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Background: Hepatocellular carcinoma (HCC) is the cancer with the second highest mortality in the world due to its late
presentation and limited treatment options. As such, there is an urgent need to identify novel biomarkers for early
diagnosis and to develop novel therapies. The availability of next-generation sequencing (NGS) data from tumors of liver
cancer patients has provided us with invaluable resources to better understand HCC through the integration of data from
different sources to facilitate the identification of promising biomarkers or therapeutic targets. Findings: Here, we review
key insights gleaned from more than 20 NGS studies of HCC tumor samples, comprising approximately 582 whole genomes
and 1,211 whole exomes mainly from the East Asian population. Through consolidation of reported somatic mutations
from multiple studies, we identified genes with different types of somatic mutations, including single nucleotide variations,
insertion/deletions, structural variations, and copy number alterations as well as genes with multiple frequent viral
integration. Pathway analysis showed that this curated list of somatic mutations is critically involved in cancer-related
pathways, viral carcinogenesis, and signaling pathways. Lastly, we addressed the future directions of HCC research as more
NGS datasets become available. Conclusions: Our review is a comprehensive resource for the current NGS research in HCC,
consolidating published articles, potential gene candidates, and their related biological pathways.
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ratio of 2.4 worldwide, and the mortality-to-incidence rate is as
high as 0.94 and 0.98 for males and females, respectively. Hep-
atocellular carcinoma (HCC) is the most dominant form of pri-
mary liver cancer. Geographically, there is a high incidence rate
in Africa (northern and western) and Asia (eastern and south-
eastern), particularly in China, which accounts for 50 percent of
all HCC cases [2].

Based on GLOBOCAN 2012, liver cancer is the second most com-
mon cause of death from cancer worldwide. Liver cancer is the
fifth most common cancer in males (554,000 cases) and the ninth
most common cancer in females (228,000 cases) [1]. The inci-
dence rate is higher in males than females at a male-to-female
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HCC is commonly associated with risk factors such as hep-
atitis B (HBV) and hepatitis C (HCV) infection, alcohol, my-
cotoxin Aflatoxin, obesity, and non-alcoholic fatty liver dis-
ease; the risk varies depending on gender, geographic region,
and ethnicity [2-4]. Early evidence shows the association of
HBV and HCV infection with the development of liver cirrho-
sis and HCC [5, 6]. The HBV vaccine has been available since
the early 1980s; and implementation of HBV vaccination pro-
grams in 177 of 193 World Health Organization member states
are successful in decreasing HCC incidence rates in children
[7, 8].

While environmental factors play a role in HCC, multiple
recurrent genetic aberrations and the disruption of the host
genome due to HBV DNA integration in HBV-associated HCC are
reported to cause the dysregulation of genes important for the
hallmarks of cancer. Initial studies identified HBV integration
sites via HBV DNA probes or polymerase chain reaction assay
followed by Sanger sequencing [9-13]. Subsequently, somatic al-
terations such as mutations, gene copy number changes, and
chromosomal rearrangements detected in the HCC-derived cell
lines were found to affect the expression of oncogenes and tu-
mor suppressor genes [14, 15]. Progress in the mapping of each
viral integration site and genetic aberration in HCC patients was
ad hoc and slow before the advent of next-generation sequenc-
ing (NGS).

NGS technologies, including RNA-sequencing (RNA-seq),
whole-exome sequencing (WXS), and whole-genome sequenc-
ing (WGS), form the foundation of today’s discovery-based ge-
nomics research. With the reduced cost of massively parallel se-
quencing technologies over the last decade [16], there has been
an increasing number of genomic liver cancer studies provid-
ing new insights about liver cancer. Pioneering NGS studies con-
ducted on patient samples have shown a tremendous increase
in our understanding of HBV viral integration patterns [17-19]
as well as somatic alterations found in liver cancer [20-22]. The
large amount of sequencing data generated has been archived
on data servers worldwide, enabling researchers to perform in-
tegrative analyses that will lead to new findings. However, ma-
neuvering through literature and data repositories to locate and
access this information remains a tedious process.

Here, we introduce and consolidate all existing NGS-based
studies on liver cancer (Fig. 1). Only the most relevant stud-
ies, conducted using NGS in HCC, have been listed in a re-
cent review [23]. Our NGS-based resource is a complete list of
data samples of approximately 582 whole genomes and 1,211
whole exomes. It summarizes the key research and clinical find-
ings from each article with direct links to all publicly available
WGS/WXS liver cancer datasets to promote better knowledge
and data facilitation. The key findings of somatic mutations,
HBV integrations, and mutational signatures reported from re-
cent high-throughput studies and related integrative studies
are discussed. We highlight key genes reported across multiple
studies found to have recurrence of somatic mutations or HBV
integration events. Additionally, we provide a meta-analysis of
the pathways that these alterations dysregulate. Finally, we dis-
cuss future directions and trends in liver cancer research via the
analysis of high-throughput data.

