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The 2018 Medicine Nobel Prize was awarded jointly to two

immunologists, James P. Allison at the University of Texas

MD Anderson Cancer Center in Houston and Tasuku

Honjo at Kyoto University in Japan, who pioneered a new

way to treat cancers (Ledford et al. 2018). Both Laureates

have shown how so called ‘‘immune checkpoints’’ on T

cells can be used to manipulate the immune responses so

that T cells can efficiently attack cancer cells. Using the

immune system to fight cancers has been investigated for

more than a 100 years. Recent advances in cancer

immunotherapy, particularly immune checkpoint blockade

therapy have dramatically changed the therapeutic strategy

against advanced cancers. Through inhibiting negative

immune regulation, these approaches have demonstrated

improved overall survival for patients with advanced can-

cers. Importantly, for some of the patients treated with such

strategies, their tumors seem to totally disappear.

Immune Checkpoint Therapy in Cancer

Most of the current immunotherapeutic success in cancer

treatment is based on blocking the immune regulation

function of critical checkpoints CTLA-4 (cytotoxic T

lymphocyte associated antigen-4) and PD-1 (programmed

cell death-1) by antibodies. In the 1990s, Allison and his

colleagues studied the function of CTLA-4 and first dis-

covered that CTLA-4 acts as a brake for T cell activation

(Krummel and Allison 1995). They engineered an antibody

that binds to CTLA-4 and blocks its function. In vivo

administration of the antibody resulted in enhanced anti-

tumor immune response and the rejection of tumors in mice

(Leach et al. 1996; Kwon et al. 1997). Based on their

pioneering findings, clinical trials using the new

immunotherapy strategy were performed in the following

years. A phase III clinical trial in 2010 demonstrated that

Ipilimumab, a fully human monoclonal antibody that

blocks CTLA-4, is sufficient to improve overall survival in

patients with melanoma (Hodi et al. 2010), which is con-

sidered one of the watershed moments in the history of

cancer immunotherapy.

Another critical immune checkpoint is PD-1, which was

first identified and cloned by Honjo and his colleagues in

1992 (Ishida et al. 1992). Upon interaction with its ligands

(PD-L1/PD-L2), PD-1 negatively regulates antigen recep-

tor signaling of B cells and T cells, and thus serves as a

negative regulator of immune responses. PD-1 was found

highly expressed by tumor infiltrating T cells and PD-L1

was found strongly upregulated in a number of cancers

where its expression often correlates with unfavorable

outcomes. These findings make the PD-1/PD-L1 pathway

an attractive target for immunotherapeutic interventions

(Sanmamed and Chen 2018). Accordingly, preclinical and

clinical studies have demonstrated the effectiveness of

PD-1/PD-L1 blockade therapy in treating in a panel of

cancers including melanoma, lymphoma, lung cancer, et al.

(Brahmer et al. 2010; Hamid et al. 2013; Powles et al.

2014; Topalian et al. 2014; Garon et al. 2015). The clinical

successes led to the FDA approval of antibodies target-

ing PD-1 (pembrolizumab, nivolumab) and PD-L1

(atezolizumab, avelumab) as second- or third-line treat-

ment for various types of cancer when traditional

chemotherapy or radiotherapy failed, including melanoma

and squamous cell lung cancer, et al. These novel immune

checkpoint targeting therapies illuminate new hope for

cancer patients, in particular those who have lost the

chance of surgical therapy and cannot bear the serious side

effect of radiotherapy and chemotherapy.
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Immune Checkpoint Therapy in Chronic
Viral Infection

In addition to immunosurveillance of cancer, a prime

function of immune system is the defense against infec-

tious agents, such as viruses, bacteria, and fungi, et al.

Similar to that in cancer, T cells are exposed to persistent

antigen and become exhausted in many chronic viral

infections, such as human immunodeficiency virus (HIV)

and hepatitis B virus (HBV) infection. A cardinal feature of

these exhausted T cells is over-expression of immune

checkpoint molecules, such as CTLA4 and PD-1/PD-L1

(Wykes and Lewin 2018). Currently, control of both HIV

and HBV requires life-long treatment, therefore, new

strategies for treatment or cure for these viral infections are

still urgently needed. The success of immune checkpoint

therapy in cancer suggests that targeting these pathways

could also be effective for treating chronic virus infection.

As early as in 2006, Rafi and his colleagues reported that

in vivo administration of PD-L1 blocking antibodies in

mice chronically infected with lymphocytic choriomenin-

gitis virus (LCMV) could rescue the antiviral function of

exhausted CD8? T cells to undergo proliferation, secrete

cytokines, kill infected cells and decrease viral load

(Barber et al. 2006). In vivo administration of PD-1/PD-L1

blocking antibodies restores T cell function and reduces

viral loads in animal models of chronical retrovirus infec-

tion, such as simian immunodeficiency virus (SIV)-infected

rhesus macaques (Velu et al. 2009) and Friend virus (FV)-

infected mice (Dietze et al. 2013; Akhmetzyanova et al.

