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Abstract

The aim of this work was to develop a fully-coupled bolus-esophageal-gastric model based on the 

immersed boundary-finite-element (IB-FE) method to study the process of esophageal emptying 

across the esophagogastric junction (EGJ). The model included an esophageal segment, an 

ellipsoid-shaped stomach, a bolus, and a simple model of the passive and active sphincteric 

functions of the lower esophageal sphincter (LES). We conducted three sets of case studies: 1) the 

effect of a non-relaxing LES; 2) the influence of the tissue anisotropy in the form of asymmetrical 

right and left sided compliance of the LES segment; and 3) the influence of LES and gastric wall 

stiffness on bulge formation of the distal esophageal wall. We found that a non-relaxing LES 

caused sustained high wall stress along the LES segment and obstruction of bolus emptying. From 

the simulations of tissue anisotropy, we found that the weaker side (i.e. more compliant) of the 

LES segment sustained greater deformation, greater wall shear stress, and a greater high-pressure 

load during bolus transit. In the third set of studies, we found that a right-sided bulge in the 

esophageal wall tends to develop during esophageal emptying when LES stiffness was decreased 

or gastric wall stiffness was increased. Hence, the bulge may be partly due to the asymmetric 

configuration of the gastric wall with respect to the esophageal tube. Together, the observations 

from these simulations provide insight into the genesis of epiphrenic diverticula, a complication 

observed with esophageal motility disorders. Future work, with additional layers of complexity to 
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the model, will delve into the mechanics of gastroesophageal reflux and the effects of hiatus hernia 

on EGJ function.

Keywords

Immersed boundary method; Esophageal diverticulum; Esophageal-gastric junction; Lower 
esophageal sphincter stiffness

1 Introduction

The esophagogastric junction (EGJ) is a complex structure consisting of the lower 

esophageal sphincter (LES), crural diaphragm, phrenoesophageal ligament, and gastric 

cardia that serves as the conduit between the esophagus and stomach (Mittal and Balaban 

1997; Brasseur et al 2007; Roy et al 2012). During swallowing, the EGJ allows the passage 

of ingested food and liquid from esophagus to stomach, a process referred to herein as 

esophageal emptying (Lin et al 2014; Kwiatek et al 2012). Among EGJ constituents, the 

LES plays a central role in esophageal emptying. At rest, the LES normally maintains an 

active tone that serves as an antireflux barrier. During swallowing, the LES relaxes and 

opens to facilitate the passage of food (Mittal and Balaban 1997; Roy et al 2012). On the 

other hand, in pathological states such as achalasia, an incompletely relaxing LES obstructs 

the passage of food and fluid (Mittal and Balaban 1997; Pandolfino et al 2008). Hence, LES 

function during both esophageal emptying and reflux is of great clinical significance and 

research groups have attempted to mathematically model it. Ghosh et al. developed a two-

dimensional model of esophageal emptying in normal subjects and in patients after 

fundoplication surgery (Ghosh et al 2005). However, they did not model the esophageal wall 

mechanics, instead solving the flow characteristics based only on luminal geometry. Yassi et 

al. studied the mechanical function of the EGJ based an anatomically accurate three-

dimensional wall geometry (Yassi et al 2009). However, their study focused on the passive 

and active properties of the esophageal wall, and did not include a bolus. In the current 

study, we attempt to develop a bolus-esophageal-gastric model that incorporates the bolus, 

esophageal wall, gastric wall, and neurally controlled muscle activation. We also include a 

simple model to consider the passive and active function of the LES. Admittedly, the model 

is very simplified compared to the complicated physiology of the EGJ, but it holds the future 

potential to include additional biophysical structures, such as the crural diaphragm and 

phrenoesophageal ligament. Focusing on esophageal emptying, we present three groups of 

studies on the LES. In the first group, we compare esophageal emptying with a non-relaxing 

LES to the base case with normal relaxation. The second and third groups relate to distal 

esophageal diverticuli, also called epiphrenic diverticuli. An epiphrenic diverticulum is a 

pouch, or pocket, of stretched mucosa that evaginates through the muscular layers of the 

esophagus. The cause of epiphrenic diverticuli is poorly understood, although it is associated 

with esophageal motility disorders, such as achalasia and distal esophageal spasm (Soares et 

al 2010). We hypothesize that abnormalities of the material properties of the LES and gastric 

wall may also contribute to the formation of diverticuli. Specifically, we hypothesize that 

tissue anisotropy is a contributing factor. The anisotropy being referred to is unequal 

compliance of the right and left hand sides of the LES segment. We hypothesize that this 
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asymmetry leads to further degradation, i.e. more biased material property, due to an 

increased pressure load on the compliant part. This will be tested in the second group of 

studies.

Another contributing factor to the formation of epiphrenic diverticuli may relate to the 

asymmetric anatomy of the EGJ. Specifically, we hypothesize that if the LES segment 

becomes compliant, a bulge tends to develop on the right side because of the asymmetric 

configuration of the stomach. A stiffer gastric wall may exacerbate this, as it enhances the 

asymmetric load on the LES during esophageal emptying. However, the impact of this effect 

may be modulated by the stiffness of the LES segment. This will be tested in our third group 

of studies.