Raw sequencing data, read alignment, and annotations from
NGS platforms can be accessed via National Center for Biotech-
nology Information (NCBI)-Sequence Read Archive (SRA) [24],

European Molecular Biology Laboratory - European Bioinformat-
ics Institute (EMBL-EBI), European Nucleotide Archive [25], and
DNA Data Bank of Japan-SRA [26]. The National Cancer Insti-
tute’s Genomic Data Commons [27] currently hosts genomic
data from the Cancer Genome Atlas (TCGA) project that consists
of multiple cancer types. There are currently 377 liver hepatocel-
lular carcinoma samples with data from WXS, single nucleotide
polymorphism (SNP)-array, methylation, mRNA, and microRNA
profiling. Gigadb [28] is a repository for open-access data asso-
ciated with the GigaScience journal [29], which currently holds
an HCC dataset from 88 individuals [30]. The International Can-
cer Genome Consortium (ICGC) [31] is a global effort to coordi-
nate large-scale cancer genome studies by providing a compre-
hensive catalogue of somatic mutations across 50 cancer types,
which generates approximately 500 samples each [32]. While
primary data files are stored on NCBI and/or EBI, ICGC provides
interpreted datasets for somatic mutation calls and incorporates
transcriptomic and DNA methylation analyses from the same
tumor samples.

We reviewed and consolidated a comprehensive list of liver
cancer studies that have analyzed high-throughput genomics
data (Table 1). The majority of the studies have their raw
and/or processed data available on the above-mentioned pub-
lic databases (Table 1, Data URL). These studies are mainly fo-
cused on liver cancer patients from a single country of the East
Asian population (Table 1, Population). Genomics data from the
Japanese population constitutes the largest sample size [21, 33—
37], including a collection of 300 whole genomes reported in a
recent study [33]. NGS studies were also performed with HCC
patients from China [38-40], Hong Kong [18, 39, 41, 42], Korea
[43-45], Taiwan [46, 47], Singapore [19], and Europe [48-51]. Sev-
eral studies have a collection of samples from various ethnicities
(TCGA) or multiple sources [17, 22, 52-54].

Multiple findings have already been reported on the patient
samples from Japan [33-35], Hong Kong [18, 41, 42], and Europe
[48-51], as well as integrative studies from multiple sources [54,
55] or commercial sources [17, 53]. Here, we review approxi-
mately 582 whole genomes, 1,211 exome, and 778 RNA-seq sam-
ples of liver cancer patients (Table 1, Total cases). Of patients
with known viral status, 44 percent are infected with HBV, 21
percent with HCV, while 35 percent are not infected by either
HBV or HCV (NBNC) (Table 1, Viral status). Several of the groups
have also employed NGS to examine HBV integrations in HCC
patients [17-19, 56].

By comparing matched normal and tumor samples, compu-
tational algorithms have identified a number of likely cancer-
causing point mutations and insertions/deletions (indels). So-
matic alterations such as point mutations, indels, structural
variants, and copy number alterations have been identified in
1 or more of the 85 genes that we have included in Table 2. Re-
current mutations in 12 genes (TP53, CTNNB1, AXIN1, ALB, ARID2,
ARID1A, RPS6KA3, APOB, RB1, CDKN2A, LRP1B, and PTEN) were re-
ported in multiple studies. In this section, we discuss five genes
(ALB, ARID2, RB1, BRD7, and RPL22) that were reported to show
all four types of somatic alterations. To gain further insights into
the genes with reported somatic mutations, their gene expres-
sion (tumor/normal fold-change) and clinic-pathological clinical
information (histologic grade and survival) from the TCGA HCC
cohort are also presented.
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Table 2: Summary of mutations in liver cancer identified through high-throughput genomics data including their association with gene ex-
pression and clinical phenotype

