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A Proposed Mechanism for Spontaneous Transitions
between Interictal and Ictal Activity
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Epileptic networks are characterized by two outputs: brief interictal spikes and rarer, more prolonged seizures. Although either output
state is readily modeled in silico and induced experimentally, the transition mechanisms are unknown, in part because no models exhibit
both output states spontaneously. In silico small-world neural networks were built using single-compartment neurons whose physiolog-
ical parameters were derived from dual whole-cell recordings of pyramidal cells in organotypic hippocampal slice cultures that were
generating spontaneous seizure-like activity. In silico, neurons were connected by abundant local synapses and rare long-distance
synapses. Activity-dependent synaptic depression and gradual recovery delimited synchronous activity. Full synaptic recovery engen-
dered interictal population spikes that spread vialong-distance synapses. When synaptic recovery was incomplete, postsynaptic neurons
required coincident activation of multiple presynaptic terminals to reach firing threshold. Only local connections were sufficiently dense
to spread activity under these conditions. This coalesced network activity into traveling waves whose velocity varied with synaptic
recovery. Seizures were comprised of sustained traveling waves that were similar to those recorded during experimental and human
neocortical seizures. Sustained traveling waves occurred only when wave velocity, network dimensions, and the rate of synaptic recovery
enabled wave reentry into previously depressed areas at precisely ictogenic levels of synaptic recovery. Wide-field, cellular-resolution
GCamP7b calcium imaging demonstrated similar initial patterns of activation in the hippocampus, although the anatomical distribution
of traveling waves of synaptic activation was altered by the pattern of synaptic connectivity in the organotypic hippocampal cultures.

Key words: epilepsy; ictogenesis; model; propagation; seizure; wavefront

Significance Statement

When computerized distributed neural network models are required to generate both features of epileptic networks (i.e., sponta-
neous interictal population spikes and seizures), the network structure is substantially constrained. These constraints provide
important new hypotheses regarding the nature of epileptic networks and mechanisms of seizure onset.

ictal spiking and the generation of seizure activity (Jouny etal.,
2005; Blauwblomme et al., 2014; Staley, 2015; Milanowski and
Suffczynski, 2016). The most widely accepted mechanistic hy-
pothesis is a shift in the balance of excitation and inhibition
(Dichter and Ayala, 1987; Treiman, 2001). This idea is based
on classic pharmacological experiments (Matsumoto and
Marsan, 1964; Ayala et al., 1973), but the inhibitory-to-
excitatory shift is a statement of a potentially necessary exper-

Introduction

Epilepsy is a disease characterized by an increased probability
of seizures and brief, interictal population spikes (Tao et al.,
2005; Karoly et al., 2016; Hassan et al, 2017). Thus, to under-
stand epilepsy, we need to know the mechanisms by which
epileptic networks transition between two output states: inter-
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imental condition, not a mechanism (Staley, 2015), and recent
modeling suggests that a homogeneous reduction in this ratio
cannot explain all the behaviors of pathological networks
(O’Donnell et al., 2017).

Ictogenesis (i.e., the transition from the interictal to ictal
state) is difficult to study. Seizures are so named because these
state transitions are abrupt, infrequent, and unpredictable.
This makes them unsuitable for study with modern cellular
activity-dependent imaging techniques (Muldoon et al., 2015).
Conceptual computational models of epileptic neural networks
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can serve as important tools for under- A
standing ictogenesis (O’Leary et al., 2015)
because all network parameters at the
time of ictogenesis can be stored and then
studied in detail.

Sophisticated computational models
of epileptic behavior have been developed
(Lytton, 2008; Wendling et al., 2016). One
class of computer models is exemplified
by Epileptor. This class of models pro-
duces oscillating output based on small
sets of differential equations (Jirsa et al.,
2014; Naze et al., 2015; Cowan et al.,
2016). Interictal-to-ictal transitions are
driven by changes in noise input and/or
the value of slowly changing variables.
These models provide important insights
into theoretical aspects of interictal-to-
ictal transitions. The strength of these
models is the condensation of massive
numbers of network features into a hand-
ful of variables. This condensation enables
important theoretical insights but also
limits the degree to which these models
can guide experimental studies of synaptic
mechanisms of ictogenesis (O’Leary et al.,
2015).

In distributed computer models, indi-
vidual neurons are modeled and con-
nected into networks (Traub and Miles,
1991; Markram et al., 2015) . These mod-
els permit the study of the effect of net-
work topology on the excitability of
biophysically realistic distributed neural
networks (Santhakumar et al., 2005; Mor-
gan and Soltesz, 2008; Sabolek et al., 2012).
Transitions between interictal spiking and
ictal states have not been systematically
studied using distributed neural net-
works. Changes in external stimuli drove transitions from burst
to tonic mode in a computational model of the thalamus (Barardi
et al., 2016). Reduction in excitatory strength drove the emer-
gence of seizure-like activity in a distributed model of cortical
networks (van Drongelen et al., 2005, 2007; Barardi et al, 2016).
In these studies, ictal transitions occurred after alterations of
model parameters or inputs; the network activity itself does not
trigger spontaneous seizures. Brain states and network inputs
change in vivo, so these are realistic approaches. However,
interictal-to-ictal transitions can occur in the absence of state
changes and external inputs, for example, in isolated prepara-
tions (Buzsdki et al., 1989; Gutnick et al., 1989; McBain et al.,
1989; Dyhrfjeld-Johnsen et al., 2010; Berdichevsky et al., 2012),
and we adopted this approach to gain a more general insight into
interictal-to-ictal transitions.