2 Mathematical formulation

We used the immersed-boundary-finite-element (IB-FE) method, which is suitable for 

applications with fluid-structure interactions (Peskin 2002; Griffith and Luo 2017). This 

method adopts an Eulerian description of the momentum and continuity equations for fluid-

structure systems, and a Lagrangian description of the deformation and stresses of the 

structure. The method was firstly introduced by (Griffith and Luo 2017), and also discussed 

in detail in our earlier work on esophageal transport model (Kou et al 2017). Hence, we 

provide only a brief description here. The governing equations are,

ρ ∂u
∂t + u ⋅ ∇u = − ∇ p + μ∇2u + fe, (1)

∇ ⋅ u = 0, (2)

fe(x, t) = ∫
U

Fe(s, t)δ(x − χ(s, t))ds, (3)

∫
U

Fe(s, t) ⋅ V(s)ds = − ∫
U

ℙe: ∇sV(s)ds, ∀V(s), (4)

Ue(s, t) = ∫
Ω

u(x, t)δ(x − χ)dx, (5)
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∫
U

∂χ
∂t (s, t) ⋅ V(s)ds = ∫

U
Ue(s, t) ⋅ V(s)ds, ∀V(s), (6)

ℙe = 𝒢[χ( ⋅ , t)] . (7)

Eqs. (1) and (2) are the momentum equation and continuity equation, respectively, described 

in the Eulerian description. We assume that the immersed structure is of the same density, ρ 
and viscosity, μ as the fluid. This implies that the immersed structure is viscoelastic, rather 

than purely elastic. u and p are Eulerian velocity and pressure fields, respectively. Eqs. (3)-

(6) are the fluid-structure interaction equations. fe and Fe are the Eulerian and Lagrangian 

elastic force densities, respectively. U denotes the reference configuration of the Lagrangian 

domain, whereas Ω denotes the Eulerian domain. Eq. (7) is the stress equation that depends 

on the material model of the immersed structure, where ℙe is the first Piola–Kirchhoff stress 

tensor associated with passive elasticity and active contraction of the immersed structure. In 

particular, we assume that an elastic potential exists that can characterize the passive and 

active mechanical properties of the immersed structure. We denote the elastic potential as Ψ, 

then

ℙe = ∂Ψ
∂𝔽 , (8)

where, 𝔽 = ∂x
∂s  is the deformation gradient. Detailed derivation of the above IB-FE governing 

equations is provided in the appendix. More discussions related to numerical technique and 

implementation details can be found in the literature (Kou et al 2017; Griffith and Luo 

2017). In the following section, we discuss only the details relevant to our bolus-esophageal-

gastric model.

3 Bolus-esophageal-gastric model

3.1 Geometry

For simplicity, our model included only the distal esophagus, referred to as the esophageal 

segment, modeled as an 8-cm tube. The stomach was simplified as an ellipsoid as in (Roy et 

al 2012). The esophageal segment extended along the z-axis, from z= 143 mm to z= 63 mm, 

comprised of three layers: mucosa-submucosa (here collectively referred to as mucosa), 

circular muscle (CM), and longitudinal muscle (LM). The luminal radius was set at 2.5 mm 

at rest. The thickness of the mucosa, CM, and LM layers were 3 mm, 1 mm, and 1 mm, 

respectively, based on (Ghosh et al 2005, 2008). The bolus initially filled the upper end of 

the esophageal segment to simplify the modeling of bolus emptying. The initial geometry of 

the bolus was assumed to be a teardrop as in (Li and Brasseur 1993). The stomach is 

modeled as an ellipsoid with the center set as (0, 0, 3 mm) and its three axes, l1 = 100 mm, l2 

= 50 mm, and l3 = 50 mm, respectively. The angle between the stomach’s major axis and the 

Kou et al. Page 4

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



z-direction, anatomically referred to as the angle of His, was denoted as θ. Here θ is set to 

be 45 degree, within the range of experiment measurements (Roy et al 2012). The thickness 

of the stomach was 3 mm with a hole so that the stomach was connected to the esophageal 

segment to form the EGJ. The proximal end of the esophageal segment and the bottom of 

the stomach were fixed to account for external constraints. In order to use the IB-FE method, 

we immerse the esophageal segment and the stomach in a fluid box of dimensions, (−74 

mm, 70 mm) × (−110 mm, 100 mm) × (−110 mm, 160 mm). A schematic of the overall 

setup is shown in Fig. 1.

3.2 Material model

We modeled the bolus as a Newtonian fluid with a viscosity of 10 cP and density of 1 g/cm3 

and assumed that the esophageal segment and the stomach were of the same viscosity and 

density as the bolus, implying that they were visco-elastic. We also needed to model the 

elastic properties of the esophageal segment and stomach, discussed below.

3.2.1 Esophagus: passive material model—For the esophageal segment, in-vitro 

experiments show that it can generally be characterized as a nonlinear anisotropic elastic or 

pseudo-elastic material. However, varied material models have been proposed among 

research groups (Yang et al 2006a,b; Natali et al 2009; Sokolis 2013; Stavropoulou et al 

2009), in which the moduli of esophageal tissue vary from the order of tens of kPa to MPa. 

Recent in-vivo tests using the functional luminal imaging probe (FLIP) suggest that the 

modulus of esophageal tissue is likely at the order of kPa (Lin et al 2013). Based on that and 

our previous simulations (Kou et al 2017), we set the moduli of esophageal tissue layers at 

the order of kPa. Similar to our previous work (Kou et al 2017), we adopted the fiber-

reinforced material model, in particular, the bi-linear model introduced by Yang et al. (Yang 

et al 2006a). To facilitate the derivation of the material model, we assumed that an elastic 

potential of the material exists, denoted as Ψ. It can be split into two parts: the elastic 

potential of the matrix Ψmatrix and the fiber Ψfiber. For our strain measurements, we let 𝔽
and ℂ = 𝔽T𝔽  denote the deformation gradient and the right Cauchy-Green tensor, 

respectively. I1 = tr(ℂ) is the first principle invariant of ℂ. The esophageal tube can be 

described in cylindrical coordinates s = (R, Θ, Z). We introduce the fiber angle to 

characterize the orientation of a family of fibers running in (Θ, Z) plane. The fiber angle is 

measured with respect to the circumferential orientation. Hence, if the fiber angle is α, then 

its fiber orientation is a = (0 R, cos α Θ, sin α Z).