Histologic grade Survival
N Gene expression fold- " Cases Median
No.| Gene Point | jels | Structural | Copy number | . intceatce | M9 61| 62| 63|ca| G un | 1O | decease | survival References
mutations variants | alterations (||t) Exp Cases
dataset (T/N) d days
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
1 ALB . . . ! 0.96 HIGH | 5 [21(11] 1| 48 86 9 268 Ahn et al., (2014) Hepatology, 60, 1972-82.
LOW [ 5 (20)|16] 2 [ 42 85 6 228 Fernandez-Banet et al., (2014) Genomics, 103, 189-203.
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
Guichard et al., (2012) Nature Genetics, 44, 694-698.
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
) ARID2 . . . 0 2 HIGH | 4 |24]15] 1 42 86 6 91 Schu!ze e? al., (2015) Nature Genetics, 47, 505-11.
- Low 6 |17]112] 2 48 85 9 410 Shirashi et al., (2014) PLoS ONE, 9, e114263.
Guichard et al., (2012) Nature Genetics, 44, 694-698.
Lietal., (2011) Nature Genetics, 43, 828-9.
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
3 RB1 . . . 1 1.04 HIGH 312311811 | 41 86 8 91 Schulze et al., (2015) Nature Genetics, 47, 505-11.
LOW | 7 (18[9 | 2| 49 85 7 4825 Ahn et al., (2014) Hepatology, 60, 1972-82.
Kan et al., (2013) Genome Research, 23, 1422-33.
Letouze et al., (2017) Nature Comm., 8, 1315.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
wiah | 6|23 19] 4 a7 86 E 171 Schulze et al., (2015) Nature Genetics, 47, 505-11.
4| ReL2z2 * * ° ¢ 10 tow |4 [18|8|2] 53 [ 85 8 410
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
wieh | 7 |24l17] 1| 37 86 9 228 Shirashi et al., (2014) PLoS ONE, 9, e114263.
5| sror * y * t .03 tow |3 |17|10f2| 53 | 85 6 2905
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HicH | 3 [17]17] - 49 86 7 228 Schulze et al., (2015) Nature Genetics, 47, 505-11.
6 | RPS6KA3 . . . 1.03 tow | 7 12al10] 3| 41 85 8 290.5 Ahn et al., (2014) Hepatology, 60, 1972-82.
Shirashi et al., (2014) PLoS ONE, 9, e114263.
Guichard et al., (2012) Nature Genetics, 44, 694-698.
Letouze et al., (2017) Nature Comm., 8, 1315.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
. ARIDIA . . . 065 HIGH 5|25]|14] - 42 86 8 228 nglmolo etal., (2012) Nature Geng!lcs, 44,760-4.
- LOW 51613 3 48 85 7 290.5 Guichard et al., (2012) Nature Genetics, 44, 694-698.
Huang et al., (2012) Nature Genetics, 44, 1117-21.
Letouze et al., (2017) Nature Comm., 8, 1315.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
HIGH | 5 |21]12] 1 47 86 7 323 Guichard et al., (2012) Nature Genetics, 44, 694-698.
8 | CDKN2A ° ° ¢ 108 tow |5 |20|15[2| 43 | 85 8 268
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
ek | 312016 e 86 10 01 Schulze et al., (2015) Nature Genetics, 47, 505-11.
- Shirashi et al., (2014) PLoS ONE, 9, e114263.
9| PTEN * * ° 102 tow |7 [21|11] 3] 43 | 85 5 410 )
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
wor | s l21015] 4 W o6 s 131 Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
10 ACVR2A . . . 1.02 tow | 5|20|12f[2| 46 | 85 7 3875 @019)
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Shirashi et al., (2014) PLoS ONE, 9, e114263.
wiah | 8 |23 12 . 86 10 83 Kan et al., (2013) Genome Research, 23, 1422-33.
| treis * * ¢ 118 tow |2 [18|15| 3| 47 | 85 5 101
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Shirashi et al., (2014) PLoS ONE, 9, e114263.
HIGH | 4 |17]19| 1| 45 86 5 91
12/ HNF4A ¢ * * 9 Low |6 [24|8]2]| 45 85 10 4825
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Totoki et al., (2014) Nature Genetics, 46, 1267-73.
HIGH [ 2 |19(14] 1 50 86 5 91
13| NeaTs * * ° 108 tow |8 [22|13| 2| 40 | 85 10 410
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HIGH [ 4 |20(10] 1 51 86 8 131
1] cpst * ° ° 101 tow |6 [21|17| 2| 39 | 85 7 387.5