The current work is a proof-of-concept study to test whether
spontaneous transitions between interical spiking and ictal activ-
ity can occur in a distributed neural network model in the ab-
sence of external input (i.e., simply as a consequence of ongoing
activity at synapses that undergo activity-dependent depression
and recovery) (Dobrunz and Stevens, 1997; Staley et al., 1998,
2001). Rewiring of neuronal circuits is a well-established mecha-
nism of epilepsy following brain trauma (Tauck and Nadler,
1985; Prince et al., 2012), but the details of the connectivity en-
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Network architectures. A, Example of a fraction of the 100 X 100 neuron network. Black nodes represent inhibitory
neurons. White nodes represent excitatory neurons. Connections between neurons depend on connectivity pattern adopted.
However, there are no recurrent connections between inhibitory neurons. B, C, Differences in uniform versus small-world connec-
tivity patterns. A circular distribution of neurons is used for purposes of illustration. B, Uniform connectivity model, where the
connection probability drops exponentially with distance (measured in numbers of neurons from source). €, Small-world connec-
tivity model where 10% of connections are long range. D, Connection probability versus distance for the uniformly connected
networks that were tested. E, Scale-free network curves that were tested, showing the number of connections versus number of

gendered by this rewiring are largely unknown. We therefore
simulated different synaptic connectivity strategies to determine
whether there were particular connectomes that were more likely
to engender spontaneous transitions between interictal and ictal
activity.

A variety of wiring strategies can be used to connect neurons
(Behrens and Sporns, 2012; Alivisatos et al., 2013; Oh et al., 2014;
Reimann et al., 2015). Small-world connectivity, in which most
connections are local and some are long-distance, has been most
frequently associated with epilepsy (Netoff et al., 2004; Kitano
and Fukai, 2007; Lillis et al., 2015). Alternative connectivity strat-
egies include scale-free (most neurons have few connections, but
a minority, termed hub cells, have many), local (all connections
are to near neighbors), and random (no effect of distance on
connectivity probability) (Feldt et al., 2011; Bullmore and
Sporns, 2012). In this proof-of-concept study, interactions between
synaptic properties (strength, activity-dependent depression, and
recovery), synaptic connectivity, and network dimensions drove
interictal-to-ictal transitions.

Materials and Methods

Network architecture. The model is a 2D single-layer neural network that
approximates the sprouted hippocampal slice culture. In this prepara-
tion, there are ~10,000 neurons (Liu et al., 2017). The network therefore
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Table 1. Electrophysiological parameters from dual whole-cell recordings
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Table 2. Model parameters

Parameter Median D N Parameter  Explanation Value
Resting membrane potential, mV -7 5.6 64 E Resting membrane potential, mV Initial value = 0
Action potential threshold, mV —49 54 64 T Action potential threshold, mV Initial value = 1
Resting membrane potential—action 20.5 74 64 gK Ratio of K conductance over resting K conductance value  Initial value = 1
potential threshold, mV GE Excitatory synaptic conductance Initial value = 0
Input resistance, m{) 169 62 64 al Inhibitory synaptic conductance Initial value = 0
Capacitance, pF 129.4 382 23 A Time constant for action potential threshold decay, ms 15
Time constant, ms 13.5 3.1 23 Coefficient of sensitivity for action potential threshold
EPSP amplitude, mV 3 4.5 12 4 adaptation 0.75
Tested CA1 pairs — — 130 T Time constant for decay in K conductance, ms 20, excitatory;
Fraction coupled pairs — — 6% 10, inhibitory
Fraction pairs (with postsynaptic — — 1.6% b Increment in gK conductance after spiking 20, excitatory;
action potentials) 10, inhibitory
Tel Excitatory conductance alpha function parameter 0.2
Te2 Excitatory conductance alpha function parameter 10
consisted of 10,000 neurons spread over a 100 X 100 grid, of which 9600 1! Inhibitory conductance alpha function parameter 02
Ti2 Inhibitory conductance alpha function parameter 20

are pyramidal neurons, interspersed with 400 interneurons. Principal cell
and interneuron subtypes were not distinguished. The interneurons are
distributed uniformly over the network, and the pattern of synaptic con-
nections between them depends on the connectivity scheme adopted.
The synaptic strengths, or weights, for all synapses are chosen at random
from a uniform distribution between 0 and 1, and were not changed
during the simulations. An exemplary fraction of the network, sans con-
nections, is shown in Figure 1A.

Network connectivity. In 130 paired whole-cell recordings from hip-
pocampal slice cultures, 11% of the neurons were synaptically coupled
(Table 1). Because the pairs were tested for connectivity in either direc-
tion (i.e., 260 connections were tested), this represents a connectivity
probability of 6%. In a network of 10,000 cells, this represents ~600
synaptic connections per neuron, which is close to what was found in
more detailed studies of cortical neurons (Markram et al., 2015). Simu-
lating the full complement of neuronal connections would entail 10,000
neurons X 600 connections/neuron. This would require 6 million syn-
aptic updates per 1 ms time increment, which was well beyond our com-
putational capacity. The total number of inhibitory and excitatory
synapses was therefore kept constant at the maximum feasible number of
~400,000. This represents ~40 inputs and 40 outputs per neuron. Al-
though this is a simplification, it represents ~25% of the number of
connections that were sufficiently strong to trigger an action potential in
the postsynaptic cells (3.1%/2 X 10,000 neurons = 160 inputs per cell vs
the 40 that were modeled).

Three models of network connectivity were tested. In the first model
(the uniform connectivity model), every neuron is synaptically con-
nected to neurons in its neighborhood, with the connection probability
falling exponentially with distance (Traub and Miles, 1991; Sabolek et al.,
2012) (Fig. 1B). The terms “neighborhood” and “local connections”
refer to connections to neurons that are within a distance of 5 neurons in
the grid shown in Figure 1A. Every neuron was connected using the same
strategy. The drop in probability of connectivity with distance for the
uniform connectivity schemes that were tested is shown in Figure 1D,
and the associated parameters are listed in Table 2.