First is the mucosa (or mucosa-submucosa). Although the esophageal mucosa is generally 

considered to be a fiber-reinforced composite based on in-vitro experiments, the reported 

micro-structure and models vary among groups. Specifically, Sokolis (Sokolis 2013) 

reported that both elastin and collagen fibers were found in the mucosa and submucosa 

layer, with collagen fibers appearing as long wavy fibers in axial sections and fibers of 

shorten length in circumferential sections. They further proposed a material model with six 

families of fibers: two for elastin and four for collagen. Natali et al. (Natali et al 2009) 

reported that the mucosal layer was composed of connective tissue with collagen fibrils 

organized in a loose and random network. The submucosa consisted of two families of 

collagen fibers arranged as clockwise and anti-clockwise helices. Notably, the material 
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model proposed in these two models are much stiffer than what has been observed in-vivo. 

During endoscopy, the collapsed lumen opens to a radius of several mm, under a minimal 

pressure. Clinical FLIP studies show that the stiffness of esophageal wall, especially the 

lateral stiffness, during distention is probably at the order of 100 Pa (or 1 mmHg). For 

example, in Figure 2 of Lin et al. (Lin et al 2013), the blue curve shows that pressure is close 

to zero, even when the esophageal lumen radius is around 3 mm (i.e. area is about 30 mm2) 

and luminal pressure is about 7 mmHg when the esophageal lumen radius is about 8 mm 

(i.e. area about 200 mm2). Hence, we adopt here a phenomenological approach to describe 

mechanical behavior of mucosa-submucosa based on in-vivo observations. As in our 

previous model on esophageal transport, here we consider the mucosal layer as a composite 

that is reinforced by a family of fibers along the axial direction. The material model is as 

below,

Ψmucosa = Ψmatrix
mucosa + Ψ fiber

mucosa, (9)

Ψmatrix
mucosa =

C0
2 (I1 − 3), (10)

Ψ fiber
mucosa =

C1
2 Ifb

mucosa − 1
2

. (11)

Ifb
mucosa = ℂ:(amucosa ⊗ amucosa). amucosa = (0R, 0Θ, 1Z) because the fiber angle of the axial 

fibers in the mucosal layer is 90 degree (i.e. along the axial direction).

Within the family of fiber-reinforced material models, various forms of stress-strain 

relationships on esophageal muscle fibers have been proposed, such as the bi-linear form 

introduced by Yang et al. (Yang et al 2006a) and exponential form in (Natali et al 2009; 

Sokolis 2013). Here, we adopt the bi-linear form for simplicity. The discrepancy between a 

bi-linear model and an exponential model, depending on the parameters, will be likely large 

only when the structure is very largely deformed. In particular, the exponential model will 

yield more rapid increase of stress with the increase of stretch. For the CM layer, its material 

model is as below,

ΨCM = Ψmatrix
CM + Ψ fiber

CM , (12)

Ψmatrix
CM =

C2
2 (I1 − 3), (13)
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Ψ fiber
CM =

C3
2

Ifb
CM

λCM − 1
2

. (14)

Ifb
CM = ℂ:(aCM ⊗ aCM). aCM = (0R, cos αCMΘ, sin αCMZ). αCM is the fiber angle of the circular 

muscle fibers. λCM is the reference stretch ratio that is included to deal with circular muscle 

fiber contraction.

For the LM layer, its material model is as below,

ΨLM = Ψmatrix
LM + Ψ fiber

LM , (15)

Ψmatrix
LM =

C5
2 (I1 − 3), (16)

Ψ fiber
LM =

C6
2

Ifb
LM

λLM − 1
2

. (17)

Ifb
LM = ℂ:(aLM ⊗ aLM). aLM = (0R, cos αLMΘ, sin αLMZ). αLM is the fiber angle of the 

longitudinal muscle fibers. Material parameters for the three layers are listed in Table 1.

3.2.2 Esophagus: muscle activation—Two waves of muscle activation are involved 

in esophageal transport resulting in the sequential contraction and relaxation of CM and LM 

fibers (Pouderoux et al 1997; Mittal et al 2006). Motivated by the success and simplicity of 

our earlier model of muscle activation that worked by dynamically changing the reference 

stretch ratio of the corresponding muscle fibers, we did the same here. Specifically, let Z 
denote the vertical coordinate in the reference configuration of the esophageal segment. The 

distal end of the esophagus is at the origin Z = 0, and the proximal end is at Z = L. The 

reference stretch ratio of muscle fibers (λmuscle (Z, t); muscle = CM or LM) is given by,

λmuscle(Z, t)

=

1 if t − t0 ≤ L − Z
c

1 − a0
muscle if L − Z

c < t − t0 < L + ΔL − Z
c

1 if t − t0 ≥ L + ΔL − Z
c

,
(18)
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where, c is propagation speed of the activation wave, t0 is the initiation time of activation, 

and ΔL is the contracting segment’s length in the reference configuration. Eq. (18) gives the 

reference stretch ratio of a fiber at rest, activation, and relaxation state, respectively. The 

equation also shows that the whole esophageal tube has a contracting segment with a vertical 

length ΔL, at any time. a0
muscle is referred to as the reduction ratio.

Esophageal emptying is associated with a pattern of muscle activation distinct from that of 

peristalsis in the more proximal esophagus (Kwiatek et al 2012). During esophageal 

emptying, the LES is initially stretched and elongated with the distal margin exhibiting an 

orad excursion averaging about 1.5 cm, indicative of prolonged axial shortening. This 

shortening also has the effect of stretching the relaxed LES segment. Following esophageal 

emptying, the stretched LES progressively contracts to its baseline length as the more 

proximal esophagus elongates (Kwiatek et al 2012). In contrast, during esophageal 

peristalsis, both CM contraction and LM shortening are sequential waves, with much less 

orad excursion evident at the distal margin of the esophagus. Consequently, in the current 

model we specified a propagating wave of CM contraction to propel the bolus similar to that 

in the previous model, but we specify a sustained LM contraction to reproduce the observed 

orad excursion at the distal margin during emptying. The parameters of the muscle activation 

model are listed in Table 2.

