 1h) and pAKT (100.4

+6.1% of 3xTg+ veh, p=0.954; Fig. 1j) were unchanged following
insulin treatment, a molecular state reminiscent of insulin resistance. On
the other hand, insulin administration was able to downregulate the level
of inhibitory pIRS;5**” in wt mice (83.9 £4.9% of wt+ veh, *p <0.05;
Fig. 1a, d), but failed to reduce it in AD mice (109.9 +10.6% of 3xTg +

veh, p=0.402; Fig. 1f; i)

cholinergic component of the medial septum, we resorted to
a primary culture of cholinergic neurons.

First, we studied the expression of IR and IRS; in vitro, in
rodent primary cholinergic neurons (E17, DIV10) by triple
immunofluorescence labeling, using specific antibodies
against the IR-f3 subunit, the IRS; and ChAT, a marker for
cholinergic neurons. We found that ChAT-positive neurons
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express both IR and IRS; (Fig. 2a, a;) in neuronal culture. To
assess their responsivity to insulin, cholinergic neurons (E17;
DIV10) were incubated with insulin (10 nM, 30) and the
activation of IR, IRS;, and AKT were analyzed by WB
(Fig. 2b-e). Upon insulin treatment (INS) we observed in-
creased levels of pIRY''S¥1151 (5311 +112.4% of CTR;
#%p <0.01; Fig. 2¢), pIRS; Y% (296.7+35.5% of CTR;
**p <0.01; Fig. 2d), and pAKT (344.1 £38.8% of CTR;
**p <0.01; Fig. 2e) compared to unstimulated neurons
(CTR). Cholinergic neurons are dependent upon NGF supply
for their specification and postnatal development [42, 43]. Of
interest, NGF has been demonstrated to stimulate the insulin
signaling in PC12-differentiated neurons [44] as well as in
primary sympathetic and sensory neurons [45]. For this rea-
son, we investigated whether NGF was able to activate the
insulin pathway in cholinergic neurons. We found that the
levels of pIRY!''3¥115! (2747 +56.5% of CTR; *p <0.05;
Fig. 2¢), pIRS;Y®%® (207.1£18.1% of CTR; *p <0.05;
Fig. 2d) and pAKT (248.9£14.5% of CTR; **p <0.01;
Fig. 2e) were elevated in cholinergic neurons (DIV10) upon
NGF administration (NGF; 100 ng/ml, 30"). These results indi-
cate that cholinergic neurons are insulin responsive neurons and
extend previous findings on the ability of NGF to induce the
canonical activation of the insulin pathway in neuronal cells.

Then, to further characterize insulin effects on cholinergic
neurons, we assayed neuronal metabolism by mean of 2d-
glucose incorporation and nuclear expression of c-Fos, an
Intermediate Early Gene transiently activated in response to neu-
rotrophic stimuli in cholinergic neurons [46, 47]. Both insulin
and NGF have been reported to induce c-Fos protein expression
in neurons [48, 49]. As expected (Fig. 2f-g), we observed that
stimulation of cholinergic neurons with both insulin and NGF
increased the number of c-Fos positive nuclei per field (INS,
222.7+20.1% of CTR, **p<0.01; and NGF, 383.3+74.1%
of CTR; **p <0.01, respectively). Insulin has been previously
shown to promote glucose uptake in different type of CNS cells
[50, 51]. We assayed glucose uptake by incubation of neurons
with a bright green fluorescent 2-deoxy-glucose conjugate
(GluTracker), using a cell-based commercial kit (BioVision)
allowing a non-radioactive analysis of glucose metabolism by
fluorescence microscopy. Both insulin and NGF significantly
enhanced glucose uptake in cholinergic neurons (INS, 280.3 =
6.7% of CTR, **p<0.01; and NGF, 183.2+33.1% of CTR,
*p < 0.05; respectively; Fig. 2h-i).

Glucose is taken up by glucose transporters (Glut) following
stimulus-dependent translocation of Glut from the cytosol to the
plasma membrane. In particular, Glut2 is a glucose sensor and is
widely expressed in the brain, including the medial septum [52].
Glut4 is the insulin-responsive Glut isoform in the peripheral
organs and is present in several brain tissues [53]. However, their
role in glucose uptake in cholinergic neurons has not been
established. In order to assess whether Glut2 and/or Glut4 are
implicated in glucose uptake in cholinergic neurons, we

immunolabeled them with specific anti-Glut2 and anti-Glut4 an-
tibodies. Glut2 staining was found to be dispersed in the cytosol
in starved neurons (CTR), while treatment with NGF induced a
strong Glut2 re-localization at the plasma membrane (Fig. 2j) at
both cell bodies (arrows) and neurites (arrowheads). By contrast,
neither insulin nor NGF were able to induce translocation of
Glut-4 to the plasma membrane, despite this glucose transporter
is expressed in primary cholinergic neurons (Suppl. Fig. 1e).

Insulin Resistance Can Be Induced in Primary
Cholinergic Neurons by Chronic High Insulin and It Is
Ameliorated by NGF

Brain insulin resistance is defined as a state of reduced brain
responsivity to insulin stimulation. It is characterized by de-
creased tyrosine phosphorylation of IR and IRS; and the con-
comitant increase in serine phosphorylation of IRS, especially at
S307 [20]. Chronic high insulin has been already reported to
induce a state mimicking insulin resistance in cortical neurons
in vitro [54]. Thus, in order to study insulin resistance in primary
cholinergic neurons, the latter were treated with 2uM insulin for
72 h (from DIV10 to DIV13). Acute stimulation with 10 nM
insulin (30") was performed to assess insulin responsivity follow-
ing chronic high insulin exposure. The experimental scheme of
the chronic high insulin protocol is reported in Fig. 3m.