In the second model, the small-world network model (Watts and Stro-
gatz, 1998), the majority of connections are within the neuron’s neigh-
borhood. A certain percentage of those synapses are then rewired,
connecting to neurons chosen at random from outside the neighborhood
(Fig. 1C). In the dual whole-cell recordings, we did not find an apprecia-
ble relationship between physical distance and the probability of shared
synaptic connections (see Fig. 5C), so no distance dependence was in-
cluded in the distribution of long-distance connections. The values for
percentage of rewired long-range connections per neuron that were
tested were 10%, 20%, 30%, 40%, and 50%.

For both uniform connectivity and small-world connectivity, the
number of input as well as output connections per neuron followed
approximately a Gaussian distribution, with a mean of 35-40 connec-
tions and SD of 4—7 connections.

A number of real-world networks fall into the third category of mod-
els: scale-free networks. In scale-free networks, the synaptic connections

of the neurons follow a power law (Fig. 1E) and can be constructed using
the algorithm of Barabasi and Albert (1999). As the neurons in the cur-
rent network are arranged in a lattice, the algorithm by Rozenfeld et al.
(2002) was used to construct scale-free networks. Figure 1E demonstrates
the range of scale-free network configurations that were tested. In the
configurations tested, every neuron had 5-10 connections at the mini-
mum, and 115-120 connections at the maximum. Once again, the prob-
ability of connections dropped with distance, with the vast majority of
connections formed between neurons 5-10 steps of each other on the
grid.

Neuron model. The neuron model we used is a modified version of the
Macgregor integrate and fire neuron (MacGregor and Oliver, 1974).
Equations governing the model are detailed previously (MacGregor and
Oliver, 1974; Swiercz et al., 2006, 2007). They are reproduced as follows:

E = e (1+8K+GE+GI/5R

(1—e— (1+gK+GE+ GI)/5)(7GE — GI — gK)
+ (1+gK + GE + GI)

T=e T+ (1 —e ") (1+cE)

gK = e "TgK + bS

— 1 >
s-1{o
Here, E is the change in membrane potential from resting membrane
potential, T is the threshold for generation of action potential, gK is the
excess potassium conductance over resting potassium conductance
value, and S is the indicator of output spikes. The parameters evaluated
(Table 2) include the data from 130 dual whole-cell recordings (see Fig. 5;
Table 1).

For any given neuron, the incoming synaptic weights as well as neu-
rotransmitter vesicles released onto the respective synapses are used to
compute the excitatory and inhibitory synaptic conductances (Cios et al.,
2004). The excitatory conductance GE and inhibitory conductance GI
are computed as follows:

if E=T
otherwise

GE = Ziwigei

GL= Dywgi

In the above set of equations, i represents all incoming excitatory syn-
apses, and j represents all incoming inhibitory synapses. w represents the
corresponding synaptic weights. ge and gi are the sum of products over
time of a functions with the number of excitatory and inhibitory neu-
rotransmitter vesicles released onto synapses. That is,

ge = Etae(t)glutamate(t)
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Figure2. A, Injected current pulse. B, Response of a single excitatory neuron to injected current pulses in (A). €, D, Excitatory and inhibitory response curves of the excitatory neurons in response

to synaptic release of a single transmitter vesicle.

gi = Da(t)gabal(t)

In the above equations, glutamate(t) and gaba(t) represent glutamate
and GABA vesicles released at time t. The summation over time happens
over the interval from current instance to 150 ms before the current
instance of time. The biexponential « functions for excitatory and inhib-
itory synapses, a, and «;, are adapted from Cios et al. (2004) and de-
scribed by the following:

o (t) = w(e—l/’l‘el _ e—[/'rez)
¢ Tel — Te2
Til*Ti2 ! _
a(t) = — m( —UTIL _ -T2y

The parameters used are tabulated in Table 2 and are based on Table 1
and Rothman and Silver (2014).

Excitatory, inhibitory, and potassium conductances all contribute to
the neuron’s transmembrane potential. When the membrane potential
exceeds the action potential threshold, an action potential is generated

(without detailed modeling of sodium conductances). Every time an
action potential is generated, the neuron’s potassium conductance is
incremented by a fixed value, hyperpolarizing the membrane potential
away from action potential threshold so that the neuron ceases firing. The
potassium conductance then decays exponentially over time to the steady-
state value (Hodgkin and Huxley, 1952; Traub and Miles, 1991).

Single neuron dynamics. The responses of a single excitatory neuron to
various values of external stimulating current are shown in Figure 2A, B.
As the external inward current increases, the transmembrane potential E
also increases until the action potential threshold is reached and the
neuron fires. The time course of excitatory and inhibitory conductance
responses of the neuron to synaptic release of 1 neurotransmitter vesicle
is shown in Figure 2C.

The release of glutamate and GABA at excitatory and inhibitory
synapses contributes to the excitatory and inhibitory conductances of
the postsynaptic neuron. Three to five simultaneously released gluta-
mate vesicles will bring a resting neuron to action potential threshold
(Table 1). The number of glutamate vesicles required to reach action
potential threshold is affected by the current value of the membrane
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Figure3. Activity-dependent depression and recovery of synaptic responses. The response of a synapse to incoming spike trains of varying durations and timing is shown. The synapse has 20

releasable glutamate vesicles (NR .,

=20). Att = 0, there are 15 vesicles available for release, so NR(0) = 15. 4, The pattern of incoming action potentials to the axon terminal. Insets, Activity at

an expanded time scale. B, Glutamate available for release at the synapse after transmitter release based on the action potentials in A. C, The number of glutamate vesicles released at the synapse

in response to the incoming spike train.

probability value. There was no fluctuation
in the spontaneous glutamate release proba-
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Figure 4.

potential, the strength of the synapse, and concurrent activation of
GABA, receptors and potassium conductances.