3.2.3 Esophagus: LES model—Anatomically, the LES can be considered a short 

distal segment of the esophagus with a sphincter mechanism composed of CM and LM that 

maintain a tonic contraction at rest functioning as an antireflux barrier. During swallowing, 

the LES relaxes to facilitate esophageal emptying. Functionally, the LES is best identified 

with manometry, there being no clear anatomic distinction between it and adjacent structures 

(Mittal and Balaban 1997). In terms of its passive material property, Ghosh et al. considered 

the LES segment to be stiffer than the adjacent esophageal segment (Ghosh et al 2008). In 

our model, we considered both passive and active properties of the LES. We refer to the 

distal 30 mm of the esophageal segment as the LES segment, and modeled the function of 

the LES by superposing an additional material model along the LES segment onto the 

material model for a typical esophageal segment. The additional material model included the 

passive property to account for the additional stiffness, and an active property to account for 

neurally controlled activation. For each tissue type, we characterized the mechanical 

property attributable to the LES by specifying an additional elastic potential,

ΨLES tissue = Ψ tissue + ΔΨ tissue, (19)

where tissue = mucosa, CM, or LM. Ψtissue corresponds to the elastic potential of the tissue 

for a typical esophageal segment, given in Section 3.2.1. ΔΨtissue corresponds to the 

additional potential to account for the function (or additional mechanical property) of LES. 

For the mucosal layer in the LES segment,

Kou et al. Page 8

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ΔΨmucosa =
ΔC0

2 (I1 − 3) . (20)

For the CM layer in the LES segment,

ΔΨCM = ΔΨmatrix
CM + ΔΨ fiber

CM , (21)

ΔΨmatrix
CM =

ΔC2
2 (I1 − 3), (22)

ΔΨ fiber
CM =

ΔC3
2

Ifb
CM

ΔλCM − 1
2

, (23)

where, Ifb
CM = ℂ:(aCM ⊗ aCM). aCM = (0R, cos αCMΘ, sin αCMZ). αCM is the fiber angle of 

circular muscle fibers. ΔλCM is the reference stretch ratio that is included to deal with 

circular muscle fiber contraction. This is to model the LES resting tone.

For the LM layer in the LES segment,

ΔΨLM = ΔΨmatrix
LM + ΔΨ fiber

LM , (24)

ΔΨmatrix
LM =

ΔC5
2 (I1 − 3), (25)

ΔΨ fiber
LM =

ΔC6
2

Ifb
LM

ΔλLM − 1
2

, (26)

where, Ifb
LM = ℂ:(aLM ⊗ aLM). aLM = (0R, cos αLMΘ, sin αLMZ). αLM is the fiber angle of the 

longitudinal muscle fibers. ΔλLM is the reference stretch ratio that is included to deal with 

LM fiber contraction to model LES active resting tone.
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Our current work focused on the LES. Hence, the above parameters of the LES model varied 

among cases as discussed in Section 4.

3.2.4 Stomach—Human stomach is a complicated structure with its material properties 

dependent on physiological conditions, location, direction, and layered structure (Roy et al 

2012; Zhao et al 2008). In-vivo experiments show that the modulus of the gastric wall is on 

the order of several kPa for small deformations. For large deformations, the stiffness 

increases and the stress-strain curve is of an exponential form (Zhao et al 2008). In our 

model, the dynamics are mainly confined to the EGJ causing minimal gastric deformation. 

Hence, we adopt a simple neo-Hooken material model to consider the elasticity of the 

gastric wall expressed as,

Ψ stomach =
C7
2 (I1 − 3) . (27)

This greatly simplified stomach model was used because the region of interest in this work 

was confined to the LES region. More refined models of structural mechanics can be found 

in the literature (Miftahof 2017; Carniel et al 2017).

3.3 Numerical parameters

Similar to our esophageal transport model, the bolus-esophageal-gastric model had multiple 

length scales. The modeled esophageal lumen was around 2.5 mm, while the stomach’s 

major axis was about 150 mm. We needed to resolve the esophageal lumen in order to 

achieve bolus transport. Here we used an adaptive fluid mesh with two levels. The mesh size 

of the finer level was set as hx = hy = hz = h = 1.5 mm. The mesh-size of the coarser level 

was 6 mm along x, y, and z directions. The esophageal segment was discretized by eight-

node hexahedral finite elements. The number of elements for each esophageal layer is listed 

in Table 3. The gastric wall was discretized by six-node prism finite elements. We first used 

three-node triangle elements to discretize the surface of gastric wall, then protruded the 

surface to form the gastric wall. The mesh size for the gastric wall was around 3 mm. The 

time step Δt needed to satisfy stability constraints from both the fluid and solid systems. 

Based on empirical tests, we choose Δt = 0.1 ms. The total physical time for the simulation 

was about 2.5 s. The code was compiled based on IBAMR: An adaptive and distributed-

memory parallel implementation of the immersed boundary method (Griffith and Luo 2017).

4 Results

Here we present three groups of studies using our fully-coupled model. The first group of 

studies was on the influence of a non-relaxing LES during esophageal emptying, the second 

group was on the influence of LES segment anisotropy, and the third group was on the 

influence of gastric wall and tissue property on the LES segment. In the first two groups, we 

put C7 = 2 (kPa) in the elastic model of the gastric wall (i.e. eq. (27)). In the third group, we 

vary the stiffness of the gastric wall.
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4.1 Case study: what if the LES does not relax?

4.1.1 Case 1: esophageal emptying with a relaxed LES—Case 1 was the base 

case in which the LES segment was a passively stiffer segment with no active tone in line 

with (Ghosh et al 2008). The parameters of the LES model are shown in Table 4, and the 

results are shown in Figs. 2 and 3. Fig. 2 shows the overall deformation and axial stress of 

esophageal and gastric walls. The esophageal segment had a large deformation, whereas the 

deformation of gastric wall was minimal, except near EGJ where the axial stress results from 

esophageal LM shortening.