The table indicates the nature of the mutation (single-nucleotide variant [SNV], indels, structural variants, or copy number alterations) in the coding regions. The
fold-change of the gene is obtained from the TCGA microarray analysis on HCC patient samples. Histologic grade refers to degree of tumor grade: G1 to G4; G.un
indicate cases with unidentified histologic grading. The cases are segregated into HIGH or LOW based on their median gene expression (Median Exp). SNVs and indel
mutations are indicated by the yellow box (e), structural variants by the blue box (e), and copy number alterations by the gray box (| |1).
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Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
Ahn et al., (2014) Hepatology, 60, 1972-82.
Jhunjhunwala et al., (2014) Genome Biology, 15, 436.
15 P53 . . 0.97 HIGH | 2 [21)17| 2 44 86 6 108.5 Shirashi et al., (2014) PLoS ONE, 9, e114263.
) LOW (8 ]20|10] 1 46 85 9 460 Cleary et al., (2013) Hepatology, 58, 1693-702.
Kan et al., (2013) Genome Research, 23, 1422-33.
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
Huang et al., (2012) Nature Genetics, 44, 1117-21.
Li et al., (2011) Nature Genetics, 43, 828-9.
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
Ahn et al., (2014) Hepatology, 60, 1972-82.
Jhunjhunwala et al., (2014) Genome Biology, 15, 436.
HIGH 2314 1 42 7 1
16 [ CTNNB1 . . 1.1 L(;;W S 12 13| 2| a8 gg 8 337 5 Cleary et al., (2013) Hepatology, 58, 1693-702.
h Kan et al., (2013) Genome Research, 23, 1422-33.
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
Guichard et al., (2012) Nature Genetics, 44, 694-698.
Lietal., (2011) Nature Genetics, 43, 828-9.
Letouze et al., (2017) Nature Comm., 8, 1315.
Ng et al., (2017) Sci. Transl. Med., 9, eaan6446.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
1 S HicH | 6 [22]13] 1 44 86 6 228 Ahn et al., (2014) Hepatology, 69. 1972-82.
AXIN1 . . A ow | 4 [19]14] 2 46 85 9 2905 Femar}dez-Banet etal., (2014) Gencmlgs. 103, 189-203.
Jhunjhunwala et al., (2014) Genome Biology, 15, 436.
Kan et al., (2013) Genome Research, 23, 1422-33.
Guichard et al., (2012) Nature Genetics, 44, 694-698.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
Shirashi et al., (2014) PLoS ONE, 9, e114263.
18 APOB . . 06D HIGH 411912 1 50 86 5 8925 Kan et al., (2013) Genome Researc_h, 23, 1422-33.
. Low |6 |22]15] 2 40 85 10 268 Guichard et al., (2012) Nature Genetics, 44, 694-698.
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
Jhunjhunwala et al., (2014) Genome Biology, 15, 436.
HIGH | 5 [22)15]( 1 43 86 7 91
o) Bapt . . 12 tow |5 [19[12| 2| a7 | s 8 410
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HIGH | 5 [24)16( 1 40 86 7 365
0| TERT ° ° 097 tow [s[17]|11] 2| 50 | &5 8 171
Letouze et al., (2017) Nature Comm., 8, 1315.
Schulze et al., (2015) Nature Genetics, 47, 505-11.
HIGH | 3 [23 )14 2 44 86 8 410
21| CDKN1A * ¢ BED LOW (7 |18|13| 1 46 85 7 46
Totoki et al., (2014) Nature Genetics, 46, 1267-73.
ANKRD30B HGH |- | -] -|-| - - - -
22 N . . 1.50 ow |1 i i i
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
HIGH 5126|113 - 42 86 9 228
23| ARID1B y . 09 tow |5 [15[14|3| 48 | 85 6 2905
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HIGH | 4 [20) 14| 1 47 86 7 68.5
24| ASHIL ° ° o1 tow |6 21|13 2| 43 | &5 8 4825
Shirashi et al., (2014) PLoS ONE, 9, e114263.
HIGH 7121|141 43 86 9 555
25| coreae : . 00 tow |3 |20[13|2]| 47 | 85 6 91
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
HIGH [ 3 |26|10] - 47 86 9 365
2| ERRFIT ° ° 100 tow |7 [15|17|3 | 43 | &5 6 171
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
HGH | - -] -] - - - - -
27 MLL . . - ow | Lt i i .
Fujimoto et al., (2012) Nature Genetics, 44, 760-4.
HIGH [ - | - | - | - - - - -
28| MLL3 . . - ow | - --1-1 - - _ -
Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HGH [ - | -] -|-| - - - -
29 | muct7 . . 1.05 ow |1 - - )
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Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HIGH | 4 |16 16 1 49 86 4 91
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Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
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Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
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Fujimoto et al., (2016) Nature Genetics, 48, 500-9.
HIGH [ 6 |22|13( 2 43 86 8 171
33| PER3 . L 0% tow |4 |19f14| 1| a7 | s 7 410
Letouze et al., (2017) Nature Comm., 8, 1315.Schulze et al.,
(2015) Nature Genetics, 47, 505-11.
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Figure 1: Summary of NGS databases in liver cancer showing its current and potential research direction.



ARID2 belongs to the SWI/SNF-related chromatin remodel-
ing complexes and is identified as a tumor suppressor that is
frequently mutated in HCC patients [22, 42, 48]. In addition,
gene expression profiling of ARID2-deficient HCC cell lines re-
veals negative regulation of UV-response gene sets, suggesting
that ARID2 may be involved in DNA repair processes [57]. ARID2
is also involved in HCC via the effects of hepatitis B and C in-
fection. In HBV-related HCC, the HBV X protein is reported to
suppress ARID2 expression, leading to increased hepatoma tu-
morigenesis [58]. ARID2 mutations are also significantly asso-
ciated (P = 0.046) with HCV-related HCC [22]. These findings
suggest that ARID2 is a critical tumor suppressor in hepatitis
virus-related HCC progression.

Similar to ARID2, BRD7 is also a component of the SWI/SNF
remodeling machinery and a putative tumor suppressor re-
ported with significant truncating mutations in HCC [55]. Loss-
of-function mutations at the BRD7 gene locus are frequently ob-
served (7/268) in HBV-associated HCC patients [33]. BRD7 expres-
sion is also reported to be associated with the clinical character-
istics in HCC (tumor size, tumor stage, and survival) [59]. HCV
infections repress BRD7 expression in vitro, resulting in the dys-
regulation of hepatoma cell proliferation [60]. BRD7 also nega-
tively regulates PI3K signaling by binding to the inter-SH2 (iSH2)
domain of p85, leading to the impairment of p88/p110 complex
formation [61].