The levels of pIRY 315! pIRS,Y6% pIRS,5Y, and pAKT
were measured and reported as percentage of control (CTR) in
insulin treated (INS; 10 nM, 30’) and insulin resistant (RT; 2 uM
INS, 72 h followed by 10 nM INS, 30") cholinergic neurons.
Insulin promotes phosphorylation of IR (683.8+127.1% of
CTR; INS vs CTR,**p <0.01; Fig. 3a-b), IRS; (462.2 +
63.6% of CTR; INS vs CTR,**p<0.01; Fig. 3a, ¢c) and AKT
(166.9£6.1% of CTR; INS vs CTR,**p <0.01; Fig. 3a, e), as
expected. Of note, insulin downregulates two inhibitory mole-
cules of the insulin pathway, IRS;5**7 (60.3+9.1% of CTR; INS
vs CTR,**p <0.01; Fig. 3a, d) and GSK3p (158.6£13.5% of
CTR; INS vs CTR,**p < 0.01; Fig. 3f-g). No effect is observed
on phosphorylation of JNK in control cholinergic neurons (81.9
+10.9% of CTR; INS vs CTR, p=0.24; Fig. 3f, h). As shown in
Fig. 3a-¢, IR (472.6 £63.5% of CTR; RI vs INS, *p <0.05; Fig.
3a, b), IRS; Y% (264.9 + 37.8% of CTR; RI vs INS, *¥p <0.01;
Fig. 3a, ¢), and AKT (122.9+7.7% of CTR; RI vs INS,
**p < 0.01; Fig. 3a, e) failed to be activated, while the inhibitory
serine phosphorylation of IRS; was significantly elevated (RI,
87.9+6.3% of CTR; RI vs INS, *p < 0.05; Fig. 3a, d) following
chronic high insulin. Brain insulin resistance is characterized by
increased activation of GSK3{3 and JNK, two critical kinases
implicated in IRS; inhibition [22]. To further characterize our
experimental model, we analyzed the levels of GSK3{3 and
JNK in cholinergic neurons (Fig. 3f). We found that phosphory-
lation of GSK33 at serine 9 was reduced in cholinergic neurons
following chronic high insulin (R, 105.9 +7.9% of CTR; RI vs
INS, **»<0.01; Fig. 3f-g), while JNK phosphorylation was
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Fig. 2 BFCN respond to insulin and NGF by inducing c-Fos expression,
Glut2 translocation, and glucose uptake (a-a,) Triple immunolabeling (a,
40x) and high magnification (a;, x 100) of untreated cholinergic neurons
(DIV10) using specific anti-IR (pseudocolor as purple), anti-IRS; (red),
and anti-ChAT (pseudocolor as green) antibodies clearly confirm the co-
expression of IR and IRS, in primary cholinergic neurons. Representative
images are from at least 30 neurons. (b—e) Representative WB of pIR
YHSOMSL ¢ pIRS, Y% (b, d), and pAKT (b, €) on extracts from
untreated (CTR), insulin-treated (INS, 10 nM, 30"), and NGF-treated
(100 ng/ml, 30") neurons are shown. The results are reported as a
percentage of the control septal neurons. As shown, the levels of
pIRY!SUTIST (531 14 112.4% of CTR; *#p <0.01; Fig. 2c), pIRS, Y*%
(296.7£35.5% of CTR; **p <0.01; Fig. 2d), and pAKT (344.1 +38.8;
**p <0.01; Fig. 2e) are increased in insulin-treated cholinergic neurons,
as compared to unstimulated neurons (CTR). After NGF stimulation the
levels of pIRY!'3¥1131(274 7 £ 56.5% of CTR; *p <0.05; Fig. 2c),
pIRS, Y% (207.1+18.1% of CTR; *p <0.05; Fig. 2d) and AKT
(248.9+14.5% of CTR; **p<0.01; Fig. 2e) were increased, as
compared to unstimulated neurons (CTR). (f-i) The c-Fos nuclear
staining and the GluTracker fluorescence analyses in untreated (CTR),
insulin-treated (INS, 10 nM, 30"), and NGF-treated (NGF, 100 ng/ml, 30")
cholinergic neurons are shown. (f-g) Representative immunofluorescence
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images (f) and bar graphs (g) of c-Fos expression in cholinergic neurons
following insulin and NGF treatments. Neurons were fixed,
permeabilized and immunostained for c-Fos (green) and nuclei
counterstained with DAPI. (g) The quantitative analysis of the cFos-
positive nuclei/field (x 20 magnification) is reported in the graph as a
percentage of the value in untreated neurons. Insulin and NGF
stimulation of cholinergic neurons increased the number of c-Fos
positive nuclei per field (INS, 222.7 +20.1% of CTR; **p <0.01; NGF,
383.3+£74.1% of CTR, **p<0.01). (h) Representative GluTracker
immunofluorescences in cell bodies (arrows) and neurites (arrowheads)
of untreated (CTR), insulin-treated (INS, 10 nM, 30’), and NGF-treated
(NGF, 100 ng/ml, 30") cholinergic neurons are shown. (i) The GluTracker
fluorescence intensity/field was measured and reported as percentage of
CTR. Insulin and NGF significantly enhanced glucose uptake in
cholinergic neurons (INS, 280.3 £6.7% of CTR; **p<0.01 and NGF,
183.2+33.1% of CTR; *p<0.05). (J) Representative confocal
microscopy images of glucose transporter 2 (GLUT2; green) of
untreated (CTR), insulin-treated (INS, 10 nM, 30’), and NGF-treated
(NGF, 100 ng/ml, 30") cholinergic neurons. As shown, both insulin and
NGF treatments elevated plasma membrane localization of GLUT2 in the
cell body (arrows) and axons/neurites (arrowhead). Scale Bars: a, a’, f, h,
j=25uM
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dramatically elevated in the same conditions (RI, 244.5 +£12.1%
of CTR; RI vs INS, #**p <0.01; Fig. 3f, h). Overall, the in vitro
paradigm developed effectively mimics insulin resistance at the
molecular level in cultured cholinergic neurons.