Synaptic depression and recovery. Further synaptic details were
added to the Macgregor model of the neuron. The neurons release
neurotransmitter vesicles containing GABA or glutamate into the
synapses when they fire action potentials. Glutamate vesicles were
also released spontaneously, independently of action potentials
(McBain and Dingledine, 1992). These sources of glutamate-
mediated synaptic activity were summarized in the glutamate release

Schematic of imaging system. A custom microscope built inside a CO, incubator comprises LED excitation light
sources, a camera, a4 0.5 NA objective, and a motorized 3-axis stage. Together, these components enable high resolutionfrom -\
a large FOV (encompassing the entire slice culture) and sequential, automated acquisition from up to six samples.

bility over the course of a simulation, and no

other inputs or externally modulated mem-

brane currents were applied to the neurons.

Activity-dependent as well as spontaneous

release of glutamate leads to a depletion of

available glutamate vesicles, which in turn

Motoiized leads to short-term synaptic dePression (Roy

XYZ et al., 2014). The glutamate vesicles are then

replenished over time (Rizzoli and Betz,

2005). The dynamics of replenishment and

depletion were described respectively by the
following:

Stage

—1T

NR(t + 1) = NR(t)e.q
+ NRmax(1 — e qi")

NR(t + 1) = NR()(1 = egem

NR is the number of available glutamate ves-
icles for release, and NR ,, is the maximum
number of releasable glutamate vesicles.

max Was drawn at random, for every syn-
apse, from a uniform distribution with a
maximum of 30 (Stevens and Tsujimoto,
1995). The time constant for release, T, .,
and the time constant for replenishment, 7,4, is 1 ms and 5 s, respec-
tively (Staley et al., 1998, 2001). Figure 3 illustrates the activity-
dependent depression and recovery of the response of a synapse to
incoming spike trains of varying durations.

Every neuron in the network is assumed to have a finite number of
releasable glutamate vesicles. The initial value of releasable glutamate
vesicles at the beginning of the simulation was set to be arandom fraction
of the maximum possible at every synapse.
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Dual whole-cell recordings in the hippocampal organotypic slice culture. A, Two filled cells demonstrating extensive apical and basal dendrites that extend across the physical

dimensions of the slice from a dual whole-cell recording on DIV 5 in which pipettes contained AlexaFluor-594 (10 wm). B, Seizure activity in dual whole-cell recordings at DIV 11 (ictal data were not
used for correlation). sEPSCs recorded 30 s after seizures (bottom, zoomed in recordings) were used for correlations. €, sEPSC correlations between neurons increased from 0.05 on DIV0 to 0.2 on DIV
15-19, consistent with increased connectivity as suggested in A. However, the correlation between neurons did not decrease with distance. The average cross-correlations are as follows: 0.05 =
0.01(DIV 1, gray dots, n = 22 pairs), 0.12 = 0.01 (DIV 5, cyan triangles, n = 32 pairs), 0.18 == 0.02 (DIV 8, dark red squares, n = 24 pairs), and 0.14 == 0.02 (DIV 11, red dots, n = 21 pairs). D,
Recording from a pair of CA3—1 pyramidal neurons that were considered to be synaptically connected based on the temporal correlation between action potentials in the presynaptic neuron (“pre”;
action potentials widened by cesium pipette solution) and excitatory evoked responses evoked from resting membrane potential in the postsynaptic neuron (“post”; also recorded with cesium

pipette solution).

In the case of inhibitory neurons, a single GABA vesicle is released
every time the neuron fires an action potential, with no activity-
dependent depression. Glutamatergic inputs to interneurons under-
went synaptic depression and recovery with the same kinetics as
pyramidal cell inputs.

The model does not include subcellular compartments; G-protein-
linked receptors; sustained conductances underlying plateau poten-
tials; ion accumulation and transport; or principal cell or interneuron
subtypes.

Experimental design and statistical analysis: computation model
Population activity. The field potential of the network is calculated from
the center of the grid, based on an approximately exponential decay of
the contribution of an individual neuron to the local field potential with
physical distance (Lindén et al., 2011). The potential values of the neu-
rons were therefore multiplied by a 2D exponential function located at
the center of the grid (the virtual extracellular electrode position), and
summed, to obtain the net field potential of the network. Frequency
dependence of volume conduction was not modeled. The equation had a
space constant of 2 neurons on the grid. The relevant equation is as
follows:

l (=i +(j=jo?
Etolal = z E Eije(7 202

ij=1

In the above equation, i and j are the row and column indices of the
neurons along the grid, respectively; N is the number of rows and col-
umns in the grid; and i, and j. are the row and column indices of the
neuron in the center of the grid. o is the space constant.

Interictal spikes are defined as simultaneous (i.e., within the same 1 ms
time interval) action potential firing in ~5% of neurons at its peak, such that
the field potential generates a voltage transient of at least 0.3 mV (Dzhala and
Staley, 2003). Seizures are defined as repeated field potentials of at least 0.2
mV at a frequency of at least 2 Hz for a period of at least 10 s (Fisher et al.,
2005), involving simultaneous action potential firing in ~0.5% of neurons.