The ALB gene encodes for the most abundant plasma protein,
albumin, synthesized exclusively by hepatocytes [41]. Blood al-
bumin tests that deviate from the normal healthy range often in-
dicate dysregulation of protein production in the liver and other
liver-associated issues. Somatic mutations at the ALB gene locus
were reported in multiple studies, including genomic rearrange-
ments in 10% (9/88) of Chinese HCC patients [41] as well as point
mutations clusters and indels in Japanese HCC patients [33]. ALB
is touted as a liver cancer driver gene as it is significantly en-
riched with damaging mutations in the European population
[50]. Highly expressed genes such as ALB and APOB have been
shown to be strongly enriched with indels, which are charac-
teristic of replication slippage errors resulting from conflicts be-
tween the replication and transcription machineries [51]. Hence,
low albumin levels may contribute to liver cancer progression.

RB1 is a key inhibitor of cell cycle progression that harbors
multiple nonsense mutations and genomic deletions in HCC pa-
tients [33, 42, 43, 50]. RB1 is found to be predominantly mutated
in Asian Americans (10/53 patients) as compared to European
Americans (2/101 patients) [62]. The inactivation of the RB path-
way in Rb family triple knockout mice resulted in the develop-
ment of HCC [63]. A study reveals that in 16/40 HCC patients,
DNA methylation abnormalities were observed in CpG island 85
(CpG85) located within intron 2 of the RB1 gene, which can po-
tentially regulate the expression of the RB1-E2B alternative tran-
script [64]. In addition, RB1 mutations are also significantly asso-
ciated with reduced cancer-specific and recurrence-free survival
after resection in HCC patients [43, 50]. It is thus worthwhile to
further characterize RB1 mutations, as they are reported to have
a significantly higher mutation rate in HBV-related HCCs [42, 43].

RPL22, another gene that is reported to exhibit all 4 different
types of mutations (single-nucleotide variant, indels, structural
and copy number variation), encodes for a ribosomal 60S subunit
protein. It was reported to be significantly mutated in Japanese
(5/268 patients) and European (7/242) HCC patients [33, 50]. RPL22
was identified through pan-genomic characterization as a driver
gene with significant somatic alterations in adenocortical carci-
noma [65]. A study of microsatellite instability-positive gastric
cancers also identified RPL22 as a recurrently mutated gene with

single base deletions [66]. Therefore, there is potential for more
research to be conducted to fully determine the functional roles
of RPL22 in HCC.

The HBV genome often integrates into the chromosomes of liver
cells, resulting in alterations of the host genome. Recent findings
have confirmed that the viral transcription/replication initiation
site, DR1 (located near the 3’ end of the HBx gene and the be-
ginning of the Precore/Core gene), is the preferred region to be
integrated into the host chromosome [11, 17, 19]. More HBV in-
tegration events were identified in tumor as compared to their
matched normal samples [18]. In HCC tumors, studies show that
HBV integration was randomly distributed throughout the hu-
man genome [17, 18, 33]. In a group of 48 HCC patients from the
Singapore cohort, HBV integrations were significantly enriched
in the q arm of chromosome 10 and correlated with poorly dif-
ferentiated tumors [19].

From the NGS studies, we have consolidated a comprehen-
sive table of viral integration events that occurred in HCC pa-
tients (Table 3). There are multiple integration events in the
promoter, 3'UTR, coding sequence and/or intronic region of the
CCNE1 [67], TERT [19, 35, 37], CDK15 [37], ROCK1 [18], FN1 [68],
APOA2 [67], and MLL4 [17, 18, 67] genes. HBV was reported in
several studies to integrate into the CCNE1 and TERT genes [18,
33, 53]. CDK15, ROCK1, FN1, APOA2, and MLL4 are less frequently
reported to be sites of integration for HBV.

CCNE1 encodes for the cyclin E1 protein that is a regulatory
subunit of CDK2 involved in the G1/S phase of the cell cycle.
CCNE1 amplification has been reported to be the mechanism
of resistance in ER-positive and HER2-positive breast cancers
as well as high-grade serous ovarian cancer [69-72]. HBV inte-
grations within the CCNE1 have been reported in 4 of 76 HBV-
positive HCC samples and resulted in significantly increased ex-
pression of CCNE1 [18]. The molecular mechanism of CCNE1 mu-
tations in HCC patients has yet to be fully elucidated.