2015). Meanwhile, multiple ex vivo studies using PBMCs

collected from chronic hepatitis B patients have demon-

strated that PD-1/PD-L1 blockade could lead to enhanced

HBV-specific CD8? T cell response (Boni et al. 2007;

Fisicaro et al. 2010; Zhang et al. 2011). In 2014, we for the

first time reported the effects of in vivo administration of

PD-L1 blocking antibodies on enhancing virus-specific

CD8? T cell immunity in chronic woodchuck hepatitis

virus (WHV) infected woodchucks, a classic animal model

for HBV infection research (Liu et al. 2014). In the study,

we demonstrated that anti-PD-L1 blockade mono-therapy

could not rescue WHV-specific T cell function, however,

anti-PD-L1 blockade in combination with antiviral treat-

ment and therapeutic vaccination, potently enhanced

WHV-specific CD8? T cell immunity. The triple-therapy

strategy led to sustained immunological control of viral

infection after antivirals withdrawal, WHsAg seroconver-

sion and even complete viral clearance in some treated

animals (Liu et al. 2014). Very recently, two studies

reported in parallel that HBsAg-specific and global B cells

also showed increased expression of PD-1 during chronic

HBV infection, and in vitro anti-PD-1 blockade could

partially restore the functional maturation of HBsAg-

specific B cells (Burton et al. 2018; Salimzadeh et al.

2018). These studies suggested that PD-1/PD-L1 blockade

therapy in chronic hepatitis B (CHB) patients might be able

to improve both HBV-specific T and B cell functionality.

Despite the inspiring results observed in preclinical

studies (summarized in Table 1), limited progress has so

far been made in clinical trials using immune checkpoint

therapy for treating chronic viral infection diseases (sum-

marized in Table 2). Due to the obvious safety concerns,

many clinical trials of immune checkpoint blockade in

individuals with chronic viral infection are designed and

performed in the setting of cancer presence. Recently, an

open label phase I study of Nivolumab (anti-PD-1) with

and without a hepatitis B vaccine GS-4774 in HBeAg

negative chronic hepatitis B patients showed that Nivolu-

mab was safe and well tolerated, and one treated patient

underwent HBsAg seroconversion (Gane et al. 2017). A

phase II study of anti-PD-L1 therapy (BMS-936559, by

Bristol-Myers Squibb) in HIV-infected patients showed a

clear increase in Gag-specific CD4? and CD8? T cells in

two out of the six treated patients. This is the only trial of

an immune checkpoint therapy in HIV patients without

malignancy. However, the study was recently ceased due to

retinal toxicity observed in a simultaneous macaque study

(Gay et al. 2017). Recently, a database analysis presented

at the European Society for Medical Oncology 2018

Congress reported the feasibility of using immune check-

point therapy to treat HIV patients who develop cancer. In

total there were 20 HIV-positive cancer patients received

Nivolumab treatment, and none experienced immune-

related adverse events. 24% of the 17 evaluable patients

achieved a partial response to Nivolumab, which suggests

that the overall response rate of HIV-positive patients

seems to be similar to that of other cancer patients.

Prospective

Chronic viral infection continues to be a major health

problem worldwide. In many of viral infectious diseases,

drug resistance remains a challenge, effective vaccine is

unavailable or lifelong drug treatment is necessary. The

huge success of immune checkpoint therapy in cancer has

greatly inspired scientists to apply such strategies for

treating chronic viral infection. However, to achieve a

successful immunotherapy in chronic viral infection such

as CHB, one has to deal with a major obstacle that the

virus-specific immune response is strongly suppressed or

silenced by the overwhelming antigenic viral load. There-

fore, reduction of the viral antigen load is considered a key

factor for the success of immune-based therapies. We

suggest that combinations of antiviral drugs, therapeutic
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vaccines and immune check point therapy would be a

promising approach to treat CHB. The following steps

should be taken for the treatment: (1) Reducing viral load

by antiviral treatment; (2) Inducing antiviral T cell and/or

B cell responses by vaccinations; (3) Applying immune

check point blockade to amplify and maintain the T and/or

B cell functions. This triple therapy may hopefully allow

for clinical efficacy of immune check point therapy to cure

chronic HBV infection. Besides, it should also be recog-

nized that immune checkpoints are involved in the regu-

lation of peripheral tolerance to prevent autoimmunity, and

thus blockade of the function of these proteins may also

cause immune-related adverse events. The clinical out-

comes of immune checkpoint therapy in infectious diseases

remains to be determined. Nevertheless, the era of immune

checkpoint therapy for cancer has arrived and the strategy

may also revolutionize the treatment of infectious diseases

in the near future.
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