Spike propagation velocity. The propagation velocity of the spiking
wavefront was computed as follows: let i denote the group of spiking
neurons in iteration (t), and let j denote the group of spiking neurons in
iteration (t + 5). For every spiking neuron in iteration (t), the minimum
distance to a spiking neuron in iteration (t + 5) is computed. The average
of those minimum distances is then computed, and is then divided by
iterations passed, to compute the velocity as follows:
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Table 3. Network connectivity and excitability”

Spikes Seizures
Connectivity
Uniform, 26” = 10 Yes No
Uniform, 26” = 15 Yes No
Uniform, 20% = 20 Yes No
Uniform, 202 = 25 Yes No
Uniform, 26” = 30 Yes No
Small-world, p = 10 Yes No
Small-world, p = 20 Yes Yes
Small-world, p = 30 Yes No
Small-world, p = 40 Yes No
Small-world, p = 50 Yes No
Scale-free, A = 2.0 Yes No
Scale-free, A = 2.5 Yes No
Scale-free, A = 3.0 Yes No
Scale-free, A = 3.5 Yes No
Scale-free, A = 4.0 Yes
Spontaneous release probability

1X1077° Yes Yes
5x10°° Yes Yes
1x10* Yes Yes
5x10* Yes Yes
1%x10°3 Yes No

“For the connectivity table, spontaneous release probability per second = 0.05. For the spontaneous release prob-
ability table, connectivity = small-world, with 25% of connections long-distance. The term long-distance refers to
connections to neurons that are >5 neurons away from the index neuron. Uniform connectivity, o = SD of the
Gaussian connectivity probability distribution, connectivity probability being the probability of connecting to a
neuron at increasing distance from index neuron. Small-world connectivity, p = percentage of long-distance
connections. Scale-free connectivity, A = exponential in power law for scale-free networks. In scale-free networks,
the probability P(k) that a node in the network has k connections to other nodes in the network follows a power law:
P(k) ~ k ~ *. Five independent simulations were run for each of the listed configurations.

1 n
v(t) = Hzmin(dﬁ),j =1,2..m
i=1

In the above equation, # is the total number of spiking neurons in itera-
tion (t), mis the total number of spiking neurons in iteration (t + 5), and
k is the number of iterations that passed between the two time frames
under consideration: 5 in this case.

Simulation procedure. Our network was programmed in C++ and
heavily parallelized, and run on a Linux Cluster. Time increments in the
model were 1 ms. A 5 min network simulations, or ~300,000 1 ms
iterations, took ~1 day to run. In each time step, for every neuron,
neurotransmitter release, both spontaneous and activity-dependent, was
computed. Transmembrane potential and other parameters of every
neuron were then updated. Neuronal spiking triggers activity-dependent
glutamate release in the next time step and the various stages were re-
peated. Our code will be made available in model DB.

Neurophysiology

Organotypic slice cultures. Organotypic slice cultures were prepared from
P6-P8 C57BL/6 mice of either sex using the roller tube technique (Gih-
wiler, 1981) for electrophysiology and the membrane insert technique
(Stoppini et al., 1991) for imaging. The protocols were approved by the
Massachusetts General Hospital Subcommittee on Research Animal
Care. Briefly, isolated hippocampi were cut into 400 um slices on a
Mcllwain tissue chopper (Mickle Laboratory Engineering). Roller tube
slices were then placed on glass coverslips in roller tube cultures as pre-
viously described (Dyhrfjeld-Johnsen et al., 2010; Lillis et al., 2015). Fol-
lowing slicing, and before placing slices on the membrane insert,
membrane slices were incubated for 1 h in a viral incubation solution
containing 5 ul of AAV-hSyn-GCaMP7b (Addgene 104489) in 2 ml of
Gey’s balanced salt solution with 3 mm kynurenate, and bubbled with
95% 0,/5% CO,. Slices were then transferred to membrane inserts (PIC-
MORGS50; Millipore), which were placed in glass-bottomed six-well
plates (P06-1.5H-N, CellVis). Both culture configurations were incu-
bated at 5% CO,, 36°C in Neurobasal-A growth medium supplemented
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with 2% B27, 500 um GlutaMAX, and 0.03 mg/ml gentamycin (all from
Invitrogen). Growth medium was changed every 3—4 d.

Electrophysiology. On the recording day, organotypic slice cultures
were transferred to a submerged recording chamber and perfused with
oxygenated (95% O,/5% CO,) ACSF (2.5 ml/min, 35 = 0.5°C) contain-
ing the following (in mm): 119 NaCl, 1.25 NaH,PO,, 3 KCl, 26 NaHCO;,
11 glucose, 2.5 CaCl,, and 2 MgSO,7H,0, pH 7.4, for 30 min before
electrophysiological recording. Recording electrodes were pulled from
borosilicate glass capillaries (Sutter Instruments) using a micropipette
puller (model P-97, Sutter Instruments) with resistance 4—7 mM{) when
filled with internal solution containing the following (in mm): 120 potas-
sium (N = 23; Table 1) or cesium gluconate (N = 64; Table 1), 5 MgCl,,
0.6 EGTA, 30 HEPES, 4 Mg-ATP, 0.4 Na,-GTP, 10 phosphocreatine-
Tris, 5 QX-314 and 0.01 AlexaFluor-594 hydrazide (Invitrogen), 290
mOsm, pH adjusted at 7.2 with CSOH. Dual whole-cell patch-clamp
recordings were made from a pair of CA1 pyramidal neurons with visu-
alization using infrared differential interference contrast optics and a
camera on an upright Nikon Eclipse FN1 microscope. Signal acquisition
was performed using a Multiclamp amplifier (Multiclamp 700B, Molec-
ular Devices) with Clampex 10 software (Molecular Devices). Signals
were sampled at 10 kHz and filtered at 2 kHz. Data were stored on a PC
for off-line analysis after digitization using an A/D converter (Digidata
1440A, Molecular Devices). The resting membrane potential of neurons
was measured in current-clamp mode within 5 s of establishing whole-
cell recordings to minimize the effect of internal solution on intrinsic
properties of neurons, and other passive properties were measured im-
mediately thereafter. Membrane potential was corrected for a liquid
junction potential of —10 mV (potassium gluconate) or —13.7 mV (ce-
sium gluconate). Neurons with resting membrane potential <—60 mV
after correction of liquid junction potentials were discarded. Neuronal
input and access resistances were repetitively monitored during the ex-
periment. Cells with changes of input and access resistance changes of
>20% were excluded from analysis.

