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Abstract

A rapid, non-invasive urine test for early stage alcohol-induced liver disease (ALD) would permit 

risk stratification and treatment of high-risk individuals before ALD leads to irreversible liver 

damage and death. Urinary metabolomic studies were carried out to identify ALD-associated 

metabolic biomarkers using Ppara-null mouse model that is susceptible to ALD development on 

chronic alcohol consumption. Two successive studies were conducted to evaluate the applicability 

of mass spectrometry-based metabolomics in identification of ALD-specific signatures and to 

examine the robustness of these biomarkers against genetic background. Principal components 

analysis of ultraperformance liquid chromatography coupled with electrospray ionization 

quadrupole time-of-flight mass spectrometry (UPLC- ESI-QTOFMS)-generated urinary metabolic 

fingerprints showed that alcohol- treated wild-type and Ppara-null mice could be distinguished 

from control animals. It also showed that a combined endogenous biomarker panel helps to 

identify sub- jects with ALD as well as those at risk of developing ALD even without any 

information on alcohol intake or genetics. Quantitative analysis showed that increased excretion of 

indole-3-lactic acid and phenyllactic acid was a genetic background- independent signature 

exclusively associated with ALD pathogenesis in Ppara-null mice that showed liver pathologies 

similar to those observed in early stages of human ALD. These findings demonstrated that mass 

spectrometry-based metabolomic analysis could help in the identification of ALD-specific 

signatures, and that metabolites such as indole-3-lactic acid and phenyllactic acid, may serve as 

robust noninvasive biomarkers for early stages of ALD.
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1 Introduction

1.1 Alcohol and Alcohol-Induced Liver Disease

Alcohol consumption is the third most common cause of lifestyle-associated mortality in the 

United States 2003 [1]. Alcohol consumption is also an emerging problem in developing 

countries [2]. The 2011 World Health Organization (WHO) status report [3] stated that 

“almost 4 % of all deaths worldwide are attributed to alcohol, greater than deaths caused by 

HIV/AIDS, violence or tuberculosis.” Additionally, epidemiological studies have shown 

significant variation exists in susceptibility to alcohol use and alcohol-dependent health 

conditions depending on an individual’s genetic background [2, 4–11]. Genetic 

polymorphisms related to alcohol metabolism affect incidence of alcoholism and 

physiological response [8, 10, 12], as well the development alcohol-induced liver disease 

(ALD) and associated outcomes [4, 5, 9, 13, 14]. Even in developed countries such as 

United States, more than half of alcoholism-related deaths are attributable to ALD [1]. Thus 

ALD poses a significant challenge to public health all over the world.

ALD pathogenesis is characterized by three stages; steatosis, alcoholic hepatitis, and 

fibrosis/cirrhosis [2]. Approximately 90 % of alcoholics develop fatty liver (steatosis) that 

resolves when alcohol consumption is discontinued [2]. However, continued excessive 

drinking with concomitant steatosis increases the risk of developing cirrhosis by 37 % [15], 

an irreversible stage of ALD [16]. Overall 5-year survival rates for patients with cirrhosis are 

as low as 35 %. Liver cirrhosis is also associated with increased risk of development of liver 

cancer [17, 18]. Although, at earlier stages of ALD (steatosis), liver damage is reversible and 

patients can recover completely [2, 11, 19, 20], it is largely asymptomatic and, thus, evades 

diagnosis to proceed to irreversible liver damage. Detection of ALD at this stage is, 

therefore, key to improve quality of life, maximize therapeutic benefit, and reduce mortality 

and healthcare burden.

1.2 The Role of PPARα in ALD

Since the first observable change in ALD pathogenesis is the deposition of free fatty acids in 

the liver [21], many scientific studies have focused on understanding path-ways involved in 

fatty acid metabolism. The nuclear receptor peroxisome proliferator-activated receptor alpha 

(PPARα) [22] is a key regulator of the genes involved in lipid metabolism [23, 24], 

particularly catabolism of fatty acids in the liver. Expression of PPARα and its target genes 

are attenuated on chronic alcohol consumption [25]. Consistent with these observations, 

chronic alcohol treatment of the peroxisome proliferator-activated receptor alpha knockout 

(Ppara-null) mice was shown to result in the development of liver pathologies very similar to 

the early stages of the human ALD whereas wild-type animals remained protected [26].

1.3 Diagnosis of ALD

Currently, ALD diagnosis is based on biochemical assays including enzymatic activities of 

alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyl 

transpeptidase (GGT), along with patient history and other clinical symptoms [20, 27]. 

Serum-based enzymatic activity assays are non-specific with respect to etiology [11, 19]. 

This leaves liver biopsy as the only confirmatory tool for diagnosis [11, 19, 28]. However, in 
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the absence of detailed life-style associated information, especially acknowledgement of 

alcohol consumption, often biopsy alone cannot be used to readily distinguish ALD from 

other liver disorders [29, 30]. The invasiveness of biopsies, and its associated complications 

[31] also precludes it as a routine screening and diagnostic tool, particularly, given the fact 

that ALD is largely asymptomatic initial stages [20]. Therefore, an early, noninvasive, high-

throughput, ALD-specific biomarker is highly warranted.