The previously reported recurrent integration site at the TERT
promoter was found by several high-throughput genomic stud-
ies to be the most frequent site for integration [19, 33, 73, 74]. Dis-
ruption of the TERT promoter is likely to cause the dysregulation
of the telomerase reverse transcriptase (TERT) expression, which
plays important roles in cancer development due to its diverse
telomere-independent functions in Wnt pathway signaling, cell
proliferation, and DNA-damage repair [75]. Viral sequences may
act as enhancers where the closer the HBV is integrated to the
transcription start site of TERT, the higher the mRNA expression
of TERT [19].

Chimeric HBx/MLL4 fusion transcripts containing the HBx
promoter and Open Reading Frame (ORF)fused to the exon 4
and 5 of MLL4 were initially detected in 4 of 10 HCC patients
[76] and subsequently confirmed in later studies and reported to
lead to increased MLL4 expression [17, 18, 67]. In a Chinese co-
hort, 8 of 44 patients were found to have HBx/MLL4 fusion tran-
scripts, resulting in a higher expression of MLL4 gene [67]. The
chimeric transcript lacks the AT-hook DNA-binding domain of
MLL4, hence, it may act as a dominant negative allele [17].

CDK15 encodes for the cyclin-dependent kinase 15 and
is a serine/threonine protein kinase. In one study, CDK15
contributed to the effects of tumor necrosis factor-related
apoptosis-inducing ligand resistance by possibly regulating the
phosphorylation of survivin (Thr34) [77]. Interestingly, multi-
ple HBV-CDK15 fusion transcripts were detected in an HCC pa-
tient, including one in-frame fusion, which caused CDK15 over-



Table 3: Summary of HBV viral integration events occurring in HCC patients identified through high-throughput genomics data
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The table indicates the genes and where the integration events occur. The fold-change of the gene is obtained from the TCGA microarray analysis on HCC patient
samples. Histologic grade refers to degree of tumor grade: G1 to G4; G_un indicates cases with unidentified histologic grading. The cases are segregated into HIGH or
LOW based on their median gene expression (Median_Exp).
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expression [37]. However, like many of the other genes where
HBV integrations have been identified, the function of CDK15 in
HCC remains unclear. Hence, there is great potential to further
investigate HBV integrations in HCC.

It is noteworthy that CCNE1, TERT, and ANGPT1 not only har-
bor somatic mutations (Table 2), they are also reported to be
sites for viral integrations (Table 3). CCNE1 has been reported
with structural variant alterations and HBV integrations, while
TERT has been reported with point mutations, structural vari-
ant alterations, and HBV integrations, suggesting that deregula-
tion of these genes may play important roles in tumorigenesis.
ANGPT1 (Angiopoietin-1), a ligand for Tie2 vascular endothelial-
specific receptor tyrosine kinase, involved in the induction of
HCC neovascularization and disease progression [78-80], was re-
ported to harbor point mutations and HBV integrations in its in-
tronic regions. ANGPT1 and Angiopoietin-2 (ANGPT2) were over-
expressed in 68 and 81 percent of poorly differentiated HCC tu-

mors, respectively [81]. However, high ANGPT2 expression, but
not ANGPT1, showed correlation in the disease-free survival of
60 HCC patients [82]. The role of ANGPT1 in tumor angiogenesis
remains unclear.

Pathway analysis based on the Kyoto Encyclopedia of Genes and
Genomes (KEGG) was performed using the Database for Anno-
tation, Visualization and Integrated Discovery (DAVID v6.8) to
identify pathways that were altered by somatic mutations in the
TCGA HCC cohort [83, 84]. Seventy-nine of the 85 genes in our
list of somatic mutations have identifiable DAVID IDs, of which
45 genes can be categorized in KEGG pathways. Fifteen signifi-
cant pathways were identified (FDR <0.05) from the 45 genes, of
which 14 genes are found to be involved in more than one of the
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Figure 2: Reported genes with somatic mutations that are significantly involved in KEGG pathways.

pathways (Fig. 2). All 14 genes are involved in pathways in can-
cer, including other significant cancer types: prostate, endome-
trial, glioma, melanoma, chronic myeloid leukemia, colorectal,
pancreatic, bladder, and non-small lung cancer. The associa-
tion of the genes with the PI3K-Akt signaling pathway and the
regulation of pluripotent stem cells also reflect the importance
of these somatic mutations. Lastly, the analysis also reported
viral-associated pathways such as hepatitis B, viral carcinogene-
sis, and Human T Lymphotropic Virus Type 1 (HTLV-1) infection,
where the interplay between somatic mutations in genes and
viral integration events come together to give a bigger picture
represented by overall changes in the biological pathways.

Mutational signatures are well-categorized somatic muta-
tions with distinct nucleotide substitutions. These signatures
are often identified through principal-component analysis of the
trinucleotide mutation context, with 96 possible combinations
of the mutated nucleotide including the bases 5’ and 3’ to each
site [33]. There are currently 30 mutational signatures listed in
the Catalogue of Somatic Mutations in Cancer (COSMIC), where
some of these signatures represent exposure to mutagens, er-
rors in the DNA replication machinery, or defective DNA repair
[85].