Neurophysiology

Experimental design and statistical analysis: electrophysiology. sEPSCs
were collected at a holding potential of —70 mV, which is close to the
calculated IPSC reversal potential. sIPSCs were also measured in the
same neuron by raising the holding potential to 0—10 mV, a potential
close to the EPSC reversal potential, to minimize the amplitude of con-
current sEPSCs. Postsynaptic currents were detected using custom soft-
ware (DClamp; https://sites.google.com/site/dclampsoftware/home).
Cross-correlation of sSEPSCs between two neurons was calculated using
the peak time points of sSEPSCs by MATLAB (RRID:SCR_001622).

To detect a synaptic connection between a pair of patched neurons, an
action potential burst was induced by a 600 pA, 400 ms current injection
into first one, and later the other, neuron of the pair in current-clamp
configuration. The responses from the neuron injected with current
(presynaptic neuron), and the postsynaptic neurons were measured by
Clampfit 10.2 (Molecular Devices).

Anatomical imaging. After at least 1 h electrophysiological recording,
the same slice cultures were then transferred to a custom-built scanning
microscopes for two-photon image collection. Two-photon images were
acquired using custom-designed software and the scan head from a Ra-
diance 2000 MP (Bio-Rad), equipped with a 20X 0.95 NA water-
immersion objective (Olympus), and photomultiplier tubes with
appropriate filters for YFP (545/30) and CFP (450/80). A Spectra-Physics
Mai Tai laser, set to 810 nm, was used for two-photon excitation. Serial
images of AlexaFluor-594 hydrazide-filled neurons were collected with 2
mm steps. The imaging was reconstructed by Image] (RRID:
SCR_003070) offline (Fig. 5A).

Calcium imaging. After atleast 5 d in culture, when GCaMP expression
was sufficient, and spontaneous seizures had typically begun, slices were
transferred to the imaging system. The imaging system is a custom-
inverted microscope constructed inside of a CO, incubator (Fig. 4). The
microscope comprises an Olympus MVPLAPO 2 XC objective (0.5 NA
and magnification of 3.33X when coupled with the 150 mm lens tube), a
multipeak 2-inch filter set (89402, Chroma), custom LED excitation
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Figure 6. Interictal and ictal activity in the artificial neural network. 4, A simulation with low spike frequency and no seizures: lower values of NR,,,, (15), spontaneous release probability (0.01), and
recovery rate (glutamate replenishment time = 8 ) were the contributing factors. Inset, The voltage scale is the same as that of the main figure. B, €, Interictal-to-ictal transitions. The frequency of seizure-like
behavior is proportional to the spontaneous release probability of glutamate. B, Spontaneous glutamate release probability = 0.01. €, Spontaneous glutamate release probability = 0.05.
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Figure7.  Spread of epileptiform activity through the network. 4, Top panels, Plots of membrane potential of each neuron in the networkillustrate action potential propagation during interictal
spiking activity ina 100 X 100 principal cell and 20 X 20 interneuron network with small-world connectivity (the interneuron grid is visible in frames due to high levels of inputs). lllustrated frames
are 5 ms apart. The organized wavefront visible in the first panel is not sustained due to rapid spread of activity via long-distance connections (white stars). Bottom, Glutamate available for release
per synapse in the network during spiking activity shown in top panels. B, Top row, Action potential propagation during seizure activity. Every frame is 50 ms apart. Bottom row, Glutamate available
for release per synapse in the network during seizure activity shown in top row.

sources (OSTAR Projection power, OSRAM), and a CMOS camera Experimental design and statistical analysis: calcium imaging. Each slice
(GS3-U3-51S5M-C, FLIR). Slices were positioned using a motorized ~ wasimaged for 4 min at 10 Hz, which essentially guaranteed that a seizure
stage, equipped with a multiwell plate mount, enabling automated se-  onset was captured in each movie. The entire movie was baseline-

quential recording of up to six slice cultures. subtracted, and an SD projection was calculated to highlight the active
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Movie 1.
Color represents membrane potential for each cell: warmer color tone
represents more depolarized. The video is shown at 0.03X real-time.
The rapid propagation of the interictal spike wavefront i further accel-
erated by long-range projections, which initiate new wavefronts, rap-
idly synchronizing the entire network.

neurons. The Fiji (RRID:SCR_003070) plugin TrackMate (Tinevez et al.,
2017) was used to automatically identify ROIs corresponding to ~600
cells. Calcium traces were extracted as AF/F for the average of all pixels
falling within an ROI. Sorted raster plots and onset time trajectories (see
Fig. 12) were calculated by finding the time at which each cell first crossed
a threshold of AF/F = 10% during epileptiform events, which were clas-
sified as described above for the model.