1.4 Scope of Metabolomics

Metabolomics is an emerging field in chemical biology that seeks to identify and quantify 

changes in distribution of all endogenous and exogenous biochemicals (metabolites) in the 

biological matrix of interest. Since the production of a metabolite is dependent on 

interaction among of biological molecules (i.e. DNA, RNA, and proteins), the collection of 

metabolites (e.g. the metabolome), is essentially a reflection of physiological state of an 

organism at systems level. Therefore, in principle, every physiological state is expected to 

have a characteristic biochemical fingerprint represented by the metabolome and differences 

between these signatures can be used to predict a pathology. The latent signatures can also 

be used to elucidate the changes in biochemical landscape during pathogenesis. 

Metabolomics has yielded promising findings in recent studies of complex systems 

including pharmacometabolomics, radiation biodosimetry, and cancer biology [32–35]. As 

such, the application of metabolomics to elucidate biochemical changes associated with 

ALD represents a powerful approach to identify early biomarkers of the disease that could 

reveal novel aspects of underlying biology.

2 Methodological Overview for Urinary Metabolomics

2.1 Animal Model

Since, wild-type mice remain protected whereas Ppara-null mice develop ALD on chronic 

alcohol consumption; they together represent an excellent model for delineating ALD-

specific changes. The studies discussed herein combine the power of metabolomics with the 

well-characterized Ppara-null mouse model to search for ALD-specific changes in urinary 

metabolome. Age-matched male wild-type and Ppara-null mice were fed control or an 

alcohol-containing liquid diet. Urine samples collected from these mice were analyzed using 

ultraperformance liquid chromatography coupled with electrospray ionization quadrupole 

time-of-flight mass spectrometry (UPLC-ESI-QTOFMS) to identify metabolomic changes 

associated with the development of ALD and to differentiate them from those related to the 

metabolomic changes due to of alcohol consumption [36–38]. A summary of the workflow 

is shown in Fig. 1.

2.2 Step 1: Preparation of Urine Samples for UPLC-ESI-QTOFMS Analysis

Urine was diluted 1:2 (v/v) with 50 % aqueous acetonitrile containing internal standards (50 

μM 4-nitrobenzoic acid and 1 μM debrisoquine) in a Sirroco™ protein precipitation plate 

(Waters Corp.) and briefly vortexed. The deproteinated extracts were collected into 96-well 

collection plates under vacuum, and a 5 μL aliquot was injected into a Waters UPLC-ESI-

QTOFMS system.
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2.3 Step 2: UPLC-ESI-QTOFMS Analysis of Urine Samples

An Acquity UPLC BEH C18 column (1.7 μm, 2.1 × 50 mm, Waters Corp.) was used for 

chromatographic separation of metabolites before introduction into electrospray. The mobile 

phase comprised of a mixture of 0.1 % aqueous formic acid (A) and acetonitrile containing 

0.1 % formic acid (B). A 0.5 mL/min flow rate was maintained over a 10-min run with a 

gradient elution: 2 % B for 0.5 min, 2–20 % B in 4 min, 20–95 % B in 8 min, 95–99 % B in 

8.1 min, holding at 99% B up to 9.0 min, bringing back to 2 % at 9.1 min and holding at 2 % 

till end. Column temperature was maintained at 40 °C throughout sample runs. The QTOF 
Premier mass spectrometer was operated in electrospray ionization positive (ESI+) and 

negative (ESI−) mode. Capillary voltage and cone voltage were maintained at 3 kV and 20 

V, respectively. Source and desolvation temperatures were set at 120 °C and 350 °C, 

respectively. Nitrogen was used as both cone gas (50 L/h) and desolvation gas (600 L/h), and 

argon was used as collision gas. Sulfadimethoxine was used as the lock mass (m/z 
311.0814+) for accurate mass calibration in real time. Collision energy ranging from 10 to 

40 eV was applied for MS/MS fragmentation of target ions. All urine samples were analyzed 

in a randomized fashion to avoid complications due to artifacts related to injection order and 

changes in instrument efficiency.

2.4 Step 3: Data Deconvolution and Feature Extraction

Ion chromatogram and mass spectral data were acquired using MassLynx software (Waters 

Corp.) in centroid format. Chromatograms were inspected for consistency of sample 

injection, reproducibility of retention time, and mass accuracy using internal standards and 

quality control samples. Data was binned, features extracted and area under the peak was 

calculated through integration using MarkerLynx soft- ware (Waters Corp.)