Further, we asked whether NGF is able to counteract these
molecular changes. For this purpose, we treated insulin resis-
tant cholinergic neurons (DIV13) with NGF. As shown in
Fig. 3 (a-e), NGF restores tyrosine phosphorylation of IRS;
(RN, 421.8 £27.6% of CTR; RN vs RI, *p <0.05; Fig. 3a, ¢)
and reduces serine phosphorylation of IRS; (RN, 64.5 & 7% of
CTR; RN vs RI, *p <0.05; Fig. 3a, d). NGF also stimulated
AKT (RN, 161.8+11.1% of CTR; RN vs RI, *p<0.05;
Fig. 3a, e), recovered the inhibitory phosphorylation of
GSK3p (RN, 151.6+1.9% of CTR; RN vs RI, **p<0.01;
Fig. 3f, g), and downregulated JNK (RN, 173.7£3.9% of
CTR; RN vs RI *#p < 0.01; Fig. 3f, h). No statistically signif-
icant difference was observed as for the activation of IR upon
NGF treatment of insulin resistant neurons (RN, 505.49 +
76.9% of CTR; RN vs RI, p=0.76; Fig. 3a, b).

Significantly, chronic high insulin also affected nuclear c-Fos
expression (RI, 84.6 +7.4% of CTR; RI vs INS, *p < 0.05; Fig.
3i-j), and reduced glucose uptake (RI, 44.9+7.1% of CTR; RI
vs INS, *#*p <0.01; Fig. 3). Noteworthy, NGF stimulation re-
stored the number of c-Fos positive nuclei (RN, 210.2 +£40.3%
of CTR; RN vs RI, *» <0.05; Fig. 3i-j), as well as glucose
uptake (RN, 140.2 + 12% of CTR; RN vs RI, **p <0.01; Fig.
3k-1) in insulin resistant cholinergic neurons. Thus, our results
confirm and extend previous reports on the neuroprotective ef-
fect of NGF in the medial septum [5, 55] pinpointing the ability
of the NGF pathway to stimulate the insulin signaling and glu-
cose homeostasis in physiological conditions and also to ame-
liorate insulin resistance in cultured cholinergic neurons.

Stimulation of the Insulin Pathway and Neuronal
Metabolism by NGF Is Achieved Through IRS,
Activation and Binding to TrkA

We demonstrated the ability of NGF to improve insulin
resistance, mainly stimulating IRS; in primary cholinergic
neurons. This is in line with the findings that several mem-
bers of the receptor tyrosine kinases (RTK) superfamily
like IGFI/IT receptors, the BDNF receptor TrkB, and
ErbB can trans-activate the insulin pathway by enhancing
IRS; and the downstream insulin pathway (e.g., AKT,
GSK30) [56]. Accordingly, we asked whether the rescue
effect of NGF on survival and metabolism in insulin resis-
tant cholinergic neurons depends on IRS;. To address this
question, we incubated cholinergic neurons with NGF with
and without previous treatment with the selective IRS in-
hibitor NT157. First, NT157 (10 uM, 2 h) was found to
effectively inhibits IRS; (Suppl. Fig. 2a) and AKT (Suppl.
Fig. 2b) phosphorylation under insulin stimulation. Then,
we analyzed AKT activation, c-Fos expression and glucose

uptake in control (Fig. 4a, ¢, ¢) and insulin resistant (Fig.
4b, d, f) cholinergic neurons. We found that IRS inhibition
by NT157 abolished the NGF effect on pAKT levels in
control (NGF +NT157, 68.6+9.3% of DIV10 CTR;
NGF + NT157 vs NGF, **p<0.01, Fig. 4a and Suppl.
Fig. 2g) and in insulin resistant (RN +NT157, 93.1 +
15.1% of DIV13 CTR; RN +NT157 vs RN; **p <0.01,
Fig. 4b and Suppl. Fig. 2h) neurons. A similar trend was
observed for c-Fos expression, indicating that NGF effect
was lost both in control (NGF +NT157, 96.1 £35.5% of
DIV10 CTR; NGF + NT157 vs NGF, **p <0.01; Fig. 4c)
and insulin resistant conditions (RN +NT157, 96.0 +
35.7% of DIV13 CTR; RN +NT157 vs RN, **p<0.01;
Fig. 4d). Further, following incubation with the specific
IRS inhibitor NT157, NGF was unable to rescue glucose
uptake both in control (NGF + NT157, 35.3£7.5% of
DIV10 CTR; NGF + NT157 vs NGF, **p <0.01; Fig. 4e)
and insulin resistant (RN + NT157, 11.3+6.5% of DIV13
CTR; RN+ NT157 vs RN, **p <0.01; Fig. 4f) cholinergic
neurons. Of note, NT157 treatment not only abolished
NGF effect on glucose uptake in insulin resistance, but it
also further reduced glucose metabolism, as compared to
control (NGF + NT157 vs DIV10 CTR, **p<0.01; Fig.
4e) and insulin resistant conditions (RN +NT157 vs RI;
*p <0.05; Fig. 4f), suggesting that most of the glucose
uptake likely occurs under the IRS control in cholinergic
neurons. Of note, NT157 incubation did not affect neuro-
nal viability, as assessed by the MTT test (p =0.16; Suppl.
Fig. 2c). To further characterize the role of IRS; in NGF-
mediated control of glucose metabolism, we
immunolabeled DIV10 cholinergic neurons with NGF in
the presence of NT157 with antibodies against Glut2 and
Glut4. We found that NT157 abolished the observed NGF
effect on Glut2 translocation to the plasma membrane
(Figs. 2j and 4g), while no effect was observed for Glut4
(Suppl. Fig. 2i). These data demonstrate that the NGF ef-
fect on neuronal metabolism in control and insulin resistant
cholinergic neurons is abolished by the IRS inhibitor
NT157, and it thus requires IRS activation.

