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A unifying framework for interpreting and
predicting mutualistic systems

Feilun Wu', Allison J. Lopatkin', Daniel A. Needs!, Charlotte T. Lee® 2, Sayan Mukherjee® & Lingchong You'#4>

Coarse-grained rules are widely used in chemistry, physics and engineering. In biology,
however, such rules are less common and under-appreciated. This gap can be attributed to
the difficulty in establishing general rules to encompass the immense diversity and com-
plexity of biological systems. Furthermore, even when a rule is established, it is often chal-
lenging to map it to mechanistic details and to quantify these details. Here we report a
framework that addresses these challenges for mutualistic systems. We first deduce a
general rule that predicts the various outcomes of mutualistic systems, including coexistence
and productivity. We further develop a standardized machine-learning-based calibration
procedure to use the rule without the need to fully elucidate or characterize their mechanistic
underpinnings. Our approach consistently provides explanatory and predictive power with
various simulated and experimental mutualistic systems. Our strategy can pave the way for
establishing and implementing other simple rules for biological systems.
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utualism, where two or more populations provide

reciprocal benefit, is an essential type of ecological

interaction!. In marine ecosystems, coral reefs are based
on mutualistic interactions between coral and algae, and provide
ecosystem services for humans and habitats for diverse organ-
isms?. Plant-bacterial mutualism is estimated to generate 60% of
the annual terrestrial nitrogen input. Mutualism also influences
microbial community structures and is the cornerstone of various
microbial metabolic tasks*>. Although mutualistic coexistence is
beneficial in maintaining the biodiversity, function and stability
of ecosystems, under some conditions mutualistic systems can
collapse, where one or more mutualistic partners is lost, and the
persisting partners also experience a reduction in fitness. This
perturbation can further trigger the loss or invasion of other
populations and alter ecosystem functions®°. A framework to
interpret and predict mutualistic outcomes is useful to prevent
undesirable system behaviors and provide guidance for mod-
ulating and engineering mutualistic systems.

Quantitative rules have been developed to elevate our under-
standing and provide predictive power for various biological
systems!0-13. However, such a framework is not yet available for
determining mutualism outcomes. Main barriers in developing
such a framework are the diversity of mutualistic interaction
mechanisms and the complexity of underlying dynamics. Indeed,
even engineered mutualistic systems that are by-design capable of
cooperation, may not coexist. For example, it is still difficult to
predict a priori whether an engineered microbial auxotrophic pair
can persist or not'4-16, Previously, theoretical criteria in the form
of inequalities have been developed for specific mutualistic

a b c
61
&
0=—>0
2
&
0y
d e
X‘ B Qualitative
 _
17
e 7 B/
i r Quantitative

systems such as cross-feeding mutualisms!”, plant-pollinator
mutualisms!8, seed-dispersal mutualisms!®, ant-plant mutual-
isms?0, and plant-mycorrhizal mutualisms?!. These criteria
depend on the underlying mechanisms assumed in the models
and are not applicable to other types of mutualistic systems.
General criteria have been developed?2-25, such as the classic
criterion which states that intraspecific competition must be
greater than mutual benefit for a mutualistic system to be stable2°.
However, these usually describe transitions between stable coex-
istence and unbounded growth, and fail to address the transitions
between coexistence and collapse and other mutualism
dynamics?7-28 (Supplementary Figure 1, Supplementary Note 1).

Here, we establish a general framework for predicting and
interpreting mutualistic systems. We first generate a wide variety
of mutualism mathematical models and identify a general rule
that predicts mutualism outcomes for all these models. We then
develop a calibration procedure using support vector machines
(SVMs) to apply the rule to various simulated and experimental
systems with different layers of complexities. The interpretation
and predictability provided by our framework demonstrate the
feasibility of describing a class of diverse biological systems with a
simple quantitative rule.

Results

Abstraction reveals a general rule. To reveal any commonality of
mutualistic systems, we first summarized the logic of mutualism
(Fig. 1a). Mutualism can be defined as the collective action of two
or more populations, where each population produces benefit (j3)
that reduces the other’s stress () at a cost (¢) to itself. 3, §, and ¢

B (0): effective benefit

2
15

© 15 1
1 05

1 3 5
B(0) > B
J: stress with the absence of partner
o] )
Q- x
1
o 1 I
f
Coexistence
Collapse  Coexistence
Collapse oy
[2]
C
[0}
Total density % /’
Probability of coexistence E
Resistance to cheating 1 B/s