2.5 Step 4: Multivariate Data Analysis

Individual ion intensities were normalized with respect to the total ion count (TIC) in order 

to generate a data matrix consisting of the retention time, m/z value, and the normalized 

peak area. The data matrix was analyzed by SIMCA-P+12 software (Umetrics, Kennelon, 

NJ). Unsupervised segregation of control and alcohol-treated metabolomes was checked by 

principal components analysis (PCA) using Pareto- scaled data [39]. The supervised 

orthogonal projection to latent structures (OPLS) model was used to identify ions that 

contributed significantly to group discrimination. OPLS analysis concentrated group 

discrimination into the first component with remaining unrelated variation contained in 

subsequent components. The magnitude of the parameter p(corr)[1] obtained from the 

loadings S-plot generated by OPLS analysis correlates with the group discriminating power 

of a variable. A list of ions was then generated from the loadings S-plot showing 

considerable group discriminating power (−0.8 > p(corr)[1] or p(corr)[1] > 0.8) (statistically 

significant (P < 0.05) difference in relative abundance between control and alcohol-treated 

animals). The p(corr)[1] values represent the interclass difference and w(1) values indicate 

the relative abundance of the ions. Ions that contribute highly to the interclass differences 

were selected for further identification and quantitation as candidate biomarkers.
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2.6 Step 5: Metabolic Pathway Analysis

MassTRIX (http://metabolomics.helmholtz-muenchen.de/masstrix/) is a web-based tool 

designed to assign ions of interest from a metabolomics experiment to annotated pathways 

[40]. It can be used to find metabolic pathways even without any systematic identification 

[41]. This was used to identify metabolic pathways affected by alcohol treatment. The 

masses of the ions that are significantly elevated (p(corr) [1] > 0.8) or depleted (p(corr)[1] < 

−0.8) upon alcohol treatment were used to identify metabolic pathways of interest using the 

KEGG (http://www.genome.jp/kegg/) database (including HMDB, Lipidmaps, and updated 

KEGG). A mass error of <5 ppm in the respective ionization modes and the possibility of 

formation of Na+- adducts in the electrosprayer (ESI+ mode) was also taken into account.

2.7 Step 6: Identification of Urinary Biomarkers

Elemental compositions were derived using the Seven Golden Rules [42] considering a mass 

error <5 ppm. Possible candidates were also searched using metabolomic databases [43, 44]. 

Finally, authentic standards were used to confirm the identities of these ions by comparison 

of retention time (UPLC) and fragmentation pattern (ESI-MS/MS). Sulfatase (Sigma-

Aldrich) treatment followed by retention time and fragmentation comparison of 

deconjugated metabolites with authentic standards, were used to confirm sulfate conjugates. 

Urine samples and standards were incubated with 40 U/mL of the enzyme solution in 200 

mM sodium acetate buffer (pH 5.0) overnight at 37 °C. The enzyme and other particulates 

were precipitated with 50 % aqueous acetonitrile, and the supernatant was analyzed by 

UPLC-ESI- QTOFMS/MS. 4-Nitrocatechol sulfate was used as a positive control for the 

sulfatase activity. Deconjugation was also carried out using acid hydrolysis by heating the 

urine samples with 6 M HCl at 100 °C for 1 h under refluxing conditions.

2.8 Step 7: Quantitation of Urinary Metabolites

An Acquity® UPLC system coupled with a XEVO™ triple-quadrupole tandem mass 

spectrometer (Waters Corp.) was used to quantitate urinary metabolites by multiple reaction 

monitoring (MRM). Standard compounds were mixed together to optimize the condition for 

separation and detection of metabolites from a complex mixture such as urine. Standard 

calibration plots for quantitation were generated using authentic standards. Deproteinated 

urine samples containing 0.5 μM debrisoquine (internal standard) were analyzed in the same 

fashion as that of authentic compounds. The mobile phase was comprised of 0.1 % aqueous 

formic acid (A) and acetonitrile containing 0.1 % formic acid (B). The gradient elution was 

performed over 6 min at a flow rate of 0.3 mL using: 1–99 % B in 4 min, holding at 99%B 

up to 5.0 min, bringing back to 1 % at 5.5 min and holding at 1 % till end. The area under 

the peak for each metabolite was divided by that for the internal standard to calculate 

response and a serial dilution was performed to generate a standard calibration plot of 

response vs. concentration. Serially diluted urine samples containing 0.5 μM debrisoquine 

were analyzed in the same way as the authentic standards. The quantitative abundances were 

calculated from the response using the linear range of detection of the calibration plot. All 

analyses were performed using TargetLynx software (Waters Corp.). One-way ANOVA with 

Bonferroni’s correction for multiple comparisons was performed using GraphPad Prism 4 

software (San Diego, CA) with a two-sided P < 0.05 considered statistically significant.
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According to their fragmentation pattern, the following MRM transitions were monitored for 

the respective compounds: indole-3-lactic acid (206→118; ESI+), indole-3-pyruvic acid 

(204→130; ESI+), tryptophan (205→118; ESI+), 2-hydroxyphenylacetic acid (151→107; 

ESI−), 4-hydroxyphenylacetic acid (151→107; ESI−), adipic acid (147→101; ESI+), 

pimelic acid (159→97; ESI−), debrisoquine (176→134; ESI+), phenylalanine (166→120; 

ESI+), phenyllactic acid (165→103; ESI−), suberic acid (173→111; ESI−), N-

hexanoylglycine (174→76; ESI+), xanthurenic acid (206→160, ESI−), N-acetylglycine 

(116→74, ESI−), taurine (124→80, ESI−), and creatinine (114→86; ESI+). All 

concentrations were normalized with respect to creatinine to account for any change in 

glomerular filtration rates.