NGF stimulation of insulin pathway via IRS; transactivation
has been previously reported in cancer cells, and occurs upon
IRS; recruitment by the NGF receptor TrkA [19, 28]. For this
reason, we asked whether TrkA is able to bind and recruit IRS;
also in our experimental conditions. To investigate the existence
of'a TrkA/IRS, complex in cholinergic neurons we resorted to
the Proximity Ligation Assay (PLA) approach. PLA is a well-
described technique providing enough sensitivity to evaluate
endogenous protein’s close proximity in native conditions.
PLA allows visualization of single events of protein interaction
by generating single immunofluorescent dots.

Thus, by using proper antibody combinations, TrkA/pIRS;
(Fig. 4h) and TrkA/IRS, Y6%8 (Fig. 4k) complexes were visual-
ized and PLA dot number and intensity per neuron were
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measured in untreated and NGF-treated neurons (100ng/ml, in few control neurons (CTR; Fig. 4h). Treatment with NGF
30") with or without NT157 (10uM, 2 h) preincubation. A faint  stimulates the interaction between TrkA and the active form of
TrkA/pIRS; Y% PLA signal was observed throughout the en-  IRS;. Interestingly, PLA signal was negligible in NGF-NT157
tire neuron, from the cell body to the distal parts of the neurites  treated neurons (Fig. 4h). The number of dot/neuron augmented
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<« «Fig. 3 Chronic high insulin induces insulin resistance in cholinergic

neurons and can be improved by NGF. (a-l) Insulin resistance
experimental data and (m) the related experimental paradigm scheme.
(a—e) A representative WB (a) and relative bar graphs (b-e) of extracts
from untreated (CTR), insulin-treated (INS), insulin-resistant (RI), and
insulin-resistant and NGF-treated (RN) cholinergic neurons, using
antibodies against pIRY "> IR, pIRS, Y8, pIRS,%%, IRS;, pAKT,
AKT with (-actin as loading control, are shown. The insulin treatment
increases tyrosine phosphorylation of IR (683.8+127.1% of CTR; INS vs
CTR,*p < 0.01; Fig. 3a-b), IRS;¥*® (462.2 + 63.6% of CTR; INS vs
CTR,**p <0.01; Fig. 3a, c¢) and AKT (166.9+6.1% of CTR; INS vs
CTR,**p <0.01; Fig. 3a, e) in control cholinergic neurons, as expected.
Of note, insulin downregulates the inhibitory IRS,33%7 (60.349.1% of
CTR; INS vs CTR,**p <0.01; Fig. 3a, d) and inactivates GSK3[3 by S9
phosphorylation (158.6+13.5% of CTR; INS vs CTR,**p <0.01; Fig.3f-
), while it has no effect on JNK activation (81.9+10.9% of CTR; INS vs
CTR, p=0.24; Fig. 3f, h). After chronic high insulin, the level of tyrosine
phosphorylation of the IR (R, 472.6 £63.5% of CTR; RI vs INS, *p<
0.05; Fig. 3a, b) and the IRS, Y% (RI, 264.9 + 37.8% of CTR; RI vs INS,
**p <0.01; Fig. 3a, c), as well as activation of AKT (R, 122.9+7.7% of
CTR; RI vs INS, **p<0.01; Fig. 3a, e) are reduced in cholinergic
neurons, while the serine phosphorylation of IRS; was significantly
elevated, as compared to INS (RI, 87.9+£6.3% of CTR; RI vs INS,
*p<0.05; Fig. 3a, d). The ratio was calculated over the total protein
levels and expressed as percentage of the control. NGF treatment
restored tyrosine phosphorylation of IRS; (RN, 421.8+27.6% of CTR,
RN vs RI, #*p <0.05; Fig. 3a, ¢) and of AKT (RN, 161.8 + 11.1% of CTR;
RN vs RI, #*p <0.05; Fig. 3a, e), and reduced serine phosphorylation of
IRS; (RN, 64.5+7% of CTR; RN vs RI, *p <0.05; Fig. 3a, d). Any effect
was found on the pIR levels (RN, 505.49 +76.9% of CTR; RN vs RI, p=
0.76; Fig. 3a-b). (f-h) Lysates of primary septal neurons from unstimulated
(CTR), insulin-treated (INS), insulin-resistant (RI), and insulin-resistant
NGF-treated (RN) were analyzed by WB, using specific antibodies
against pGSK3f3, pJNK, total GSK3f, and total JNK with {3-actin as
loading control. The data are reported as percentage of control in the
graph (Fig. 3g-h). The levels of pGSK3f3 are reduced (RI, 105.9 +7.9%
of CTR; RI vs INS, **p<0.01; Fig. 3f-g) and pJNK is augmented (RI,
2445+12.1% of CTR; RI vs INS, **p<0.01; Fig. 3f, h) in insulin
resistant cholinergic neurons. In turn, NGF treatment restored GSK3[3
(RN, 151.6£1.9% of CTR; RN vs RI, **p<0.01; Fig. 3f-g) and JNK
(RN, 173.7+3.9% of CTR; RN vs RI, **p<0.01; Fig. 3f, h)
phosphorylation as compared to RI. (i-l) The c-Fos nuclear staining (i-j)
and GluTracker labeling (k-1) of CTR, INS, RI, and RN cholinergic
neurons are shown. (i) Cholinergic neurons were fixed, permeabilized
and immunostained for c-Fos (green) and nuclei stained by DAPI
(blue). (j) The quantitative analysis of the c-Fos positive nuclei/field (x
20 magnification) is reported in the graph as a percentage of the value in
control neurons. (k) After the appropriate treatment (m), the cholinergic
neurons were incubated with the GluTracker mix, fixed and mounted on
glass slides. (I) The quantitative analysis of GluTracker fluorescence
intensity was calculated and reported as percentage of control. Chronic
high insulin significantly reduces insulin-driven c-Fos nuclear staining
(84.6£7.4% of CTR; RI vs INS: *p<0.05; Fig. 3i-j) and neuronal
glucose uptake (44.9+7.1% of CTR; RI vs INS, **p<0.01; Fig. 3k-1),
as compared to control conditions. Noteworthy, NGF stimulation rescued
the number of c-Fos positive nuclei (210.2+40.3% of CTR; RN vs RI:
*p <0.05; Fig. 3i-j), as well as level of glucose uptake (140.2+12% of
CTR; RN vs RI: *¥p<0.01; Fig. 3k-]) in insulin resistant cholinergic
neurons. (m) CTR: DIV 13 starved and untreated neurons; INS: starved
and insulin-treated (10 nM, 30’) DIV13 neurons; RI: DIV10 neurons
exposed to chronic high insulin (2 uM, 72 h), starved at DIV13 and
then exposed to 10 nM insulin (30’); RN =DIV10 neurons exposed to
chronic high insulin (2 uM, 72 h), starved at DIV13 and then exposed to
NGF (NGF 100 ng/ml, 30"). Starvation consisted in replacement of
neurobasal medium without B27 (90’) to avoid confounding effect from
B27 derived insulin. Scale bars: i,k =25 uM