Fujimoto et al. (2016) was able to identify seven distinct mu-
tational signatures (W1-W7) in HCC patients. Three of the seven
signatures (W1, W4, and W5) were found in multiple studies [33,
50, 55]. These recurrent signatures correspond well to COSMIC
Signature 1, Signature 4, and Signature 16, which are proposed to
be caused by the spontaneous deamination of 5-methylcytosine,
tobacco mutagens, or unknown factors, respectively [85]. Other
COSMIC signatures identified include Signature 9, Signature 12,
and Signature 19, which are linked to somatic hypermutation,
liver cancer, and unknown factors, respectively [86]. Signature

W6 was not associated with any COSMIC signatures and, thus,
represents a new mutational signature. A further meta-analysis
performed by Letouze et al. (2017) identified 10 mutational sig-
natures including COSMIC Signatures 1, 4, 5, 6, 12, 16, 17, 22, 23,
and 24 [51]. A mutational signature characterized with increased
C>A transversions was a major contributor to the driver muta-
tions found in HCC patients exposed to aflatoxin B1 [40]. A high
proportion of Taiwanese HCC patients marked with aristolochic
acid mutagen exposure had T>A mutations that corresponded
to COSMIC signature 22 [47]. The AA signature was also found to
be higher in HCC patients from China and Southeast Asia and
much lower in Japan, America, and Europe. A prominent muta-
tional signature was also identified after cisplatin treatment in
human liver cancer cell line HepG2 [87]. Mutational signatures
not only allow us to appreciate the mechanisms underlying so-
matic mutations in HCC tumors but they could relate to muta-
tional processes in other cancer types with related etiology.

Multi-omics analysis combine results from more than one
type of data to give us a more comprehensive view of biolog-
ical profiles. Boyault et al. (2007) conducted an unsupervised
transcriptome analysis to identify six subgroups of HCC, G1-G6,
where G1-G3 are associated with chromosomal instability, G5-
G6 are related to g-catenin mutations, and G4 is a heterogenous
group [88]. The association between HCC transcriptome sub-
classes, G5-G6, involved in Wnt pathway activation and CTNNB1
mutations has been validated using WXS data in a later study
[48, 88]. In addition, multi-omics analysis shows that there is a
correlation between gene expression profiles from RNA-seq data
and allele frequencies of somatic mutations from WGS, high-
lighting 252 genomic mutations that cause transcriptomic aber-
rations [37].



With the large number of available NGS-based HCC studies,
there is an opportunity to integrate data across studies to pro-
vide greater statistical power and elimination of potential bi-
ases from a single cohort study. Zhang et al. (2014) collected four
datasets containing 99, 88, 10, and 10 HCC samples to identify
known and also novel mutated genes and pathways [89]. This
study illustrated that larger sample sizes can identify mutations
atlower frequencies in HCC than in smaller sample cohorts. As a
second example of data integration, using combined liver cancer
data from ICGC and TCGA to analyze the association of ances-
try to HCC mutational signatures, an increase in T>C substitu-
tions (in the ATA context) in Japanese males and an increase in
T>A substitutions (in the CTG context) in US-Asian males and
females were also reported [55].

Non-coding DNA makes up more than 98 percent of the human
genome and include crucial transcription factor binding sites
that regulate the transcription of RNA. Non-coding RNA includes
introns, 3’ and 5 UTR located in pre-mRNAs as well as microR-
NAs and long non-coding RNAs (lincRNAs) [90, 91]. The func-
tional annotation of non-coding elements from the Encyclope-
dia of DNA Elements consortium and the US National Institutes
of Health Roadmap Epigenomics project have provided support
for the study of non-coding regions of human DNA [92, 93]. Can-
cer whole-genome data from TCGA have been intensively ana-
lyzed to identify mutations in the non-coding regions. For exam-
ple, two pan-cancer studies have shown that TERT promoter mu-
tations are present in atleast six cancer types including glioblas-
toma, bladder, low-grade glioma, melanoma, and lung (and liver
which is analyzed in one of the studies) [68, 94].

TERT promoter mutations are detected in 254 of 469 cases
of HCC (54%) and more frequently detected in HCV-positive and
non-viral cases than HBV-positive cases [55]. A more in-depth
study reveals other noncoding mutations in NEAT1, MALATI,
WDR74 promoter, BCL6 promoter, and TFPI2 promoter [33]. Non-
coding DNA analysis is challenging because many of the non-
coding mutations are reported at lower mutation frequencies
and at DNA locus with limited information regarding its func-
tion. We may overcome limitations in sample size and statistical
power of patient datasets by analyzing an increased number of
liver cancer whole genomes. Hence, there is potential to better
characterize non-coding regions in the future.