2.9 Effect of Genetic Background on Metabolomic Signatures

Genetic background is well-known to influence outcome of alcoholism including alcohol-

induced liver disease [4, 5, 13, 14]. Since, metabolome reflects the phenotype; robustness of 

metabolomic biomarkers against genetic background needs to be investigated. C57BL/6 

(B6) and 129/Sv has earlier shown to differ considerabl with respect to physiological 

functions [45] as well as the biochemical response and outcome of xenobiotic insults [46, 

47]. Thus these two strains of mice were used to characterize the influence of genetic 

background on overall metabolome and ALD biomarkers.

3 Animal Study Design

• Study 1: Identification of ALD-associated metabolic signatures in Ppara-null 

Mice.

Male (6- to-8-week-old, N = 4/group) wild-type and Ppara-null on 129/Sv back- 

ground were fed a 4 % ethanol-containing liquid diet ad libitum (Lieber-DeCarli 

Diet, Dyets, Inc.). Control animals (N = 4/group) were fed an isocaloric diet 

supplemented with maltose dextran ad libitum (Dyets, Inc.).

• Study 2: Identification of genetic background-independent ALD biomarkers.

The design in Study 1 was replicated but with the addition of two genetic back- 

grounds: wild-type and Ppara-null mice (6- to 8-week-old male, N = 4/group) on 

B6 (C57BL/6 N-Ppara<tm1Gonz>/N) as well as their counterparts on a 129/Sv 

(129S4/SvJae-Ppara<tm1Gonz>/N) background.

In both studies, a subset of mice were euthanized after 1 month on the alcohol diet, serum 

was collected, and portions of the liver were harvested for histology to confirm that Ppara-

null mice were developing steatosis. Livers were formalin-fixed, paraffin-embedded, 

sectioned, and stained with hematoxylin and eosin. Serum AST and ALT activities were 

measured using VetSpec™ kits (Catachem, Inc.). Liver and serum triglycerides were 

estimated using a colorimetric assay kit from Wako. At 2 months, after mice were 

accustomed well to the liquid diets, they were transferred to a urinary metabolomics 

protocol where urine samples were collected monthly using Nalgene metabolic cages 

(Tecniplast USA, Inc.). Urines were collected over 24 h and stored at −80 °C in glass vials 
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until analyzed. All mice were acclimated to the metabolic cages by placing them in the 

metabolic cages before the actual sample collection.

4 Results and Discussion

4.1 PCA Analysis of Metabolomic Data

In agreement with an earlier report [26], only Ppara-null mice on alcohol treatment showed 

lipid accumulation after 1 month (Fig. 2a) indicating ALD onset [48, 49]. Mass 

spectrometry-based metabolomic analysis revealed that alcohol exposed Ppara-null mice had 

a distinct urinary metabolic profile compared to those on control diet even at the earliest 

time point, i.e., after 2 months of alcohol treatment (Fig. 2b). After 6 months of alcohol 

treatment, when Ppara-null mice exclusively developed alcoholic steatosis, the urinary 

metabolomic data showed distinct segregation of control and alcohol-treated mice as well as 

wild-type and Ppara-null animals on the scores-scatter plot for unsupervised principal 

components analysis (Fig. 2c). These data indicated that each of these four groups represents 

a distinct metabolic signature. The separation of these mice along first principal component 

was according to their alcohol exposure. Interestingly, the separation along second principal 

component, which was influenced by the genotype, was more prominent in Ppara-null mice 

compared to wild-type. This indicated that in agreement with the liver pathology, the Ppara-

null metabolome is also more susceptible to chronic alcohol consumption. Subsequently, 

supervised orthogonal projection to latent structures (OPLS) analysis was performed. As the 

loadings S-plots showed (Fig. 2d, e) there were a number of ions that showed similar trends 

of elevation (such as P1, P1a, and P8) or depletion (such as P4, P5, and P5a) on alcohol 

treatment in both wild-type and Ppara-null mice. However, few ions were found to be 

exclusively elevated (such as P2) in the urine of alcohol-treated Ppara-null mice (Fig. 2e) 

that developed ALD. These ions might represent ALD-specific metabolic derangements.

4.2 Metabolic Pathway Analysis

To further identify possible metabolic pathways affected by alcohol treatment and ALD 

pathogenesis, ions that significantly contributed to the separation of alcohol-treated and 

control animals were analyzed using MassTRIX. Following alcohol exposure, metabolites 

potentially originating from tryptophan metabolism were found to be significantly 

significantly elevated (Fig. 2f). However, in wild-type animals, the number of such 

metabolites gradually decreased over time, while in Ppara-null animals, the corresponding 

number of metabolites increased. Thus, the MassTRIX analysis indicated that alcohol 

consumption impacted tryptophan metabolism more in the Ppara-null mice as compared to 

wild-type mice.