Fig. 1 B and § are two driving forces that determine qualitative and quantitative mutualistic outcomes. a The basic logic of mutualistic systems. The two
partner populations are denoted by X; and X». 5 and 5, describe the level of benefit. £; and &, describe the cooperation cost of providing benefit. The two
populations also experience stress & and 5,. b Models originating from the basic logic of mutualism yield diverse coexistence criteria. Each line represents
the generation of a model from the basic mutualism logic and branching represents different implementation details and system complexities. The circles
represent the models and diverse coexistence criteria derived from these models. This process aims to reflect the diversity of mutualistic systems in
nature. ¢ A simple rule emerges at an appropriate level of abstraction. The lines represent the abstraction process that establishes B() > § as the common
structure shared by diverse models in panel b. B(8) represents effective benefit and is a complex function of model parameters 6, which include g and ¢. B
increases with increasing # and decreasing e. The heatmap is generated using Eq. (4). § is the stress experienced by one population. r,, is growth rate
measurement. Note that the color bar is dimensionless, and it is the same for all following color bars. d Intuitive interpretation of the simple rule. The
effective benefit B must overcome stress § for the system to coexist. Solid black line represents coexistence boundary and dashed black line represents
baseline fitness level with the absence of partner. Blue represents a B that is greater than & (coexistence) and yellow represents a B that is smaller than §
(collapse). e B/§ can predict various system outcomes. If the two features B and & are known, many downstream predictions, both qualitative and
quantitative, can be made. f Quantitative outcomes versus B/4. Simulation results show when B/§ > 1, it is predictive of total density. Note that the points
do not necessarily lie on a single curve, but a positive trend is well-maintained. Other quantitative outcomes also follow similar positive trends when plotted
against B/§
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Table 1 Examples of benefit, cost, and stress in diverse mutualistic systems
Category Partners Benefit Cost Stress
Transportation  Plants Increased fecundity®? Seed consumption and energy  Limited spatial range for
mutualism loss®2 63 reproduction
Seed dispersers or Access to nutrient-rich food Energy loss or by-product Starvation
pollinators mutualism
Protection Plants Increased fitness due to reduced Energy loss or by-product Consumption by herbivores
mutualism consumption from herbivores mutualism and competing plants
Ants Increased access to nutrients and shelter Energy loss or by-product Lack of suitable nesting sites®4
mutualism
Nutritional Bacterial and archaeal Increased nutrient availability in the Energy loss or by-product Nutrient-poor environments
mutualism auxotrophs environment mutualism
Nutritional Corals Higher rate of calcification and Reduced cover, growth and Nutrient-poor marine
mutualism conservation of nutrient®> fecundity®® environment
Algae Better habitat and increased availability ~ Energy loss, possible restricted Nutrient-poor marine
of inorganic compound®’ growth by coral®’ environment

are universal features of mutualistic systems (Table 1). In addition
to benefit and cost, which are conventionally considered as the
driving forces of mutualistic outcomes??-31, we included stress to
capture the reduction of baseline fitness of individual populations
from their maxima. Although stress is not always explicitly
acknowledged in previous models, evidence indicates that it is a
determining factor of mutualistic outcomes®2-34. Incorporating
stress can thus provide a more complete picture of mutualistic
behavior (see Supplementary Note 2.1 for the detailed reasoning).
Note that, in this study, we aim to capture ecological population
dynamics only, and do not explicitly include evolutionary
dynamics.

To reflect the diversity of natural mutualistic systems, we
systematically generated a total of 52 ordinary differential
equation models based on this basic logic of mutualism with
various implementation details (see Methods and Supplementary
Note 2.2 for model assumptions). These implementation details
are designed to comprehensively cover the various common and
plausible forms of kinetic models that have been adopted in
previous studies (see Supplementary Note 2.3 for a summary).
Specifically, the models all revolve around the logistic growth
equation but differ in the locations of 3, ¢, and § in the logistic
growth equations, enabling constant, linear and saturating effects
of &, as well as saturating effects of . Our models also include
complexities such as competition, asymmetry, and turnover rate.
We only increased the model complexity to an extent that closed-
form steady state solutions are obtainable (see Supplementary
Notes 2.3-2.5 for model construction rationales and details).

We derived coexistence criteria for all 52 models by requiring
the coexistence steady state to be real and positive. This allows us
to find the inequality that governs the transition between
coexistence and collapse. For example, the following simple
mutualism model has five fixed points (model 21 in Supplemen-
tary Table 1):

Xm—lx(l X,) 0 x (1)
dr ¢! Voo, 417

ax, 1 )
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dr € 2( 2) ﬂX1+1 2 (2)

The fixed point that represents coexistence is:
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For this fixed point to be real and positive, the following
inequality must hold (see Supplementary Note 3.1 for details):

(B+1)° @)
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Using this approach, our derived criteria exhibit diverse
structures (Fig. 1b, Supplementary Tables 1 and 2, also see
Supplementary Note 3 and Supplementary Software 1). The
diversity of our criteria is consistent with the diversity of criteria
that already exist in the literature!’-21. This diversity highlights
the need to have a general rule, since the appropriate model
formulation for a specific system is often unknown a priori and its
selection can also be nontrivial3>.