In addition to HBV integration, recent reports of the observation
of integration of the wild-type adeno-associated virus 2 (AAV2)
in 11 of 193 cases of HCC via deep sequencing [49, 95] have
sparked a debate regarding the safety issues of using AAV2 as
a gene delivery vector in gene therapy [96-99]. Coincidently, the
AAV2 integrations were detected in several recurrent mutation
sites in HCC including the TERT promoter, MLL4, CCNE1, CCNA2,
and TNFSF10 [49, 100].

In an independent study, Fujimoto et al. (2016) detected AAV
genome sequences in three liver cancer and three non-cancer
liver cases. These three liver cancer cases were also infected
with either HBV or HCV, and the AAV2 integration sites were lo-
cated at MLL4, CCNE1, and an intergenic region of chromosome
5, respectively [33]. HBV integration sites were detected at the

CCNAZ2 locus in one patient in this study as well as an early, well-
differentiated HCC patient [12]. With these observations, addi-
tional analyses are necessary to evaluate the prevalence and ef-
fects of AAV2 integration events in liver cancer and in gene ther-
apy. The extensiveness of WGS data is therefore applicable to
the detection of foreign genomic material present in the human
genome that may influence the development and the treatment
of liver cancer.

RNA editing caused by the deamination of nucleotide bases
on an RNA sequence is catalyzed by the nucleotide-specific
deaminases. Historically, transgenic mice and rabbits express-
ing mRNA editing enzyme APOBEC-1 (C-to-U editing) resulted in
unexpected liver dysplasia, with a few of the mice developing
HCC [101]. The main form of RNA editing is A-to-I editing cat-
alyzed by the adenosine deaminase acting on RNA (ADAR) (A-
to-I editing) family [102].

A genome-wide study that used both WGS and RNA-seq data
reported normal and tumor-specific RNA editing sites in HCC
as well as the positive correlation between editing degree ra-
tio and gene expression ratio [39]. Results show that the in-
creased expression of ADAR1 resulted in the over-editing of the
AZIN1 gene in HCC tumors, confirming the findings from a pre-
vious study [103]. Another genome-wide study showed that in
addition to AZIN1, the BLCAP RNA has been over-edited (A-to-I
editing) in HCC, and functional analysis suggests that the over-
edited BLCAP resulted in enhanced cell proliferation and the ac-
tivation of the AKT/mTOR signal pathway [104]. Two pan-cancer
studies involving A-to-I RNA editing using data from TCGA re-
ported no significant differences between matched normal and
tumor samples, although a high Alu editing index in HCC has
been significantly associated with poor survival [105, 106].

With rapidly falling costs and newer technologies, the number of
whole genomes sequenced in the next 10 years is projected to in-
crease dramatically [107]. Larger sample sizes will provide better
statistical power to detect rare variants and subgroups of liver
cancer, particularly in HCC. For example, a large-scale whole-
genome study conducted on the Icelandic population identified
missense SNP variants in ABCB4 to be associated with gallstone
disease, liver cancer, liver cirrhosis, and other liver-specific traits
[108, 109]. There are currently several international collabora-
tions to generate more cancer whole genomes. The Pan-Cancer
Analysis of Whole Genomes is an international collaboration
between ICGC and TCGA to analyze more than 2,800 whole
genomes across different cancer types to identify genetic al-
terations, beginning with 12 tumor types profiled by TCGA, al-
though HCC was not included [110]. Additionally, the 100,000
Genomes Project by Genomics England in the United Kingdom
will consist of samples from 25,000 cancer patients [111].

In this review, we have discussed the key findings from WGS
information (Fig. 1) and future directions of HCC. WGS is a
promising approach that provides genomic information for
discovery-based genomic analyses in the future. Hence, it holds
great potential for liver cancer research as we seek to under-
stand more about the genetic characteristics of HCC, which
is influenced by gender, ethnicity, geolocation, and many risk



factors. This review identified genes with somatic mutations
(Table 2), many of which are involved in cancer-related pathways
(Fig. 2). Many of the mutated genes are yet to be characterized
for their molecular function and roles in cancer, presenting great
opportunity for future research in this direction. With improved
clinical annotation and the automation of data analysis, more
genomic sequences can be translated into valuable biological in-
sights.

AAV2: adeno-associated virus 2; COSMIC: Catalogue of Somatic
Mutations in Cancer; DAVID: Database for Annotation, Visualiza-
tion and Integrated Discovery; HBV: hepatitis B virus; HCC: hepa-
tocellular carcinoma; HCV: hepatitis C virus; ICGC: International
Cancer Genome Consortium; indel: insertions and deletions;
KEGG: Kyoto Encyclopedia of Genes and Genomes; NGS: next-
generation sequencing; RNA-seq: RNA sequencing; SNP: sin-
gle nucleotide polymorphism; SNV: single-nucleotide variant;
SRA: Sequence Read Archive; TCGA: the Cancer Genome Atlas;
TERT: telomerase reverse transcriptase; WGS: whole-genome se-
quencing; WXS: whole-exome sequencing; EMBL-EBI: European
Molecular Biology Laboratory - European Bioinformatics Insti-
tute;
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