4.3 Identification and Quantitation of Metabolites

Identities of a number of these ions were subsequently confirmed using authentic standard 

and their concentrations were measured. Tables 1 and 2 show metabolites deranged in the 

urine of wild-type and Ppara-null mice on alcohol treatment. Both wild-type and Ppara-null 

animals showed an elevation of ethanol metabolites such as ethyl sulfate and ethyl-β-D-

glucuronide, albeit to a different extent. In addition, metabolites such as 2-

hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate 
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and xanthurenic acid were elevated, whereas adipic acid and pimelic acid were depleted in 

the urine of alcohol-treated mice. Similar to alcohol metabolites, many of these endogenous 

metabolites also showed significant difference in their excretion in wild-type and Ppara-null 

animals. However, it was interesting to note that indole-3-lactic acid was exclusively 

elevated in the urine of alcohol-treated Ppara-null mice (Fig. 2a, b).

For biomarker discovery, reproducibility of measurements is a very important issue. Nuclear 

magnetic resonance (NMR)-based metabolic profiling has an advantage of being very 

reproducible as well as for giving direct structural information about the metabolite. 

However, it is interesting to note that concentrations of indole- 3-lactic acid in these urine 

samples were in the low micromolar range. The sensitivity of the analytical method used for 

measuring changes in the metabolic profile becomes crucial to detect changes in the 

excretion of such metabolites. NMR typically fails to capture changes in abundance of 

metabolites at these concentration levels whereas mass spectrometry, as evident from these 

results, is sensitive enough to measure concentrations down to nanomolar and even 

picomolar ranges. Thus in spite of inferior reproducibility compared to NMR, mass 

spectrometry has a distinct advantage in increasing sensitivity and capturing miniscule 

changes in excretion of larger number of metabolites present in such low concentrations. 

Mass spectrometry can also increase the chance of identification novel metabolites that may 

be low in abundance but specific to the pathology. On the other hand, NMR typically 

measures only few hundreds of known and relatively abundant metabolites. Thus, mass 

spectrometry is often superior as a platform, particularly, for discovery of metabolic 

biomarkers.

4.4 Potential Use of Metabolic Signature in Detection of Alcohol Intake and ALD 
Susceptibility

Diagnosis of ALD is often complicated due to lack or fidelity of information on alcohol 

intake. The principal components analysis including all endogenous and alcohol metabolites 

showed clear clustering of mice according to genotype and alcohol exposure as early as after 

2 months of alcohol treatment (Fig. 3c). At 3 months, these clusters separated into different 

quadrants with first principal component reflecting genotype and the second representing 

alcohol exposure (Fig. 3d). Alcohol metabolites such as ethyl sulfate and ethyl-β-D-

glucuronide are used in forensic analysis for alcohol consumption [50, 51]. Thus, a 

combined metabolic panel could be used for detection of recent alcohol consumption as well 

as liver damage. However, none of these metabolites are detectable beyond 3 days [50, 51]. 

This could present a challenge in ALD diagnosis if the patient stops drinking just 3 days 

prior to examination and denies alcoholism. Interestingly, it was found that endogenous 

metabolites also showed similar discriminatory power between these groups of animals (Fig. 

3e, f). At 3 months, mice clustered in four different quadrants with horizontal separation 

indicating ALD susceptibility (genotype), vertical separation indicating alcohol consumption 

and diagonal separation indicating interaction between them resulting in ALD pathogenesis. 

This indicated that metabolomic signature alone may not only help to diagnose ALD but 

also detect alcohol intake and predict ALD susceptibility prospectively.
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4.5 Effect of Genetic Background on Metabolic Signatures

Similar to 129/Sv mice, Ppara-null mice on B6 background also showed an increase in 

steatosis compared to their wild-type counterparts on alcohol treatment. However, the 

overall metabolic fingerprint of B6 mice was distinctly different from the 129S mice 

irrespective of Ppara expression and ethanol treatment throughout the course of the study 

(Fig. 4a). This represents intrinsic difference between biochemical landscapes of these two 

strains due to difference in genetic background. In fact, these mice were also found to be 

different in terms of alcohol metabolism. Ethyl sulfate, which showed a huge increase in the 

urine of alcohol-treated 129/Sv mice, was not detected in the urine of B6 mice (Tables 1 and 

2). Such differences in alcohol metabolism is common in people with different genetic 

backgrounds and contributes to difference in the outcome of alcohol-induced liver injury [4, 

5, 13, 14]. However, MassTRIX analysis showed (Fig. 4a) that similar to that observed in 

case of 129S mice, a number of metabolites potentially belonging to tryptophan metabolism 

were elevated on alcohol treatment in B6 mice and the number of elevated metabolites in 

Ppara-null was also higher than that in the wild-type mice. In addition, Ppara-null mice also 

showed a progressive increase in number of potential metabolites belonging to 

phenylalanine metabolism on alcohol treatment whereas wild-type mice showed a decrease. 