An axial stress results from LM shortening in the esophageal wall. Fig. 3 shows σdev
xx  and the 

axial velocity of the bolus in the y-z plane. Notice that σdev
xx  in the y-z plane is also the 

deviatoric circumferential stress resulting from esophageal CM contraction, which generates 

high luminal pressure and drives the bolus into the stomach, as seen in Fig. At 2.5 s, the CM 

contraction wave has passed the esophageal segment relaxes and esophageal emptying was 

good in this case.

4.1.2 Case 2: esophageal emptying with a non-relaxing LES—In Case 2, the 

LES is not relaxed, and the parameters for the LES model are shown in Table. 5. We 

included active tone in both the CM and LM layers by specifying a reference stretch ratio of 

less than 1.0. In Table. 5, ℋ(x) is the Heaviside step function: ℋ(x) = 0, if x < 0 and 

ℋ(x) = 1, if x ≥ 0, if x ≥ 0. We included the Heaviside step function so that for the first two 

seconds the LES has a non-relaxing active tone.

After two seconds, ΔC3 and ΔC6 became zero and the LES active tone vanished. As evident 

in Fig. 4, there was great circumferential stress along the LES segment during the first 2 

seconds when the LES active tone was not relaxed and no apparent emptying occurred. In 

contrast, at time = 2.5 second, the circumferential stress vanished as the LES relaxed, and a 

large amount of emptying occurred. Cases 1 and 2 demonstrate the importance of LES 

relaxation during bolus emptying.

4.2 Case study: influence of tissue anisotropy

Tissue remodeling may result from factors such as tissue erosion from acidic reflux or 

surgery. Here we considered cases of asymmetrical changes in LES segment compliance. In 

Case 3, the right side of the LES segment became more compliant; in Case 4, the left side 

became more compliant. Note that we included only the passive property of the LES model, 

not active tone, to make it comparable with the base case (i.e. Case 1).

4.2.1 Case 3: right side of the LES is compliant—The material parameters for 

Case 3 with increased compliance on the right side of the LES segment, referred to here as a 
right-compliant LES, are shown in Table 6. We modeled this by specifying a spatially step-

wise modulus in the LES model. Note that the right side had a positive y-coordinate, as seen 

in Fig. 1. Hence, on the right side of the LES segment (i.e. y > 0), 

ΔC2 = ΔC5 = 2.0(1 − ℋ(y)) = 0. On the left side of the LES segment (i.e. y < 0), 

ΔC2 = ΔC5 = 2.0(1 − ℋ(y)) = 2.0 kPa. Simulation results are shown in Figs. 5 and 6. Evident 
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in Fig. 5, when the moving bolus filled the LES segment (t = 0.5 s), the weaker part 

exhibited greater deformation. The axial velocity shown in Fig. 6 suggests that the weak side 

empties a larger fraction of the bolus.

4.2.2 Case 4: left side of the LES is compliant—In Case 4, parameters shown in 

Table 7, the left side of the LES segment was weaker, referred to as a left-compliant LES. 

Compared with Case 3, we set ΔC2 = ΔC5 = 0 on the left side of the LES segment, 

ΔC2 = ΔC5 = 2.0(1 − ℋ( − y)) = 2.0 on the right side. Similar to Case 3, the weaker side 

shows greater deformation when the bolus filled the LES segment (Fig. 7) and again, the 

weaker part seemed to empty a greater fraction of bolus suggesting that the weaker side 

likely sustained greater pressure loading during emptying. To further examine that, we 

plotted the esophageal wall deformation and luminal pressure for Cases 1, 3, and 4 when a 

large amount of bolus transited LES segment (Fig. 8). Evident in the figure, the weaker (i.e. 

more compliant) side of LES segment sustains not only greater deformation, but also a 

greater pressure load during bolus transit. Since weaker tissue sustaining a greater pressure 

load tends to become weaker yet, this implies that asymmetrical compliance might lead to 

degradation cycles, becoming increasingly asymmetrical and potentially leading to 

diverticulum formation (Tedesco et al 2005).

4.3 Case study: influence of anatomy, the gastric wall stiffness, and the LES stiffness

The third group of studies pertained to bulge development consequent from asymmetrical 

anatomy of the EGJ. In these studies, we varied the material properties of the gastric wall 

and LES segment. For the material property of the gastric wall, we considered three cases: 

C7 = 2 (kPa), C7 = 5 (kPa), and C7 = 10 (kPa). For the material property of the LES 

segment, we consider four cases: normal, a compliant LES, a right-stiffened LES where the 

right-side of the LES is slightly stiffened, and a right-more-stiffened LES where the right-

side of the LES is greatly stiffened. The normal LES is the same as in Case 1. The other 

three cases differ in ΔC2 and ΔC5, as shown in Table 4.

Figs. 9- 11 illustrate the results of these simulations. With a compliant LES, a right-sided 

bulge was seen at time = 0.6 s and was most pronounced in the case with C7 = 10 kPa (i.e. 

the stiffest gastric wall). However, if the LES was normal (i.e. with a high passive stiffness), 

no bulge was seen. This implies that a stiff LES segment improves the ability to sustain a 

biased load from asymmetric anatomy, whereas a stiff gastric wall exacerbates the effect of a 

biased load on the esophageal segment during emptying. This might explain why a right-

sided bulge is clinically more common. This might also suggest that increasing the stiffness 

on right-side of the LES may have favorable impact. Figs. 9- 11 show that a slight increase 

of stiffness on the right-side of LES (i.e. a right-stiffened LES) might help to reduce the 

right bulge. But a great increase (i.e. a right-more-stiffened LES) might lead to a bulge on 

the left. In conclusion, anatomical factors could play a role for bulge development by the 

opposing effects of stiffness in the LES segment and gastric wall.
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5 Conclusions