Despite the diversity, at an appropriate abstraction level,
however, all criteria follow a simple general form (Fig. 1c):

B(8)>9, (5)
where 6 denotes model parameters including f3, &, asymmetry,
turnover rate, and other model complexities. B(6) represents the
effective benefit produced through mutualistic interaction.
Quantitatively, B(0) increases with increasing 3 and decreasing
€ and its structure differs depending on the specific model. §
represents stress; it is determined as 1 —r,,, where r,, is the
growth rate of the population in the absence of its mutualistic
partner and normalized by its maximum growth rate. The
interpretation of our criterion is intuitive: mutualistic partners
can coexist if the effective benefit exceeds stress, and the system
collapses when the inequality is violated (Fig. 1d). Note that
although alternative forms of the criterion may exist, Eq. (5) is the
most intuitive and parsimonious form.

When both asymmetry and competitive interactions are
incorporated, the models can also exhibit transitions between
coexistence and competitive exclusion besides the transition
between coexistence and collapse. Although both transitions are
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Fig. 2 A streamlined approach to calibrate for an empirical B(v). a The rationale behind the calibration procedure. Conventional approaches (denoted by
dashed gray arrows) require quantifications of mechanistic parameters as functions of contextual variables 8(v) and finding the appropriate structure of B
() to construct B(A(v)). However, both steps are challenging and require case-by-case procedures. Instead, using qualitative outcomes of the system, we
can calibrate for an empirical function B(v) to approximate the true B(@(v)). B(v)/5 can then predict qualitative and quantitative outcomes. Dark blue
indicates the data that are relatively easy to measure without requiring mechanistic understanding of the interaction. b A schematic demonstrating the
mathematical basis of the calibration procedure. v; and v, represent two system variables. A circle represents an observation i at a particular v; = (vjy,vjp).
Five observations are shown. Y contains qualitative system outcomes for each observation. Closed circles indicate coexistence and open circles indicate
collapse; the same notation scheme is used for all following figures. § contains the measurement of stress for each observation (lighter colors indicate
higher values). Using v, Y, and §, a boundary that separates the two outcomes can be established (the red curve). According to our simple rule, B=§ on the
boundary; B> 6 for coexistence and B<§ for collapse. Using these data and our simple rule, we can calibrate for a B(v) which then enables the
interpretation and prediction of system outcomes. Refer to Supplementary Movie 1 for a 3D visualization of the calibration. ¢ Proof of principle using
simulated data. Simulations were performed using a complex mutualism model that does not have an explicit form of B(@) (see Supplementary Note 5.6).
The input data set contains 100 observations. § and calibrated B(v)share the same axes with Y (this applies to all following figures). B(v)/§ correctly
classifies 97.2% of 2500 new data points. B(v)/é is also predictive of total densities (only 100 data points are shown out of 2500). Black trace in the plot
named “Prediction” represents binned averages of total density (this applies to all following figures). See Supplementary Note 5.7 for the detailed step-by-

step calibration procedure

characterized by the loss of one or more populations, our model
dynamic shows that collapse corresponds to lowered fitness of
persisting partners, but competitive exclusion corresponds to an
increased fitness of persisting populations. While many mutua-
listic systems also have competitive interactions3©-38, the
transition to competitive exclusion cannot be generated by a
mutualism interaction alone (see Supplementary Note 3.3.7 for
more detailed discussion). Thus, we did not derive our criterion
to predict competitive exclusion.

Beyond determining qualitative system outcomes (coexistence
versus collapse), B/§ defines a general metric that is also positively
related to quantitative mutualistic outcomes (Fig. le), such as
final population density, probability of coexistence, and resistance
to cheater exploitation. The predictive power of the metric is
robustly maintained for both symmetric and asymmetric systems,
including obligate and facultative mutualistic systems (Supple-
mentary Figure 2a-f, Supplementary Note 4). Further, the
theoretical prediction accuracy of our criterion is also robustly
maintained in the presence of noise (Supplementary Figure 2g).
The generality of the metric indicates that it is a general property
of the class of mutualism models we have constructed and is a
quantitative description of a core characteristic of mutualism. If

s0, B is a high-level feature that, along with §, provides a unifying
framework for interpreting and predicting diverse mutualistic
systems.