All metabolites were identified and quantitated using authentic standards. The results 

showed an elevation in urinary excretion of indole-3-lactic acid exclusively in alcohol-

treated Ppara-null mice (Fig. 5a, b) on B6 background similar to that observed in 129/Sv 

mice. This was accompanied with an elevation in the urinary excretion of phenyllactic acid 

exclusively in alcohol- treated Ppara-null mice (Fig. 5c, d). Phenyllactic acid was also 

measured and found to be elevated in the urine of alcohol-treated Ppara-null mice on 129/Sv 

background (Fig. 5e, f).

4.6 The Biochemical Origin of ALD Biomarkers

These results showed a significant difference between B6 and 129/Sv animals with respect 

to alcohol metabolism, fatty acid metabolism, amino acid metabolism and gut flora 

metabolism as shown in Fig. 6. In spite such widespread difference due to genetic 

background, two α-hydroxy acid metabolites, namely, indole-3-lactic acid and phenyllactic 

acid were exclusively elevated in the urine of alcohol-treated Ppara-null mice of both 

backgrounds. This indicates plausible mechanistic association of these metabolites with 

molecular events associated with ALD pathogenesis in Ppara-null mice. PPARα, which is a 

master regulator of genes involved in fatty acid β-oxidation, activates the tryptophan-

quinolinic acid-NAD+ pathway by down-regulating α-amino-β-carboxymuconate-ε-

semialdehyde decarboxylase [52]. This results in the attenuation of NAD+ production in 

Ppara-null. Since NAD+ is a cofactor for fatty acid oxidation by both β- and ω-oxidation 

path- ways, the reduced NAD+ biosynthesis makes Ppara-null mice more susceptible to fat 

deposition in the liver compared to their wild-type counterparts.

Alcohol is oxidized stepwise by alcohol dehydrogenase (EC 1.1.1.2) into acetaldehyde in the 

liver and acetaldehyde to acetic acid by aldehyde dehydrogenase (EC 1.2.1.3) (Fig. 7). 

Acetic acid can enter the TCA cycle or be a substrate for fatty acid synthesis [53]. However, 

both reactions consume NAD+ and produce NADH. Therefore, chronic alcohol consumption 

further decreases the ratio of NAD+/NADH [54] in Ppara-null mice, shifting cellular redox 
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balance more towards reduced state to impair fatty acid catabolism and results in fat 

deposition in the liver (Fig. 7).

Tryptophan is an essential amino acid that is metabolized in the liver. Tryptophan is typically 

deaminated by L-amino acid oxidase (EC 1.4.3.2) to indole-3-pyruvic acid, an α-keto acid 

intermediate. It was shown that some microbial AST (EC 2.6.1.1) can also catalyze this 

reaction, albeit with lower efficiency [55, 56]. Interestingly, aspartate aminotransferase 

(AST) level also increases during liver injury. Thus it may also contribute to increase in 

production of to indole-3-pyruvic acid. In the presence of elevated NADH due to alcohol 

consumption, indole-3-pyruvic acid may be readily reduced to corresponding α-hydroxy 

acid, i.e., indole-3-lactic acid (Fig. 7). Enzymes responsible for this interconversion have 

been reported in microbes (EC 1.1.1.120, indolelactate dehydrogenase; and EC 1.1.1.222 

(R)-4-hydroxyphenyllactate dehydrogenase) [57]. Tryptophan conversion to indole-3-lactate 

has been shown in protozoa [58].

Another α-hydroxy acid, phenyllactic acid, was also found to be elevated in the urine of 

Ppara-null mice following alcohol-treatment. Phenyllactic acid is a product of reduction of 

the deaminated phenylalanine. Apart from tyrosine aminotransferase (EC 2.6.1.5), aspartate 

aminotransferase can also catalyze the deamination of phenylalanine to phenylpyruvic acid 

[56, 59]. However, the shift in the redox balance in the alcohol-treated Ppara-null mice may 

drive the reduction of this intermediate to phenyllactate, possibly by the action of (R)-4-

hydroxyphenyllactate dehydrogenase (EC 1.1.1.222) [60] as depicted in Fig. 7. This enzyme 

is also not known in mammals.

Taken together, the elevation of these α-hydroxy acids in the alcohol-treated Ppara-null mice 

strongly suggests common enzymatic pathways linking alcohol- induced liver injury and 

shift in redox balance. It shows that the increase in metabolic biomarkers is essentially 

driven by same biochemical events that are associated with alcohol-induced liver damage 

and steatosis. However, the proposed biochemical pathways highlight lacunae in our 

understanding of metabolic pathways, particularly, under pathological conditions.

5 Summary and Future Directions

This study showed that mass spectrometry-based metabolic fingerprinting can be a powerful 

tool in identification of noninvasive signature for detection of ALD at early stage. The 

simultaneous use of wild-type and Ppara-null animals helped to distinguish signatures of 

alcohol exposure from those associated with ALD pathogenesis. It showed that an 

endogenous metabolomic signature may be helpful in prediction of ALD susceptibility as 

well as ALD diagnosis even in absence of reliable information on alcohol consumption. 