upon NGF treatment (NGF: 47.2+7.3 vs CTR: 13+4
dots/neuron; ***p < 0.001, Fig. 41), while NGF + NT157 treat-
ed neurons displayed a very low PLA signal (2.20+0.65
dots/neuron; ***p < 0.001, Fig. 41). Moreover, a strong increase
in the TrkA/pIRS, Y®® PLA intensity was observed under NGF
stimulation (NGF: 0.040 £0.002 vs CTR: 0.023 +0.002 dot
intensity/neuron; **p <0.01, Fig. 4j). Cholinergic neurons
treated with NGF + NT157 displayed very low PLA intensity
signal (0.008 +0.000 dot intensity/neuron; ***p <0.001, Fig.
4j). As opposite to TrkA/pIRS;Y**® PLA signal, TrkA/IRS;
PLA was detectable in control neurons (CTR), and strongly
increased after NGF treatment, while NT157 preincubation sig-
nificantly reduced the NGF-driven effect (Fig. 4k). In fact, the
number of TrkA/IRS; PLA dots were significantly augmented
by NGF (121.50£0.60 vs 50.60+0.10 CTR dots/neuron,
*p < 0.05; Fig. 41). PLA intensity per dot was also augmented
after NGF treatment (0.600 £ 0.100 vs 0.100 +0.020 CTR, ar-
bitrary units,*p < 0.05, Fig. 4m). Importantly, TrkA/IRS; PLA
dots number and intensity were affected (45.80+9.60 and
0.100 £ 0.020; Fig. 41 and 4m, respectively) by NT157 pretreat-
ment (NGF + NT157), confirming the requirement of IRS acti-
vation for the TrkA-IRS; interaction to occur. Taken together,
data from our PLA assay experiments strongly support the ex-
istence of the TrkA/IRS; complex modulated by NGF in cho-
linergic neurons and dependent upon tyrosine phosphorylation
of IRS;. Notably, neither total IRS1 (p=0.9) nor TrkA (p =
0.56) levels were affected by NT157 in our experimental con-
ditions (Suppl. Fig. 2d-f).

NGF Nasal Delivery Rescues the Insulin Pathway
and Increases ChAT in the Septum of 3xTg-AD Mice

To assess whether insulin resistance of cholinergic neurons can
be rescued from NGF also in vivo, young adult 3xTg-AD mice
were nasally administered with NGF (NGF, 40 pg/mouse),
insulin (INS, 0.125 TU/mouse) or vehicle (veh) by bilateral
nasal drop (2.5 pl/nostril) and sacrificed 30 min later.
Activation of the early (IR and IRS;) and late (AKT) signaling
molecules of the insulin pathway, as well as the expression of
the cholinergic marker, ChAT, were investigated (Fig. 5a-e).
Nasal delivery of NGF resulted in increased IRS Y698 (119.7

+1.9% of veh, ¥¥*p < 0.01; Fig. 5a, c) and AKT (148.4+11.3%
of veh, *p <0.05; Fig. 5a, d) phosphorylation. The expression
of ChAT was also augmented by NGF (125.8 £5.8% of veh,
*p < 0.05; Fig. 5a, ), while no effect was observed on IR acti-
vation (110.5 £ 18.6% of veh, p=0.61; Fig. Sa-b). Insulin ad-
ministration did not result in the activation of the insulin path-
way, as observed by phosphorylation of IRY'">¥!5! (116.6 +

17.3% of veh, p =0.39; Fig. 5a-b), IRS; Y% (89.8 + 12.4% of
veh, p =0.23; Fig. 5a, ¢) and AKT (116.6 £12.2% of veh, p =

0.25; Fig. 5a, d), confirming previously shown results (Fig. 1).
Also, ChAT expression was unaffected by insulin (88.4 £6.5%
of veh, p=0.15; Fig. 5a, e).
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Discussion

To the best of our knowledge, this is the first study addressing
medial septum sensitivity to insulin stimulation in wt and AD
mice. Here we present in vivo evidence of medial septum sen-
sitivity to insulin upon nasal administration, with the activation
of the canonical insulin pathway in wild-type mice (Fig. 1a-e).

Although the brain has been long time considered an insu-
lin independent organ, compelling evidences show that insulin
not only is locally produced, but it also induces glucose up-
take, has neuroregulatory properties on nutrient intake in the
brain, modulating learning and memory, and controlling body
energy intake [12, 41, 57]. Accordingly, IR and IRS mRNA
and protein are co-expressed in several brain tissues, like the
hippocampus, the cortex, the hypothalamus, including the
basal forebrain [13, 58, 59].