A calibration approach to use the metric. Quantification of both
B and § are required to use the metric. Although § is often easy to
measure since it is a property of individual populations (see
Supplementary Figure 3 for the general quantification procedure),
quantification of B, which describes the interactions, is often
challenging. Beyond the difficulties of selecting an appropriate
structure for B(6), quantification of its underlying parameters
often requires nontrivial mechanistic characterizations, such as
parameter fitting and specific biochemical assays. These
mechanistic characterizations are especially challenging for
cooperative traits, even in well-defined synthetic systems39-41.
Applications of the criterion would thus be difficult for individual
systems, let alone enabling streamlined applications for diverse
mutualistic systems.

To bypass these challenges, we developed a calibration
procedure to use qualitative outcomes to directly quantify B as
an empirical function of experimentally controllable variables (v),
denoted by B(v) (Fig. 2a). Specifically, v consists of variables that
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modulate system outcomes directly or indirectly, such as
temperature, nutrient availability, genetic variation, initial seeding
distance, and the extent of intermixing. v measurements are often
readily available, especially in laboratory settings where they are
experimentally controlled independent variables. Thus, using
simple measurements, we can approximate the true B(6(v)) that
describes the diverse and complex interaction mechanisms
without characterizing the specific mechanistic details. The
calibrated B(v) along with &, will serve as the basis for
interpretation and prediction beyond initial data. Although the
procedure requires initial measurements of qualitative outcomes,
B(v)/§ can also provide predictive power for quantitative
outcomes (Fig. le). Based on our theoretical analyses, we then
expect B(v)/§ to be positively related to the final density,
probability of coexistence, and cheater resistance. Further, B(v)
can be used to reveal how multiple system variables collectively
alter the effectiveness of the interaction, which is a major
challenge in studying context dependency of mutualistic
outcomes*2.

We first defined the input-output relationship of the calibra-
tion procedure (Fig. 2b). Measurements of qualitative outcomes
are denoted as Y = [y1,52,¥3,...ys] (yi=1 for coexistence and —1
for collapse; i represents the index of an observation; n represents
the total number of observations). Measurements of & for the
same observations are denoted as & = [§,,0,,03,...0,]. Note that
theoretically, quantification of § for any partner is sufficient.
However, choosing the partner with a larger dynamic range of ¢ is
preferable since it can contain more information content. The
context variables are denoted by v = [v,v,,v3,...v,], where v; is a
vector that contains the values of all system variables for
observation i. With inputs Y, & and v, we can establish a smooth
boundary between coexistence and collapse described by F(6,v) =
0. To ensure B>J for coexistence and B<d for collapse, we
constrain F(8,v) >0 for coexistence and F(4,v) <0 for collapse.
Because B = § is true at the boundary, we can deduce that F(B,v)
=0. According to the implicit function theorem, if F(B,v) =0 is
continuously differentiable, the output B(v) is implied. A
calibrated B(v) can then enable downstream interpretation and
prediction.

To implement the calibration, we used the support vector
machine (SVM), a machine-learning algorithm for supervised
classification (see Supplementary Notes 5.1-5.4 and Supplemen-
tary Software 1). Assuming continuity of B(v), we used kernels
that are separable in § and v to obtain F(5,v)=0. We
implemented linear, quadratic, cubic, and sigmoidal kernels to
describe possible shapes of B(v). Because there are infinite
number of B(v) that can provide equivalently high-classification
accuracy, we ranked the B(v) obtained from different kernels and
different kernel parameters to find the B(v) that are closer to the
true B(0(v)) (Supplementary Figure 4a). The ranking method is
established using simulated data where the true B(6(v)) is known,
so that each B(v) can be evaluated against B(0(v))by coefficient of
determination (R%). We found that our procedure consistently
optimizes for R? (Supplementary Figure 4b, c; see Supplementary
Note 5.5 for figure details). The proper sample size for the
calibration can be evaluated using the exponential decay of bias
with increasing sample size*> (Supplementary Figure 4d).

Using this procedure, we first tested whether B(v)/§ can be
applied to mutualism models in which no explicit form exists for
B(0). To do so, we constructed an overwhelmingly complex two-
population model with competition, partner-density-dependent
cost, high Hill coefficient and asymmetric function structures (see
Supplementary Note 5.6, Supplementary Figure 5a). Model
parameters are functions of v; and v, (Supplementary Figure 5b).
Using an input data set of 100 points (Supplementary Figure 5c),
B(v)/écorrectly predicts coexistence versus collapse for 97.2% of

test data beyond the initial 100 data points. Detailed step-by-step
calibration procedure is shown in Supplementary Note 5.7. As
expected, B(v)/§ provides predictive power for quantitative
outcomes including total population size (Fig. 2c), probability
of coexistence (Supplementary Figure 5d) and resistance to
cheater exploitation (Supplementary Figure 5e).