Validation of metabolomic signatures in different genetic backgrounds helped to identify 

robust biomarkers for ALD. These noninvasive biomarkers appeared to simultaneously 

reflect change in redox balance and ongoing liver injury due to chronic alcohol 

consumption. In conclusion, this study demonstrated that metabolic signatures can be 

helpful in early noninvasive screening and diagnosis of ALD. However, these results are yet 

to be validated in human samples. In addition, to the effect of human genetic background, 

Manna et al. Page 10

Adv Exp Med Biol. Author manuscript; available in PMC 2019 January 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



careful analysis on the effect of food habit, life-style as well as orthogonality of metabolic 

biomarkers to other liver disease/disorders remains to be undertaken.
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ALT Alanine aminotransferase

ANOVA Analysis of variance

AST Aspartate aminotransferase
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MRM Multiple reaction monitoring

NAD+ Oxidized nicotinamide adenine dinucleotide

NADH Reduced nicotinamide adenine dinucleotide

OPLS Orthogonal projection to latent structures

PCA Principal components analysis

Ppara-null Peroxisome proliferator-activated receptor alpha knock-out 

mouse model

PPARα Peroxisome proliferator-activated receptor alpha

UPLC-ESI-QTOF-MS Ultraperformance liquid chromatography coupled with 

electrospray ionization quadrupole time-of-flight mass 
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Fig. 1. 
Step-wise workflow for urinary metabolomic analysis to identify biomarkers of alcohol-

induced liver disease (ALD). Wild-type and Ppara-null B6 and 129S mice were placed in the 

4 % EtOH or control group. After 1 month of alcohol treatment, histological and 

biochemical analysis was performed to confirm ALD onset in Ppara-null mice. From 2 to 6 

months, 24 h urine samples were collected monthly and subjected to UPLC-ESI-QTOFMS 

analysis, multivariate and pathway analyses, and identification and quantitation of urinary 

metabolites
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Fig. 2. 
(a) Liver histology (HE stain) of wild-type (WT, left panel) and peroxisome proliferator- 

activated receptor alpha knockout (Ppara-null, right panel) mice after a duration of 1 month 

on control (upper panel) or 4 % alcohol-containing liquid diet (lower panel). Histology 

shows increased fat deposition in Ppara-null animals on the 4 % alcohol containing liquid 

diet. (b) Scores scatter plot from principal components analysis (PCA) showing 

unsupervised segregation of the urinary metabolome (ESI+ mode) from control and alcohol-

treated Ppara-null mice at 2 months. (c) PCA scores scatter plot showing a larger difference 
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between wild-type and Ppara-null metabolomic data as a result of chronic alcohol treatment 

(over 6 months). The triangles and dots indicate mice on control and alcoholic diet, 

respectively, with black and red color representing wild-type and Ppara-null mice, 

respectively. (d) Loading S-plots from the supervised orthogonal projection to latent 

structures (OPLS) analysis of ESI+ mode metabolic signatures (at 6 months) for candidate 

markers of chronic alcohol exposure in wild-type and (e) Ppara-null mice. Each triangle 
represents an ion characterized by unique mass and retention time. Representative 

candidates have been high- lighted (solid box) in the plots. A differential response was 

characterized by biomarkers that were exclusive to wild-type (P3) or Ppara-null (P2) mice. 

(f) MassTRIX analysis of putative metabolites related to tryptophan metabolism detected in 

ESI+ mode show variation over time during alcohol treatment. The solid and dotted lines 
represent wild-type and Ppara-null animals, respectively
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Fig. 3. 
Discriminatory power of non-invasive ALD urinary biomarkers. Variation of the urinary 

excretion of indole-3-lactic acid in wild-type mice (a) and Ppara-null mice (b) that develop 

alcohol- induced liver disease (ALD). The dashed and solid lines represent the variation in 

the concentration of urinary indole-3-lactic acid from control and alcohol-treated mice, 

respectively (One-way ANOVA with Bonferroni’s correction for multiple comparisons, 

significance at P < 0.05; #, significantly different from control Ppara-null mice; *, 

significantly different from the alcohol-treated wild-type mice). PCA scores scatter plot for 
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the variation in the urinary excretion of the endogenous metabolites (indole-3-lactic acid, 4-

hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, 2-hydroxyphenylacetic acid, 

adipic acid, and pimelic acid) as well as alcohol metabolites (ethyl sulfate, ethyl-β-D-

glucuronide) at 2 months (c) and at 3 months (d) after beginning of alcohol treatment. The 

triangles and dots indicate mice on control and alcoholic diet, respectively, with black and 

red color representing wild-type and Ppara-null mice, respectively. Horizontal separation in 

the scatter plots correlates with Ppara-null expression that determines the susceptibility 

towards ALD with the horizontal arrow indicating a decrease in PPARα expression and an 

increase in ALD susceptibility. Vertical separation in the scatter plots correlates with alcohol 

exposure (in the direction of the vertical arrow). (e) The scores scatter plot for the PCA of 

endogenous urinary metabolites shows their collective discriminatory power to identify 

phenotypes at 2 months and (f) at 3 months of alcohol treatment. The triangles and dots 
indicate mice on control and alcoholic diet, respectively, with black and red color 
representing wild-type and Ppara-null mice, respectively
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Fig. 4. 
(a) PCA scores scatter plot showing mice on B6 (black) and 129/Sc (red) backgrounds 