Conversely, insulin treatment was unable to elicit the activa-
tion of the key insulin signaling molecules (IR-IRS;-AKT) in
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the basal forebrain of 3xTg-AD mice (Fig. 1f-j). Nasal admin-
istration is a well characterized and extensively used method of
brain delivery [60], and nasal insulin stimulation has been
shown to be the paradigm of choice to highlight brain insulin
resistance [20]. Thus, insulin failure to activate the insulin path-
way in the medial septum of 3xTg-AD mice suggests that these
mice developed a condition reminiscent of brain insulin resis-
tance. Moreover, insulin resistance has been observed at
3 months of age, while synaptic deficits and cognitive impair-
ments are not detectable before 5—6 months of age in 3xTg-AD
mice [32, 61, 62]. Neocortical insulin resistance and systemic
deregulation of glucose metabolism can be detected only 2—
3 months later, before the appearance of blood hyperglicemia
and peripheral insulin resistance [31, 62], pinpointing that insu-
lin resistance in the medial septum develops during the AD pre-
symptomatic phase of 3xTg-AD mice [63, 64].

The perturbation of the insulin pathway has been shown to
affect cholinergic phenotype and synaptic functions in cultured
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4 « Fig.4 Rescue of Insulin resistance upon NGF stimulation occurs mainly by IRS; activation and TrkA/IRS; binding. (a—f) Densitometric analyses of
AKT (a, b; respectively), c-Fos staining (c, d; respectively) and Glucose uptake (e, f; respectively) in control (a, ¢, €) and insulin resistant (b, d, f)
cholinergic neurons. (a-b) Levels of pAKT, total AKT, and (3-actin are reported (a) in control (CTR), NGF-treated (NGF), and NGF-treated neurons
preincubated with the specific IRS inhibitor NT157 (NGF + NT157), and (b) in RI, RN, and RN following incubation with NT157 (RN + NT157). NGF
increases AKT activation in control (NGF, 248.9 + 14.5% of CTR; **p < 0.01; Fig. 4a) and insulin resistant (RN, 359.4 £ 68.9% of CTR; **p <0.01;
Fig. 4b) cholinergic neurons, but fails to modulate it in presence of NT157 in both control (NGF + NT157, 68.6 +9.3% of CTR; **p < 0.01; Fig. 4a) and
insulin resistance conditions (RN + NT157, 93.1 + 15.1% of CTR; **p < 0.01, Fig. 4b). (c-d) Quantitative analysis of the c-Fos positive nuclei/field (x
20 magnification) in (a) CTR, NGF, NGF-treated neurons in presence of a specific IRS inhibitor NT157 (NGF + NT157), and in (d) insulin-resistance
(RI), insulin-resistance NGF-treated (RN), and insulin-resistance NGF-treated in presence of a specific IRS inhibitor NT157 (RN +NT157). NGF
elevates the number of c-Fos expressing neurons in control (383.3 +74.1% of CTR; **p <0.01; Fig. 4c), as well as in insulin resistant cholinergic
neurons (210£40.2% of CTR; **p <0.01; Fig. 4d), but its effect is lost following IRS inhibition by NT157 both in control (96.1 +35.5% of CTR;
NGF +NT157 vs NGF, **p <0.01; Fig. 4c) and insulin resistant conditions (96 +35.7% of CTR; RN+ NT157 vs RN, **p<0.01; Fig. 4d). (e-f)
Quantitative analysis of glucose uptake in (e) control untreated (CTR), NGF-treated (NGF), NGF-treated with NT157 (NGF + NT157), and in (f) insulin-
resistant (RI), insulin-resistant NGF-treated (RN), and insulin-resistant NGF-treated neurons preincubated with NT157 (RN + NT157). NGF stimulated
glucose uptake in control (183.2 +33% of CTR, *p < 0.05; Fig. 4e) and insulin resistant neurons (140.2 + 12% of CTR, **p < 0.01; Fig. 4f), but lost its
efficacy after preincubation with NT157 in control (35.3 £7.5% of CTR; NGF + NT157 vs NGF, **p < 0.01; Fig. 4e) and insulin resistant (11.3 +6.5%
of CTR; RN + NT157 vs RN, **p <0.01; Fig. 4f) conditions, where glucose uptake is lower than in RI condition (RN + NT157 vs RI, *p <0.05). The
fluorescence intensity was calculated as percentage of control (CTR) and reported as mean + sem. CTR neurons were starved DIV 10 cholinergic neurons
in control conditions and starved DIV13 neurons in insulin resistant experiments. (g) Glut2 immunofluorescent labeling in cholinergic neurons (DIV10)
treated with NGF (100 ng/ml, 30") with and without preincubation with NT157 (10 uM, 2 h). Specific anti-Glut2 antibodies were used and detected
Glut2 immunoreactivity mainly in the cytosolic compartment of both the cell bodies (arrows) and neurites (arrowheads) in untreated neurons (CTR).
NGF incubation (NGF) drives plasma membrane translocation of Glut2, both at the cell bodies (arrows) and neurites (arrowheads) in absence of NT157.
While NT157 preincubation (NGF + NT157) hampers the effect of NGF on Glut2 translocation, Glut2 labeling being mainly cytosolic, as observed in
CTR neurons. (h,k) Detection of TrkA—pIRSIW’O8 (h) and TrkA-IRS; (k) interactions by PLA assay in cholinergic neurons (DIV10) treated with NGF
(100ng/ml, 30'), with and without preincubation with NT157 (10uM, 2 h). Neurons were fixed with PFA, blocked with normal donkey serum (10%, 1 h,
RT) and incubated (ON, 4 °C) with a combination of mouse anti-Trk and rabbit a.nti—leSly608 or mouse anti-Trk and rabbit anti-total IRS;. Detection
and amplification of single events of interaction by a single dot (red) was achieved by the PLA assay (PLA Duoset, Sigma). Nuclei were counterstained
with DAPIL. PLA staining was analyzed by an observer blind of the experimental group and representative picture were randomly chosen. (i-j)
Quantification of the number (i) and intensity (j) of the TrkA-pIRS, Y% PLA signal dots in primary neurons untreated (CTR, 13 +4 dots/neuron and
0.02 +0.002 intensity/dot), treated with NGF (NGF, 47.2 + 7.3 dots/neuron, ***p < 0.001 and 0.04 +0.002 intensity/dot, **p < 0.01) or NGF following
NT157 preincubation (NGF + NT157, 2.2 +0.65 dots/neuron; NGF + NT157 vs NGF, ***p < 0.001; and 0.008 + 0.0002 intensity/dot, NGF + NT157 vs
NGF, #**p < 0.001). (k-1) Quantification of the number (k) and intensity (I) of the TrkA-IRS; PLA signal dots in primary neurons untreated (CTR, 50.6
+5.9 dots/neuron and 0.11 +0.015, intensity per dot), NGF treated (121.5 £+ 16.4 dots/neuron, *p < 0.05; 0.59 +0.12 intensity/dot, *p < 0.05), or NGF
treated following NT157 preincubation (NGF + NT157, 45.8 £ 9.6 dots/neuron NGF + NT157 vs NGF; *p < 0.05; 0.12 + 0.02 intensity per dot, NGF +
NT157 vs NGF *p < 0.05). The quantitative analysis of the PLA fluorescent signal was performed in five different fields, for a total of 20 to 30 neurons
and was expressed as mean + sem. Integrated intensity per dot is expressed in arbitrary unit (AU) and reported as mean + sem. Scale bars: g=50 pm;
h,k =25 um. CTR neurons in a, ¢, e are DIV 10 untreated neurons; CTR neurons in b, d, f are DIV13 untreated neurons