Experimental applications in pairwise systems. We next applied
our framework to three experimental systems to test its applic-
ability. As the first example, we engineered two synthetic
mutualistic partners in Topl0F strain of Escherichia coli, denoted
by M; and M, (Fig. 3a, Supplementary Figure 6a). In this system,
stress is modulated by the concentration of Isopropyl B-D-1-
thiogalactopyranoside (IPTG), which induces the expression of
CcdB (a toxin). Independent from IPTG, anhydrotetracycline
(aTc) induces quorum sensing (QS) modules in both strains to
each produce a unique QS signal that triggers the production of
CcdA (the antitoxin of CcdB) in the partner population. The
production of aTc-induced expression of the QS module is
responsible for the mutual benefit and can impose cooperation
cost to both strains. Consistent with the circuit design, our
experimental results demonstrated IPTG-mediated growth sup-
pression and aTc-mediated mutual rescue (Supplementary
Figure 6b).

We cocultured the two strains starting from the same initial
density with different concentrations of IPTG and aTc, which are
the two dimensions of v. The outcomes of coexistence and
collapse are evident in the bimodal distribution of optical density
(OD) at 32h of culturing (Supplementary Figure 6c). § can be
quantified by treating monocultures with the same set of [IPTG]
and [aTc]. We used § for M, since it has a wider dynamic range
(Supplementary Figure 6d). Using these data (Fig. 3b), we
obtained a calibrated B(v) (Fig. 3c). The confidence of B(v) is
evaluated by the consistency of the top five B(v) and relative
standard deviation of each B(v) (Supplementary Figure 6e).
Consistent with the circuit logic, B(v) increases with increasing
[aTc]. The calibration reveals that [IPTG] also modulates B(v),
which indicates unintended system complexities, such as QS
cross-talk and unequal fitness of the two populations. We used
cross-validation to evaluate how well new observations can be
predicted. We found that B(v)/§ provides an average cross-
validation accuracy of 96.8% for coexistence versus collapse and it
is also predictive of total final density (Fig. 3d).

We then applied our procedure to data on a pair of
Saccharomyces cerevisiae auxotrophs that is previously pub-
lished3”. In this system, one strain cannot produce tryptophan
(Trp) and the other cannot produce leucine (Leu). The
mutualistic interaction of this system is realized by the exchange
of the two amino acids in cocultures (Fig. 3e). Because [Leu] is
maintained as eight times of [Trp], we used [Trp] as one
dimension of v to represent overall concentration of supplemen-
ted amino acid. The authors also varied the ratio of initial
densities which composes the other dimension of v (Fig. 3f,
Supplementary Figure 7a). All top five B(v) reveal that
intermediate ratios of initial density and increasing amino acid
concentrations elevate B(v) (Fig. 3g). However, at the highest level
of supplemented amino acid ([Trp] =16 nM, [Leu] = 128 nM),
top-ranked B(v) have qualitatively different trends, indicating a
low confidence of B(v) at high concentration (Supplementary
Figure 7b). Although our criterion does not apply to the
transition between coexistence and competitive exclusion, this
high variability coincides with the system transitioning into
competitive exclusion3’. Nevertheless, B(v)/d is still predictive of
final densities with an average cross-validation accuracy of 95.0%
(Fig. 3h). Furthermore, we explored using the concentration of
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Fig. 3 Application of the framework to experimental systems (see Supplementary Movies 2-4). a The QS-based mutualism system. IPTG modulates stress
and aTc induces QS-mediated mutualistic interaction. b Measurements of coexistence and collapse and corresponding & values. Coexistence and collapse
are measured by coculturing the two strains starting from the same initial densities. & is measured by OD of M, monoculture after 32 h of culturing. ¢
Empirical calibration of B(v). B(v) reveals how [IPTG] and [aTc] together modulate the effectiveness of the interaction. d B(v)/§ is predictive of
coexistence versus collapse and total final density. The x-axis range of [0.5-1.5] is used to highlight the transition (this also applies to other prediction
plots). The trend continues to hold beyond this range. The y-axis represents normalized final cell density. e The pairwise yeast auxotroph system. The
growth of both auxotrophs are suppressed in monocultures. With increasing Trp and Leu supplemented to the co-culture, the growth suppression can be
alleviated. f The amount of supplemented amino acid and ratio of initial densities modulate system behavior. Only [Trp] is shown and [Leu] is eight times
of [Trp]. The total initial density of the two strains are kept constant. Corresponding & values are measured based on growth yield of ALeu monocultures,
assuming & is independent of initial density. g Optimal effective benefit occurs at an intermediate ratio of initial density. h B(v)/§ is predictive of normalized
total cell number per culture well. i The 91 mutualism systems constructed by 14 engineered E. coli auxotrophs. Growth suppression is evident in their
inability to survive individually in minimal medium. However, two auxotrophs can potentially survive through mutualistic interaction in a co-culture by
exchanging amino acids. j System outcomes for all 91 pairs and & for each of the 14 auxotrophs. Note that for one pair, the calibration is done twice with & of
either strain. k The calibrated B(v) for E. coli auxotroph systems. | B(v)/§ is predictive of the normalized fold change of final total density relative to initial