possess distinct metabotypes associated throughout the study duration, irrespective of 

genotype and alcohol exposure. The solid arrows indicate the shift along second principal 

component over time due to alcohol exposure. MassTRIX analysis of putative metabolites 

related to (b) tryptophan and (c) phenylalanine metabolism detected in ESI+ mode show 

variation over time during alcohol treatment. The solid and dotted lines represent wild-type 

and Ppara-null animals, respectively
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Fig. 5. 
Genetic background-independent increases in phenylalanine and tryptophan metabolites in 

an ALD mouse model. Urinary excretion of indole-3-lactic acid in (a) wild-type and (b) 

Ppara-null mice on the B6 background. Urinary excretion of phenyllactic acid in (c) wild-

type and (d) Ppara-null mice on the B6 background. Urinary excretion of phenyllactic acid 

in (e) wild-type and (f) Ppara-null mice on the 129S background. Dashed and solid lines 

represent control and alcoholic diet-treated mice, respectively. (One-way ANOVA with 

Bonferroni’s correction for multiple comparisons, significance at P < 0.05 with ‡, 
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significantly different from Ppara-null mice of same treatment group; #, significantly 

different from control mice of same genotype; *, significantly different from alcohol-treated 

wild-type mice)
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Fig. 6. 
Effect of genetic background on urinary metabolic signatures associated with chronic 

alcohol treatment of Ppara-null mice. These mice differed with respect to derangement of 

urinary excretion of metabolites related to alcohol metabolism, fatty acid metabolism, amino 

acid metabolism and gut flora were affected. However, elevation of indole-3-lactic acid and 

phenyllactic acid was exclusively associated with ALD pathogenesis irrespective of their 

genetic background
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Fig. 7. 
Proposed biochemical mechanism explaining origin of genetic background-independent 

noninvasive biomarkers of alcohol-induced liver disease in Ppara-null mice. Together with 

impairment of NAD+ biosynthesis in these mice, oxidation of alcohol leads to a marked 

shift in redox balance occurs with an increased NADH/NAD+ ratio resulting in impairment 

of fatty acid oxidation and steatosis in alcohol-treated Ppara-null mice. Concurrent increase 

in aspartate aminotransferase activity (EC 2.6.1.1) due to liver injury might enhance the 

deamination of phenylalanine and tryptophan to produce α-keto acids: phenylpyruvic acid 

and indole-3-pyruvic acid. The elevated NADH/NAD+ ratio could drive the reduction α-

keto acid intermediates to the corresponding α-hydroxy acids: phenyllactic acid and 

indole-3-lactic acid. Enzyme numbers mentioned in blue and light gray indicate enzymes 

annotated and unannotated in mammals, respectively
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Table 1

Metabolic signature of chronic alcohol exposure in the wild-type mice

 Identity  Putative origin  Trend in B6  Trend in 129S

 Ethyl sulfate  Alcohol metabolism  −  ↑

 Ethyl-β-D-glucuronide  Alcohol metabolism  ↑  ↑

 N-Acetylglycine  Alcohol metabolism  ↑  ↑

 4-Hydroxyphenylacetic acid  Phenylalanine metabolism and gut flora  −  ↑

 4-Hydroxyphenylacetic acid sulfate  Phenylalanine metabolism and gut flora  −  ↑

 2-Hydroxyphenylacetic acid  Phenylalanine metabolism and gut flora  −  ↓

 Xanthurenic acid  Tryptophan metabolism and gut flora  ↑  −

 Adipic acid  Fatty acid ω-oxidation  −  ↓

 Pimelic acid  Fatty acid ω-oxidation  −  ↓

 Taurine  Cysteine metabolism  ↓  ↑

 N-hexanoylglycine  Fatty acid β-oxidation and gut flora  ↑  −
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Table 2

Metabolic signature of chronic alcohol exposure in the Ppara-null mice

 Identity  Putative origin  Trend in B6  Trend in 129S

 Ethyl sulfate  Alcohol metabolism  −  ↑

 Ethyl-β-D-glucuronide  Alcohol metabolism  ↑  ↑

 N-Acetylglycine  Alcohol metabolism  ↑  ↑

 4-Hydroxyphenylacetic acid  Phenylalanine metabolism and gut flora  −  ↑

 4-Hydroxyphenylacetic acid sulfate  Phenylalanine metabolism and gut flora  −  ↑

 2-Hydroxyphenylacetic acid  Phenylalanine metabolism and gut flora  −  ↓

 Xanthurenic acid  Tryptophan metabolism and gut flora  ↑  −

 Adipic acid  Fatty acid ω-oxidation  −  ↓

 Pimelic acid  Fatty acid ω-oxidation  −  ↓

 Taurine  Cysteine metabolism  ↓  ↑

 Indole-3-lactic acid  Tryptophan metabolism  ↑  ↑

 Phenyllactic acid  Phenylalanine metabolism  ↑  ↑
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