neurons [24]. Thus, the effects of insulin and insulin resistance
on the BFCS and related cognition is of great relevance for
ameliorating insulin resistance-dependent impairment of cog-
nition observed in both neurodegenerative disorders (e.g. AD)
and metabolic diseases (e.g. Type 2 Diabetes, T2D).

In order to investigate a crosstalk between the insulin sig-
naling and neuronal metabolism in BFCN, we cultured neu-
rons from the rodent septum following a well established and
characterized in vitro model culture [35, 36]. We observed that
cultured cholinergic neurons express both IR and IRS (Fig.
2a), as already observed in vivo in rodents [14]. Moreover,
they activate the canonical insulin pathway in response to
insulin stimulation by increasing levels of pIRY''>/!'5 (Fig,
2b-c; 500% of CTR), pIRS, Y**® (Fig. 2b, d; 300% of CTR),
and pAKT (Fig. 2b, e; 350% of CTR). In line with this, glu-
cose uptake was significantly augmented (Fig. 2h-i; 275% of
CTR) and c-Fos expression increased in response to insulin
stimulation (Fig. 2f-g; 200% of CTR). These findings show
that BFCN are insulin sensitive and their neuronal metabolism
and activity are under insulin control.

Next, we set up a novel chronic high insulin-based cellular
paradigm to specifically address insulin resistance in cholinergic

neurons and found that the IR-IRS-AKT signaling pathway is
significantly downregulated in cholinergic neurons (Fig. 3). In
turn, the activity of the main IRS; serine kinases, GSK3[3 and
JNK1/2, are upregulated (Fig. 3f-h), while c-Fos expression and
glucose uptake are significantly reduced (Fig. 3i-1). These find-
ings indicate that this in vitro paradigm does recapitulate the main
features of insulin resistance at the cellular level, and may repre-
sent a valuable tool for the screening of insulin sensitizers and
potential disease-modifying drugs in cholinergic neurons, of rel-
evance for therapy of AD and insulin-related brain diseases.
We also addressed the effect of NGF on the insulin path-
way in normal and insulin resistant conditions in vitro. NGF is
the most relevant trophic and survival factor for cholinergic
neurons [42, 43] and has been already shown to trans-activate
the insulin pathway via TrkA-dependent signaling in PC12-
derived neurons, thus suggesting a molecular link between
NGF and insulin signaling in neurons [44]. Here, we show
that NGF stimulates tyrosine phosphorylation of both IR and
IRS; in control cholinergic neurons (Fig. 2b-d), while in insu-
lin resistant conditions NGF directly activates IRS; (Fig. 3).
Further, NGF restores IRS kinases activation level in insulin
resistant cholinergic neurons (Fig. 3f-h). In both control
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Fig.5 Rescue of Insulin resistance in the medial septum upon NGF nasal
administration to 3xTg-AD mice (a—e) Representative western blots
(WB) of pIR Y!SU1S (q_p) bIRS,Y 8 (a, ¢), pAKT (a, d) and ChAT
(a, e) on septal extracts from 3xTg-AD mice (n =4—6 mice/experimental
group) nasally administered with NGF (NGF, 40 pg/mouse), insulin
(INS, 0.125 TU/mouse) or vehicle (veh). Nasal delivery of NGF resulted
in increased phosphorylation levels of IRSY®% (119.7+1.9% of veh,
**p<0.01; Fig. 5a, ¢), AKT (148.4 +11.3% of veh, *p <0.05; Fig. 5a,

(Fig. 2) and insulin resistant cholinergic neurons (Fig. 3), NGF
is able to activate AKT (Figs. 2b, e and 3a, ¢; respectively) and
increase c-Fos expression (Figs. 2f-g and 3i-j; respectively)
and glucose uptake (Figs. 2h-i and 3k-1; respectively). Thus,
we conclude that IRS; is a key molecule of the insulin path-
way responsible for glucose homeostasis and neuronal metab-
olism in cholinergic neurons. Moreover, NGF is able to stim-
ulate the insulin pathway in control conditions and to improve
insulin resistance induced by chronic high insulin in cultured
cholinergic neurons.

There is general consensus on the cross-talk between insu-
lin and Insulin like Growth Factor 1 (IGF1) pathways,
resulting in common IRS-mediated PI3K/Akt and Ras/Raf/
MAPK signaling initiated by hybrid receptors. Of note,
IGF1 has been shown to promote the cholinergic phenotype
of septal neurons and deregulation of IGF1 pathway has been
implicated in neurodegenerative diseases [19, 20, 27].
Interestingly, our data indicate that NGF may counteract the
detrimental effects of brain insulin resistance by acting on the
IRS; stimulation, the early, main and common effector of
insulin and IGF1 receptors signalings. Thus, the involvement
of IGF1 deserves future investigations and it is reasonable to
hypothesize the co-occurrence of insulin and IGF1 resistances
in our chronic high insulin model and a beneficial effect of
NGF on IGF1 resistance in AD.