density

supplemented amino acid as a single system variable. B(v)/d in
this case can also predict the probability of coexistence as the
ratio of initial densities varied (Supplementary Figure 7c).

In the third example, we applied our framework to previously
published measurements of 14 engineered auxotrophic E. coli
strains that compose 91 pairwise mutualistic systems** (Fig. 3i).
The genetic context of the two partners varies while the growth
environment was kept the same. The classification of coexistence
versus collapse is based on the bimodal distribution of total
density (Supplementary Figure 8a). § of each auxotroph is
determined based on final cell densities of monocultures when
supplemented with different concentrations of its corresponding
amino acid (Supplementary Figure 8b). We sorted the auxotrophs
by the number of partners they coexist with to convert categorical
indices into an ordinal scale. Thus, v is composed of ordinal
rankings of the two strains and measurements of coexistence
versus collapse and § are both arranged accordingly (Fig. 3j). We
used strain 1 as the reference strain for the calibration. The
calibrated B(v) generated a cross-validation accuracy of 91.8%
and we verified that B(v)/§ is predictive of final total density

(Fig. 3k, Supplementary Figure 8c). We noticed a relatively high
level of variability of total density when B(v)/d > 1, which can be
due to system-specific properties that are not fully accounted for
by mutualistic interactions.

Applications in more complex settings. In nature, mutualism
can occur among three or more partners®>. Thus, we tested our
framework with simulations and experimental measurements of
N-mutualist systems. Here, we show the calibration procedure
with simulated data from a 5-mutualist system and found that the
quality of the calibration results is well-maintained (Fig. 4a,
Supplementary Figure 9a, Supplementary Note 6.1). The study
that constructed the 14 auxotrophs#* also presented all possible
three-member double-auxotroph systems with the same set of
amino acid deficiencies. Using the same procedure with a three-
dimensional v, where each dimension represents one amino acid
the triplets are sharing, we found the predictor B(v)/d provides an
89.3% cross-validation accuracy and remains predictive of the
total density, which indicates the scalability of the framework in
experimental settings (Fig. 4b, Supplementary Note 6.2).
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Fig. 4 Application of the metric in complex settings. a A simulated mutualistic system with five partners. Parameters in the model are functions of two
independent variables. Using 100 data points, we obtained a B(v) through clibration. B(v)/§ successfully predicts coexistence versus collapse for 98.6% of
a new set of 2500 data points (100 points are shown) and it is also predictive of total density. b Experimental auxotrophic triplets that are comprised of 91
E. coli double-auxotrophs with the same set of amino acid deficiencies in Fig. 3i-k. This experimental validation demonstrates the generality of our
framework beyond pairwise interactions. ¢ A system that is modulated by an oscillatory signal. The oscillatory signal S is described by [ (intensity) and L
(duration). The signal modulates & and 8 temporally. | and L are the two system variables used in calibration. The procedure achieves a prediction accuracy
of 97.3% for new data. d A simulated mutualistic system that coinhabits with 5 other populations. X; and X, are the mutualistic partners. X3-X; are
bystander populations that either modulate or are modulated by X; and X,. B(v)/5 successfully predicts 92.3% of new data in this example

Additionally, we hypothesized that B(v) calibrated for pairwise
interactions can be used to directly construct a metric for three-
member systems, since theoretical analysis shows that #-member
B(0) can be approximated by pairwise B(6) (Supplementary
Table 2). We assume B of a three-member system is the average
of B for all three combinations of its underlying two-population
systems and the same is true for 8. The constructed B/¢ for three-
member systems can explain 80.8% of system outcomes (Sup-
plementary Figure 9b). This result suggests the possibility of
directly extending B and ¢ from simple systems to more complex
systems without further calibration.