In conclusion, we developed a fully-coupled bolus-esophageal-gastric model to study 

esophageal emptying based on the IB-FE method. The model included an esophageal 

segment, an ellipsoid-shaped stomach, and a bolus. We also devised a simple model to 

include the passive and active sphincteric function of the LES. In the first group of studies, 

we found that a non-relaxing LES led to high sustained wall stress along the LES segment 

during emptying and obstruction of bolus emptying. The second group of simulations 

showed that tissue anisotropy, manifested by asymmetrical compliance on the right and left 

sides of the LES segment, resulted in greater deformation, and greater wall shear stress 

during bolus transit through the LES segment. More importantly, this resulted in a greater 

pressure load on the weaker side suggesting that a degradation cycle might then ensue 

leading to epiphrenic diverticulum formation. The third group of simulations focused on the 

effect of asymmetrical anatomy and compliance of the LES on the development of a bulge in 

the esophageal wall. These simulations found that a right-sided bulge tended to develop with 

a compliant LES and that this was most pronounced with increased stiffness of the gastric 

wall, implying opposing effects between the LES and gastric wall stiffness and suggesting 

another factor related to the formation of epiphrenic diverticula.

The current model has limitations. First, it does not consider the influence of other EGJ 

structures, specifically the crural diaphragm and proximal stomach that includes clasp and 

sling muscle fiber complex. Based on intraluminal ultrasound and micro-computed 

tomography studies, Vegesna et al. suggest these structures to be crucial to the EGJ anti-

reflux mechanism (Vegesna et al 2013). Secondly, we simplify the process of bolus transport 

by beginning with the bolus in the esophageal segment and beginning to move once the 

muscle activation wave begins. In more realistic physiological conditions, the bolus is 

initially propelled distally by the oropharyngeal swallow and then decelerates in the distal 

esophagus prior to the onset of the esophageal contraction wave (peristalsis). Third, we 

specify a sequential CM contraction wave with a propagation velocity greater than observed 

in clinically in order to reduce computational costs. However, we remark that this is our first 

attempt to have a fully-coupled bolus-esophageal-gastric model with a minimal number of 

physical parameters. Fourth, we assume the esophagus to be a hollow circular cylindrical 

tube with finite radius at rest. However, the actual anatomy is more complex with a highly 

collapsed lumen, curvature, and regional variation in thickness. Applying the model to 

specific subjects or specific disease states will need to be subject-specific to better 

understand the related pathophysiology. This will be a future direction of research.
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Appendix: Mathematical description of IB-FE governing equations

Here, we provide detailed derivation of the IB-FE governing equations that are introduced in 

Section 2. Let x = (x1, x2, …) ∈ Ω denote fixed Cartesian coordinates. Ω ⊂ ℝd, d = 2 or 3, 

denotes the fixed domain occupied by the entire fluid-structure system. We use s = (s1, s2, 

Kou et al. Page 13

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



…) ∈ U to denote the Lagrangian coordinates attached to the immersed structure, where U 
denotes the Lagrangian domain in the reference configuration. We let χ(s, t) ∈ Ω denote the 

physical position of material point s at time t. We denote the physical region occupied by the 

structure and fluid at time t as Ωs(t) = χ(U, t) ⊆ Ω and Ωf(t) = Ω \ Ωs(t), respectively. Since 

we consider here that the structure is immersed in the fluid, the fluid-structure interface can 

be denoted as ∂Ωs(t). The boundary of the whole domain, Ω is denoted as ∂Ω. Also, we 

consider that the fluid-structure system possesses a uniform mass density ρ, and a uniform 

dynamic viscosity μ. This simplification implies that the immersed structure is neutrally 

buoyant and viscoelastic rather than purely elastic. Then, the governing equations in the 

fluid domain, Ωf(t) are,

ρ ∂uf

∂t (x, t) + uf(x, t) ⋅ ∇uf(x, t) − ∇ ⋅ σf = 0, (28)

∇ ⋅ uf(x, t) = 0, (29)

where σf is the fluid stress.

We consider the immersed structure is incompressible, whose stress is denoted as σs. Thus, 

governing equations in the structure domain, Ωs(t) are

ρ ∂us

∂t (x, t) + us(x, t) ⋅ ∇us(x, t) − ∇ ⋅ σs = 0, (30)

∇ ⋅ us(x, t) = 0 . (31)

The interface conditions on the fluid-structure interface, ∂Ωs(t) are

σf ⋅ n = σs ⋅ n, (32)

uf = us, (33)

where n is the outward normal unit vector to ∂Ωs(t), outward being away from the domain 

Ωs(t) of the structure. The idea of the immersed boundary method is to separate the “fluid-

like” components in the governing equations of the structure domain. Therefore, we rewrite 

eq. (30) as below,
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ρ ∂us

∂t (x, t) + us(x, t) ⋅ ∇us(x, t) − ∇ ⋅ σf ,

= ∇ ⋅ Δσ,
= fs,

(34)

where σf  is the “fluid-like” stress that takes the same constitutive law as the fluid stress, σf. 

Δσ = σs − σf .

fs is introduced to denote all the right-hand side of eq. (34).

At the fluid-structure interface, eq. (32) can also be written as

σf ⋅ n − σf ⋅ n = Δσ ⋅ n, (35)

where σf is the fluid stress in the fluid side, and σf is the “fluid-like” stress in the solid side.

We introduce a global velocity field, u(x, t), such that u(x, t)∣Ωf(t) = uf(x, t), and u(x, t)∣Ωs(t) = 

us(x, t). u(x, t) is continuous based on eq. (33). We consider the fluid as an incompressible 

Navier-Stokes fluid and the structure as incompressible visco-elastic material, then

σf = − pI + μ[∇u + (∇u)T] in Ωf(t), (36)

σf = − pI + μ[∇u + (∇u)T] in Ωs(t), (37)

Δσ = σs − σf = σe (38)

where p is the pressure to enforce the incompressibility condition, σe the elastic stress in the 

structure. Then, we obtain below governing equations, in which we omit the dependency of 

u and p on (x, t) for brevity.