Results

Epileptiform activity in isolated organotypic hippocampal
slice cultures

Cultured hippocampal organotypic slices developed spontane-
ous epileptic activities beginning late in the first day after slicing,
which can be detected by chronic calcium imaging observation
(Lillis et al., 2015) and field potential electrophysiological record-
ing (Dyhrfjeld-Johnsen et al., 2010). To establish some bounds
on neuronal electrophysiological parameters, connectivity, and
epileptiform activity in this preparation, we performed 130 dual
whole-cell patch-clamp recordings on CA3 and CA1 pyramidal
neurons (Fig. 5A). Whole-cell patch-clamp recording revealed
epileptic activities at the single neuron level (Fig. 5B). Two min-
ute recordings of sSEPSCs were collected 30 s after seizures, when
polysynaptic activity was minimal (Fig. 5B). To establish a mea-
sure of connectivity, the cross-correlation of incoming sEPSCs
between neurons was calculated. Figure 5C shows that cross-
correlation of sEPSCs gradually increased with age in culture.
There was no consistent relationship between physical distance
between the recorded neurons and correlation across the range of
10-625 pum distance, where 625 wm was the maximum distance
between CA neurons in this preparation. Connectivity was also
estimated between these pairs of whole-cell patched neurons also
by triggering action potentials with depolarizing current injec-
tions into neurons (Fig. 5D). Action potentials were broadened
by the effects of cesium in the recording solution, which
should increase transmitter release probability. The responses
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of the presynaptic neuron and postsynaptic neuron were ana-
lyzed offline. When action potentials in the presynaptic neu-
ron burst reproducibly induced postsynaptic EPSPs in the
postsynaptic cells with a latency of <2 ms, the neurons were
considered to be connected in that direction (Fig. 5D). In 130
pairs of dual whole-cell recordings, 14 pairs were connected
(~11%). Four pairs (3.1%) had sufficiently strong synaptic
connectivity to induce action potentials in the postsynaptic
neuron. Pairs were tested bidirectionally (each neuron was
tested as the presynaptic and postsynaptic member of the
pair), so the connectivity probabilities in Table 1 are one-half
of these values. These properties and the other electrophysio-
logical parameters of the recorded neurons listed in Table 1
were used as starting points for the computational networks in
which we explored ictogenesis.

Epileptiform activity in the computational model

A wide range of connectivity and neuronal parameters could
be used to create 10,000 neuron networks that generated spon-
taneous interictal spikes (Table 3; Fig. 6A). Networks gener-
ated spontaneous seizures under a more restricted range of
tested parameters (Table 3). Networks generated both interic-
tal and ictal activities under the most restricted set of param-
eters. A very extensive series of simulations was required to
find the initial network structures and neuronal parameters
that reproducibly generated both interictal and ictal activity in
multiple networks that were created using the same parame-
ters (Table 3; Fig. 6B, C).

Nonepileptiform activity was manifest as random action po-
tentials in individual neurons driven by spontaneous, stochastic
glutamate release. Epileptiform network activity was manifest as
continuous, advancing traveling waves of spiking neurons, as has
recently been described in cortical recordings from epileptic pa-
tients (Smith et al., 2016) and disinhibited experimental cortical
in vivo recordings (Rossi et al., 2017). This pattern is described in
more detail below.

The calculated field potential during seizures ranged from 0.2
to 0.4 mV. These values are within the range of what has been
recorded in vitro in the organotypic slice preparation (Gutnick et
al., 1989; Dyhrfjeld-Johnsen et al., 2010), although the best means
to calculate the field potential from the activity of an in silico
network are still being developed (Lindén et al., 2011; Mazzoni et
al., 2015). The duration of seizures ranged from the minimum of
10 to 45 s, similar to seizure duration in isolated preparations in
vitro (Berdichevsky et al., 2013). On average, 57 neurons fired per
millisecond during a seizure, with an SD of 22 (computed for 3
seizures obtained in 5 independent simulations). In simulations
with seizures, 1 or 2 seizures were observed per minute of simu-
lation time. Lower frequencies of spikes and seizures could be
generated using specific values of network parameters. For exam-
ple, lower values of spontaneous glutamate release probability,
lower values for NR, .., and higher values for replenishment time
constant, T,.qy, all resulted in lower spike and seizure frequency.
Figure 6A illustrates a simulation with no seizures, and low spike
frequency.

Onset patterns of interictal activity

Figure 7A depicts the progress of action potential firing in neu-
rons during an interictal spike episode that generated field poten-
tials, such as those shown in Figure 6A. The images show the grid
of neurons, with every pixel value representing the transmem-
brane potential of the corresponding neuron. An interictal spike
originated when a local group of neurons started to fire simulta-
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Figure 8. Relationship between synaptic depression, conduction velocity, and epileptiform activities. A, The number and

distance of firing presynaptic neurons for neurons that fired during seizures and spikes in a particular simulation. For seizures, the
firing presynaptic neurons were located within its neighborhood. For spikes, the firing presynaptic neurons were located all over
the network. B, Schematic of the varying influence of long-distance versus local connections on the spread of epileptiform activity.
Using the network layouts from Figure 1, the red arrow represents a long-distance synaptic connection in a small-world network
that spreads activity when synaptic depression is low and a single synapse can activate a postsynaptic neuron. In contrast, when
synapses are more depressed, more than one synapse is necessary to activate a postsynaptic neuron. Under these conditions, only
the local connections (blue) are sufficiently dense to support coincident activation of =1 synapse. This constrains activity to local
propagation, which is slower than via long-distance connections. C, Relationship between releasable glutamate at presynaptic
terminals of neurons in the neighborhood (neighborhood being neurons within a 3 XX 3 grid of the spiking neuron under consid-
eration) and velocity of propagation of the spiking wavefront. Fast propagation velocity, supported by high mean releasable
glutamate levels, produced rapid activation of the network (spike, green). Slow propagation, caused by lower amounts of releas-
able glutamate, led to a collapse of the wavefront (propagation failure, red). A narrow band of propagation velocity, resulting from
moderate amounts of releasable glutamate, produced sustained reentrant waves (seizure, blue).
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neously. These groups could be recog-
nized when at least 10—20 neurons within
a local grid of 10 X 10 cells began firing.
The activity then spread radially from the
group to synaptically connected neurons.
The interictal activity was often complex
with >1 peak per spike discharge (Fig.
6A). The duration for 246 complex inter-
ictal spikes from 5 independent simula-
tions had a mean value of 396 ms and a SD
of 130 ms. This duration is longer than for
a single spike or sharp wave (<200 ms by
definition) but well within the typical du-
ration of a complex interictal spike dis-
charge (de Curtis and Avanzini, 2001).
The output synapses of the neurons be-
came depressed as releasable glutamate
was depleted by repeated action potential
firing and consequent glutamate release.
This led to reduced excitatory input to
postsynaptic neurons, reduction of action
potential firing, and termination of the in-
terictal spike. After the output synapses of
the neurons recovered, low-level random
synaptic activity and action potential fir-
ing resumed. This took several seconds in
simulations with low spike frequency, as
has been observed experimentally (Staley
etal., 1998, 2001; Le Duigou et al., 2014).
Eventually, another group of neurons be-
gan to fire simultaneously, initiating the
next interictal spike (Movie 1).