Beside static environments, mutualistic systems can also
inhabit dynamic environments where they experience fluctuating
physical and chemical cues or cohabitate with other populations.
We verified that the theoretical criterion generally holds in both
cases (Supplementary Figure 10a). However, the transition
between collapse and coexistence does not strictly occur at 1,
which further advocates for the necessity of the calibration
procedure. With simulated data, we carried out the calibration
procedure and verified that the applicability of our framework is
well-maintained (Fig. 4c, d, Supplementary Figure 10b, Supple-
mentary Notes 6.3 and 6.4). The robustness of the framework
suggests that it can be used to study microbial communities, of
which advancements in both interpretation and prediction are in
demand“®.

Mutualistic systems can generate complex temporal dynamics.
For example, a mutualistic system that exhibits limit cycles has
been previously reported®’. The system is comprised of two E. coli
strains that one is resistant to ampicillin and the other is resistant
to chloramphenicol. When mixed together, the two strains
deactivate the antibiotic they are resistant to and provide
protection to the other sensitive strain (Supplementary Fig-
ure 1la). With periodic dilution, the relative abundance of the
two strains oscillate over time. We used the model published in
this previous study to simulate the growth dynamics at different

antibiotic concentrations (Supplementary Figure 11b). Despite
the oscillatory dynamics (Supplementary Figure 1lc), our
calibration procedure still reliably predicts coexistence versus
collapse and provides an average cross-validation accuracy of
96.8% (Supplementary Figure 11d, e).

Discussion

The immense complexity and diversity of biological systems is
intriguing and inspires the exploration of mechanistic details.
However, these details can distract us from simple rules that
emerge at a higher level. By abstracting away from low-level
details, many simple rules for biological systems have been
developed to enhance our understanding and provide predictive
power. A classic example is the Hamilton’s rule, which states that
a cooperative trait will persist if ; <r, where r is the relatedness of
the recipient and the actor; b is the benefit gained by the recipient;
and c is the cost to the actor. More recent examples include linear
correlations underlying cell-size homeostasis in bacteria8->0,
ranking of quorum sensing modules according to their sensing
potential’!>2, and the growth laws resulting from dynamic par-
titioning of intracellular resources>34.

Beyond establishing another simple rule, by focusing on
mutualistic interactions, we also demonstrated that one can
purposefully seek an appropriate abstraction level where a simple
unifying rule emerges over system diversity. If this rule anchors in
the basic definition of a type of system, it can then be applied to
diverse systems of the same type. Beyond microbial systems that
we tested, our criterion in principle can also be applied to other
systems of larger or smaller scales that share the same logic.

In our demonstrations, we have focused on the analysis of
homogenous systems. To account for the spatial dimension>>°9,
one can incorporate spatial variables into our framework as
context variables (v). For example, the context variable can be the
seeding distance of two partners or the degree of intermixing of
the seedings. Calibrated B(v) will then be dependent on these
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spatial variables. Alternatively, the criterion can be applied to
local segments where the homogeneity assumption is appropriate.
In general, it remains an open question whether and to what
extent our approach would be applicable if the mutualistic system
becomes much more complex than what we have tested, such as
systems consisting of multiple attractors that all correspond to
coexistence.

Although simple general rules in biology can be powerful tools,
their applicability to experimental systems can be limited by the
difficulties in associating the abstracted parameters to lower-level
mechanistic details and quantifying these details experimentally.
This is evident in the application of Hamilton’s rule to experi-
mental systems3®~41. For many inequality-based simple rules that
have been proposed and established!%°7-38, our calibration pro-
cedure provides a generally applicable tool to apply these rules
directly to experimental systems. If one side of the inequality and
some final outcomes can be measured or have been observed
historically, the other side can be calibrated as an empirical
function. Although our procedure cannot further dissect the
empirical function into specific mechanistic parameters, the
function can serve as an overall summary of the underlying
mechanistic details while bypassing the requirement of char-
acterizing them individually. Our approach thus can enable the
downstream interpretation and prediction by these simple rules
with readily accessible measurements.

Methods

Model development. We built mutualism models based on four key assumptions:

(a)  Benefit shall increase growth rate or carrying capacity and is positively
dependent on partner density.

(b)  Cost shall decrease growth rate or carrying capacity.

(c) Stress shall produce negative growth of populations at some parameter
combinations.

(d) Negative growth of a population shall be potentially counteracted by benefit
provided by a partner, but further strengthened by cost.

See Supplementary Note 2 for detailed reasoning and implementation of each
assumption.

Criteria derivation. We calculated the analytical solutions of fixed points of the 52
models using MATLAB R2017a. Then we identified the fixed points that represent
stable coexistence. The coexistence criteria are derived by ensuring the fixed points
are real positive numbers. We can then rearrange the inequality to have & on one
side. The other side of the inequality is then an expression of other parameters,
which is expressed as B(6). All criteria were verified using time course simulations.
More details are presented in Supplementary Note 3. The MATLAB code of the
models and the derivation and testing process is included in the Supplementary
Software 1.