Furthermore, we deeper characterized the glucose metabo-
lism addressing the involvement of the glucose transport pro-
tein (Glut) in these events. In particular, we focused on Glut2,
a glucose sensor and Glut4, the prototypical insulin dependent
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d), and ChAT (125.8 +5.8% of veh, *p <0.05; Fig. 5a, e) in the medial
septum of AD mice. No statistically significant effect of NGF treatment
was observed on IR activation (110.5 + 18.6% of veh, p=0.61; Fig. Sa-
b). Insulin treatment did not result in phosphorylation of IRY!'!¢/1151
(116.6 £17.3% of veh, p=0.39; Fig. 5a-b), IRS, Y% (89.8 +12.4% of
veh, p =0.23; Fig. 5a, ¢), and AKT (116.6 +12.2% of veh, p = 0.25; Fig.
Sa, d). Further, insulin showed any effect on ChAT expression (88.4 +
6.5% of veh, p=0.15; Fig. Sa, e)

NGF  INS

Glut in peripheral organs [53]. While Glut2 is insulin-
independent in the peripheral organs, its role in the CNS is
not well understood. Indeed, Glut2 mRNA and protein have
been reported within specific brain nuclei included the rodent
and human basal forebrain [52, 65, 66], and have been impli-
cated in neurotrophic control of glucose homeostasis in the
rodent CNS [52, 67], as well as in zebrafish brain develop-
ment [49]. Here, we observed that Glut2 massively translo-
cates to the plasma membrane in the cell body, axon and
dendrites in cholinergic neurons upon NGF treatment, and to
a minor extent, following insulin stimulation (Figs. 2j and 4g).

As opposite, neuronal Glut4 localization is unaffected
by insulin and NGF treatments (Suppl. Fig. le), neither by
the IRS inhibitor NT157 (Suppl. Fig. 2i). These findings
indicate that NGF- and insulin-mediated glucose uptake is
mainly under Glut2 control in cultured cholinergic neurons
(see also Fig. 2j), and suggest a minor role for Glut4 in our
experimental conditions. In line with our observations, in-
sulin failure in stimulating Glut4-dependent glucose up-
take has been also reported in the human brain [20],
supporting the idea that glucose metabolism regulation by
Gluts is tissue and cell type specific.

Based on our observation that NGF mainly ameliorates
insulin resistance by IRS; activation, we thus asked whether
the effect of NGF on glucose metabolism is mediated by IRS;
in cholinergic neurons. For this purpose, we used the specific
IRS inhibitor NT157. Following IRS inhibition by NT157 in
both control and insulin resistant conditions, NGF is not able
anymore to stimulate AKT phosphorylation (Fig. 4a-b,
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respectively) and c-Fos expression (Fig. 4c-d, respectively),
nor to induce plasma membrane re-localization of the glucose
sensor Glut2 (Fig. 4g). Of note, NT157 treatment brought
glucose uptake below insulin resistance level (Fig. 4e-f, re-
spectively), pinpointing the essential role of IRS in Glut-
mediated glucose uptake [10]. Moreover, the NGF system is
known to induce c-Fos expression in the medial septum,
resulting in elevated glucose uptake and c-Fos expression
in vivo [48], while NGF withdrawal induces a repressed met-
abolic state inhibiting neuronal activity [67]. In line with these
findings, our data extend previous observations pinpointing
that NGF acts via IRS; to promote downstream insulin path-
way, glucose uptake and c-Fos expression in cholinergic
neurons.

Further, we hypothesized that NGF induction of IRS; relies
on a direct interaction between IRS; and the neurotrophin
receptor TrkA. In fact, the NGF receptor TrkA and IRS; can
directly interact, as shown with the two hybrid system in yeast
and induce downstream genes, like c-Fos [68]. In order to
investigate whether TrkA and IRS; endogenous molecules
directly interact, we resorted to the PLA and found that NGF
treatment does stimulate the binding of its receptor TrkA to
IRS; (Fig. 4k-m). Interaction between TrkA and IRS; is even
more pronounced after tyrosine phosphorylation of IRS; (Fig.
4h-j), which is promoted by NGF (Fig. 2b, d). On the other
hand, the IRS inhibitor NT157 completely abolished NGF
effect on TrkA-IRS; complex formation, suggesting the re-
quirement of an active IRS; for the TrkA-IRS; interaction
occurring under NGF stimulation.

Finally, we investigated the in vivo effect of NGF on the
cholinergic system by nasal delivery to 3xTg-AD mice.
Indeed, our findings indicate that NGF improves insulin resis-
tance in the septum and induces the insulin pathway through
tyrosine phosphorylation of IRS,, leading to the AKT-mediated
pro-survival signaling. Noteworthy, NGF sustained the level of
ChAT, a cholinergic marker affected by insulin resistance, pos-
sibly by ChAT stabilization, exerting further neuroprotective
action for BFCN in AD-like neurodegeneration.

Conclusion

Overall, these data indicate that NGF may elicit IRS; stim-
ulation in cholinergic neurons by-passing IR activation
through IRS binding to the NGF receptor TrkA, as already
demonstrated with other insulin sensitizers [56]. NGF-
driven re-activation of the insulin pathway through disin-
hibition and tyrosine phosphorylation of IRS;, a primary
gatekeeper in insulin signaling, is a potential novel strategy
to slow cognitive decline in AD and diabetes-related brain
insulin resistance. Ongoing collaborative studies are aimed
at testing the in vivo potential of intranasal NGF adminis-
tration on neuronal insulin resistance in AD and T2D

mouse models. Given the growing demand for safe and
effective disease-modifying drugs in AD, the design of
novel NGF-based approach during the AD prodromal
phase is of foremost clinical importance for future AD
therapeutic strategies.
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