In the entire domain, Ω

ρ ∂u
∂t + u ⋅ ∇u = − ∇ p + μ∇2u + fs ∣

Ωs(t)
, (39)

Kou et al. Page 15

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



∇ ⋅ u = 0, (40)

where fs∣Ωs(t) is only non-zero in the structure domain, Ωs(t).

At the fluid-structure interface, ∂Ωs(t)

σf ⋅ n − σf ⋅ n = σe ⋅ n, (41)

uf − us = 0, (42)

In the structure domain, Ωs(t)

fs = ∇ ⋅ σe . (43)

Above equations show that the structure influences the fluid system through two forcing 

terms: ∇ · σe in the structure domain, and σe · n at the interface. Utilizing the delta function 

to transfer the structural influences from the Lagrangian system to the Eulerian system, we 

obtain the immersed boundary formulation as below (See more rigorous derivation in (Kou 

et al 2017)).

In the entire domain, Ω

ρ ∂u
∂t + u ⋅ ∇u = ∇ p + μ∇2u + fe, (44)

∇ ⋅ u = 0, (45)

fe = ∫
Ωs(t)

∇ ⋅ σeδ(x − χ(s, t))dχ(s, t)

−∫
∂Ωs(t)

σe ⋅ nδ(x − χ(s, t))da(χ(s, t)),
(46)

where δ(x) is the d-dimensional delta function. fe is referred to as the Eulerian force density 

that is none-zero in the structural domain only. σe is the elastic stress that depends on the 

specific material model of the structure.
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It is convenient to use the first Piola-Kirchhoff stress tensor to describe the stress of the 

Lagrangian structure. The first Piola-Kirchhoff stress tensor ℙ is defined as below.

∫
∂V

ℙe ⋅ NdA(s) = ∫
∂χ(V , t)

σe ⋅ nda(x), (47)

for any smooth region V ⊂ U. N and n are the outward unit normal along ∂V and χ(V, t), 
respectively. Based on the divergence theorem, eq. (47) also implies,

∫
V

∇ ⋅ ℙeds = ∫χ(V , t)
∇ ⋅ σedx . (48)

To facilitate the communication between the Eulerian variables and the Lagrangian 

variables, we also introduce the Lagrangian force density, Fe, as below,

fe = ∫
U

Fe(s, t)δ(x − χ(s, t))ds . (49)

Fe needs to include both the internal and transmission force density. Substitute eqs. (47)-(48) 

into eq. (46), and employ the weak form to obtain,

∫
U

Fe(s, t) ⋅ V(s)ds

= ∫
U

(∇s ⋅ ℙe) ⋅ V(s)ds − ∫
∂U

ℙe ⋅ N ⋅ V(s)dA(s)

= − ∫
U

ℙe: ∇sV(s)ds,

(50)

for any Lagrangian test function V(s) defined on U. Notice that eq. (50) is also a projection, 

which projects the Lagrangian force density Fe(s, t) into the function space defined by V(s). 

Thus, to obtain the Lagrangian velocity field of the structure from the Eulerian velocity 

field, we utilize a similar projection as below,

Ue(s, t) = ∫
Ω

u(x, t)δ(x − χ)dx, (51)

∫
U

∂χ
∂t (s, t) ⋅ V(s)ds = ∫

U
Ue(s, t) ⋅ V(s)ds, ∀V(s), (52)
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where Ue(s, t) is an intermediate Lagrangian velocity field. The final Lagrangian velocity 

field ∂χ
∂t (s, t) is a projection of the intermediate Lagrangian velocity field into the function 

space defined by V(s).

Based on eqs. (49)-(52), and previous eqs. (44) and (45), we obtain the IB-FE governing 

equations that are introduced in Section 2.

ρ ∂u
∂t + u ⋅ ∇u = − ∇ p + μ∇2u + fe, (53)

∇ ⋅ u = 0, (54)

fe(x, t) = ∫
U

Fe(s, t)δ(x − χ(s, t))ds, (55)

∫
U

Fe(s, t) ⋅ V(s)ds = − ∫
U

ℙe: ∇sV(s)ds, ∀V(s), (56)

Ue(s, t) = ∫
Ω

u(x, t)δ(x − χ)dx, (57)

∫
U

∂χ
∂t (s, t) ⋅ V(s)ds = ∫

U
Ue(s, t) ⋅ V(s)ds, ∀V(s), (58)

ℙe = 𝒢[χ( ⋅ , t)], (59)

where, eq. (59) is the elastic stress equation that computes ℙe based on the material model of 

the structure. The above equations are solved based on a coupled finite-element/finite 

difference method. Details can be found in the literature (Kou et al 2017; Griffith and Luo 

2017).
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Fig. 1. 
Schematic of the computational domain for the bolus-esophageal-gastric model. The 

esophageal segment was connected to a hole of an ellipsoid-shaped stomach to form the 

EGJ. The LES was within the lower 30-mm of the esophageal segment, here referred to as 

the LES segment. The right (left) side of the LES segment is referred to as the part with a 

positive (negative) y-coordinate. The proximal part of the esophageal segment was initially 

filled with the bolus and the distal part with a thin liquid layer. The proximal end of the 

esophageal segment was fixed using the penalty method. The top surface of the rectangular 

computational domain had zero-velocity boundary conditions. All the other five surfaces had 

traction-free boundary conditions.
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Fig. 2. 
Overall deformation and axial stress of esophageal and gastric walls in for Case 1, the base 

case.
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Fig. 3. 

σdev
xx  of the esophageal-gastric wall and the axial velocity held in the y-z plane in Case 1,the 

base case. Note that in the y-z plane, σdev
xx  is also the deviatoric circumferential stress.
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Fig. 4. 