Calibration procedure using SVM. We used SVM algorithms in MATLAB to
implement the calibration. The input data are formulated as following:

Label of coexistence versus collapse : Y = [y, -+, ¥, V- (6)
Systemvariables : v = [v ,---,v;,---,v,]. (7)
Stress of the reference population : 8 = [§;,---,0;,---,6,]. (8)

In Egs. (6)-(8), n represents total number of observations and each index
represents one observation. Y takes values of 1 or —1, which represent coexistence
versus collapse for each observation. v contains the coordinates where observations
are obtained and v; is a vector of which each element represents a context variable.
For a system with two system variables,v; = (v;1,v;2). 8 contains the stress level of
the reference population for each observation i. v and § are first standardized to v*
and &° that have mean of 0 and standard deviation of 1. For simplicity of
presentation, the following v and & are standardized.

We designed kernels that have additive separability between v and 8, which can
be expressed in a general form:

K<[v,-,8j], [v,.,aj]> =K. (vv;) +k5(5[-aj). 9)

K, is the kernel that dictates the shape of the empirical function of B and ks is a
kernel parameter. The predictor trained using SVM is:

(v 0) = Z ay K, (v, v) + ks‘sz @y;8; + Ao (10)

a; is the weight of observation i, and A, is the bias term. Both «; and A, are
optimized by the SVM algorithm. y;, ;, and §; are input values for observation i.

According to our criterion, we know that B = § when f([v,6]) = 0. We can then
derive By(v), a primitive function of B, from Eq. (10):

_ = YiayiK, (v v) — Ay

Bo(v) =4 ks> 0y;d;

(11)

To obtain B(v), Bo(v) is then adjusted for directionality and rescaled back
according to mean and standard deviation of the original § measurements.

To find the optimal B(v), we used linear, quadratic, cubic, and sigmoidal kernels
with a range of kernel parameters to train many different B(v). The optimal B(v)
has the lowest overall cross-validation classification loss and bootstrapped variance.
A final B(v) is then used along with & measurements for interpretation and
prediction. See Supplementary Note 5 for the detailed calibration method. For
graphical representations of the step-by-step procedure see Supplementary
Figure 4a and specifically Supplementary Note 5.7. We also have included in the
Supplementary Software 1 the calibration procedure and sample data
sets.

QS-based mutualism strains. The two strains were constructed based on circuit
components from a synthetic predator-prey system>%¢0. Both populations carry
two plasmids. Briefly, M; carries plasmids identical to the predator plasmids,
denoted Al for the module carrying ccdA (tet promoter®! driving luxR and lasI
followed by [ux promoter driving ccdA) and B1 for the module carrying ccdB (Lac
promoter®! upstream of ccdB followed by tet promoter upstream of gfp). To
construct M,, Al was used as backbone. To obtain orthogonal communication,
Kpnl and Notl restriction digest cloning was used to replace luxR/lasI genes from
A1 with lasR/luxI genes from the previously published prey plasmid (consisting of
pLac lasRluxI CcdB (KanR, p15A ori)). Reporter plasmid B1 is from>?. To construct
B2, enzymes Xhol and KpnlI were used to replace the tet promoter on prey plasmid
with the ccdB module from Bl. All M; and M, plasmids were verified using
restriction digest and sequencing.

Growth conditions of QS-based synthetic system. The experiments of QS-based
mutualistic system were done in 96-well microtiter plates. PH-buffered M9 med-
ium (M9 salt supplemented with 1 mM thiamine, 0.2% casamino acid, 0.4% glu-
cose, 2mM MgSOy,, 0.1 mM CaCl, and buffered with 100 mM MOPS with PH
adjusted to 7.0) was used. Totally, 50 ug/ml kanamycin and 100 pg/ml chlor-
amphenicol were added to the culture to maintain plasmids.

To measure circuit function, 4 ml LB media in a 14 ml culture tube was
inoculated from single colony and incubated overnight at 37 °C at 250 r.p.m. The
optical density is adjusted to 0.5 in M9 media (measured at 600 nm with TECAN
microplate reader) before use. Cocultures are created by mixing both strains in a
1:1 volume ratio. The culture is then diluted 10°-fold and cultured in 200 pL batch
culture at 30 °C in TECAN plate reader to record OD for 32 h with 10 min between
each reading. The inducers were added to the media at the beginning with cell
culture.

Code availability. The code used for data generation and/or analysis in the study
are available as Supplementary Software 1.

Data availability
The datasets generated during and/or analyzed during the study are available in the
Supplementary Materials.
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