σdev
xx  of the esophageal-gastric wall and the axial velocity held in the y-z plane in Case 2, a 

non-relaxed LES.
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Fig. 5. 
Overall deformation and axial stress of the esophageal and gastric walls in Case 3, a right-

compliant LES.
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Fig. 6. 

σdev
xx  of the esophageal-gastric wall and the axial velocity held in the y-z plane in Case 3, a 

right-compliant LES.
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Fig. 7. 

σdev
xx  of the esophageal-gastric wall and the axial velocity held in the y-z plane in Case 4, a 

left-compliant LES.
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Fig. 8. 
Esophageal wall deformation and pressure field when the bolus transits the LES segment, (a) 

Case 1: the base case; (b) Case 3: a right-compliant LES; (c) Case 4: a left-compliant LES.
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Fig. 9. 
Overall deformation and the axial stress of the esophageal and gastric wall at time = 0.6 

second for different cases.
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Fig. 10. 

σdev
xx  of the esophageal-gastric wall and the axial velocity held at time = 0.6 second in the y-z 

plane, for different cases.
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Fig. 11. 
Esophageal wall deformation and pressure field when the bolus fills the LES segment for 

different cases.(a): Cases with a compliant LES; (b): Cases with a normal, right-stiffened, or 

right-more-stiffened LES.
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Table 1

Material parameters used in the passive material model of each esophageal layer.

Material type Material parameters

Mucosa C0(kPa) 0.4 C1(kPa) 0.4

CM C2(kPa) 1.0 C3(kPa) 4.0

αCM (Deg.) 0

LM C5 (kPa) 1.0 C6(kPa) 4.0

αLM (Deg.) 90
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Table 2

Model parameters for CM contraction and LM shortening. Here, we modeled CM contraction as a sequential 

traveling wave, but LM shortening as a sustained muscle activation wave along the whole esophageal segment.

Muscle activation type a0 c (mm/s) ΔL (mm)

CM contraction 0.5 100 60

LM shortening 0.3 0 80
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Table 3

Grid number along (R, Θ, Z) orientations, denoted as (nR, nΘ, nZ), for each esophageal layer in the reference 

configuration.

Grid number Mucosa CM LM

nR 2 1 1

nΘ 32 32 32

nZ 40 40 40
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Table 4

Material parameters of the LES model in Case 1 (i.e. the base case).

Material Parameters

Mucosa ΔC0(kPa) 0.8

CM ΔC2(kPa) 2.0 ΔC3(kPa) 0.0

ΔλCM 1.0

LM ΔC5(kPa) 2.0 ΔC6(kPa) 0.0

ΔλLM 1.0

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kou et al. Page 36

Table 5

Material parameters of the LES model in Case 2, a non-relaxed LES.

Material Parameters

Mucosa ΔC0(kPa) 0.8

CM ΔC2(kPa) 2.0 ΔC3(kPa) 8.0(1 − ℋ(t − 2s))
ΔλCM 0.5

LM ΔC5(kPa) 2.0 ΔC6(kPa) 8.0(1 − ℋ(t − 2s))
ΔλLM 0.5
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Table 6

Material parameters of the LES model in Case 3, a right-compliant LES.

Material Parameters

Mucosa ΔC0(kPa) 0.8

CM ΔC2(kPa) 2.0(1 − ℋ(y)) ΔC3(kPa) 0.0

ΔλCM 1.0

LM ΔC5(kPa) 2.0(1 − ℋ(y)) ΔC6(kPa) 0.0

ΔλLM 1.0
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Table 7

Material parameters of the LES model in Case 4, a left-compliant LES.

Material Parameters

Mucosa ΔC0(kPa) 0.8

CM ΔC2(kPa) 2.0(1 − ℋ( − y)) ΔC3(kPa) 0.0

ΔλCM 1.0

LM ΔC5(kPa) 2.0(1 − ℋ( − y)) ΔC6(kPa) 0.0

ΔλLM 1.0

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kou et al. Page 39

Ta
b

le
 8

Δ
C

2 
an

d 
Δ

C
5 

fo
r 

th
e 

fo
ur

 c
as

es
 o

f 
th

e 
L

E
S 

m
od

el
 u

se
d 

in
 S

ec
tio

n 
4.

3.
 O

th
er

 p
ar

am
et

er
s 

of
 th

e 
L

E
S 

m
od

el
 a

re
 th

e 
sa

m
e 

as
 in

 T
ab

le
 4

 f
ar

 C
as

e 
1 

w
hi

ch
 is

 

th
e 

ba
se

 c
as

e.

C
as

es
N

or
m

al
L

E
S

C
om

pl
ia

nt
L

E
S

R
ig

ht
-s

ti
ff

en
ed

L
E

S
R

ig
ht

-m
or

e-
st

if
fe

ne
d

L
E

S

Δ
C

2(
kP

a)
2.

0
0

0.5
(1

−
ℋ

(−
y)

)
2.0

(1
−

ℋ
(−

y)
)

Δ
C

5(
kP

a)
2.

0
0

0.5
(1

−
ℋ

(−
y)

)
2.0

(1
−

ℋ
(−

y)
)

Biomech Model Mechanobiol. Author manuscript; available in PMC 2019 August 01.


	Abstract
	Introduction
	Mathematical formulation
	Bolus-esophageal-gastric model
	Geometry
	Material model
	Esophagus: passive material model
	Esophagus: muscle activation
	Esophagus: LES model
	Stomach

	Numerical parameters

	Results
	Case study: what if the LES does not relax?
	Case 1: esophageal emptying with a relaxed LES
	Case 2: esophageal emptying with a non-relaxing LES

	Case study: influence of tissue anisotropy
	Case 3: right side of the LES is compliant
	Case 4: left side of the LES is compliant

	Case study: influence of anatomy, the gastric wall stiffness, and the LES stiffness

	Conclusions
	Appendix: Mathematical description of IB-FE governing equations
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6
	Fig. 7
	Fig. 8
	Fig. 9
	Fig. 10
	Fig. 11
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8