Onset patterns of seizure activity
Seizures arose from epochs of interictal
activity (Fig. 6 B,C). Ictogenesis was not
triggered by stochastic peaks of spontane-
ous glutamate release; both spikes and sei-
zures began with similar network-mean
rates of glutamate release. The rate of
glutamate release (representing action
potential-independent release) (McBain
and Dingledine, 1992) just before a sei-
zure was also not unique: glutamate re-
lease in the 100 ms before a seizure was
not significantly different than in any
other period. For 3 seizures obtained in 5
independent simulations, the mean value
of spontaneous glutamate release per mil-
lisecond, 100 ms before the seizure, was
8.9 X 10 > (SD 4.3 X 10 ). For 6 ran-
domly chosen spikes in those very same
simulations, the mean value of spontane-
ous glutamate release was 8.6 X 10 > (SD
4.4 X 10 %) per millisecond, compara-
ble with those of seizures in the same
simulations.

Fig. 7B demonstrates the progress of
action potential firing in network neurons
during a spontaneous seizure episode.
Seizures only occurred when the network
was partially depressed from prior interic-
tal spike activity. Under these conditions,
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Movie 2.  Neuronal spiking activity during seizure activity. As in
Movie 1, color represents membrane potential for each cell and the
video is shown at 0.03 X real-time. This movie takes place immediately
following the spiking in Movie 1. The rapidly synchronizing spikes are
replaced by a slow traveling wave, which did not initiate additional
distal wavefronts due to synaptic depression.

the activity of more than one presynaptic neuron was necessary to
activate the postsynaptic neuron (Fig. 8A). Long-distance con-
nections were too sparse to activate distant neurons (Fig. 8B), so
activity did not jump to distant areas of the network, as occurred
during interictal spikes that were generated when synapses were
less depressed (Fig. 7A, starred areas). The requirement for acti-
vation by multiple presynaptic neurons constrained activity to
local spread. This was because, in small world networks, only
local synaptic connectivity was sufficiently high to engender the
simultaneous activity of multiple presynaptic neurons (Fig. 8B).
This constraint organized seizure activity into traveling waves
(Fig. 7B; Movie 2).

The wavefronts of active neurons during the sustained seizure
activity followed a logarithmic spiral pattern. Logarithmic spirals
are patterns that appear frequently in natural phenomena (Ha-
gan, 1982); they are self-similar spirals at every point of which the
angle between the tangent and the radial line remains constant.
This is in agreement with the wave-like and spiral-like patterns
that have been recorded from the cortex during experimental
seizures (Huang et al., 2004; Viventi et al.,, 2011; Gonzalez-
Ramirez et al., 2015).

Spike propagation velocity and available glutamate

The propagation velocity of the spiking wavefront was dependent
on the average number of glutamate vesicles available for release
in the neuronal neighborhood (Fig. 8C). The higher the amount
of releasable glutamate, the faster the spiking wavefront moved
across the network. The amount of releasable glutamate in the
network was higher during a spike when compared with a seizure;
the spiking wavefront therefore moves much faster during an
interictal spike than during a seizure. The mean velocity of 5
spikes across 3 simulations was 0.64 neurons/ms (SD 0.2), com-
pared with the mean velocity value of a seizure 0of 0.3971 neurons/
ms. In a depressed network, cooperative, or nearly simultaneous,
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release at multiple synapses was required to generate a postsyn-
aptic action potential. In small-world networks, the probability
of such cooperative release falls rapidly with distance, so the
propagation is local and slow in partially recovered areas. In fully
recovered networks, sufficient glutamate is released from the
sparse long-distance connections to trigger action potentials, so
that the network activity jumps ahead of the activation wavefront
and rapidly activates the entire network (Figs. 74, 8C).

Spontaneous glutamate release probability

The frequency of interictal spike events increased with spontaneous
glutamate release probability at individual synapses. Five indepen-
dent simulations with 60,000 1 ms iterations were run for each value
of the probability of glutamate release. In Figure 94, the change in
network behavior with increase in the probability of spontaneous
glutamate release at each synapse in the network is shown. Interictal
spike frequency was proportional to the spontaneous glutamate re-
lease probability. Seizure duration was also proportional to gluta-
mate release probability for low to moderate values of release
probability. Seizure duration fell at higher levels of release probabil-
ity due to enhanced synaptic depression (Fig. 9B).

Effects of synaptic connectivity

Both interictal spikes and spontaneous transitions to and from
seizures were only observed in networks with small-world con-
nectivity. In these networks, 25% of the connections of every
neuron in the network were long range. Networks with varying
degree of long-range connections were then tested. The total
number of connections was kept approximately the same,
~400,000, or 40 per neuron, across various simulations; 10%,
20%, 30%, 40%, and 50% of total connections were long-
distance in different tests of small-world connectivity. Five inde-
pendent simulations with 60,000 1 ms iterations were run for
each percentage value. Spike frequency was highest in the net-
works with highest densities of long-range connections (Fig. 9C).
Seizures were most likely when 20% of connections were long
range. Increasing or decreasing the percentage of long-range con-
nections from the 20% value resulted in shorter periods of syn-
chronous activity that did not reach the 10 s minimum for seizure
activity (Fig. 9D). Networks with 30% of long-range connections
resulted in periods of sustained activity that were =5 s, but none
was =10s.

Similarly, for uniform connectivity, the total number of con-
nections was kept constant at ~400,000, and 5 different values of
neighborhood sizes were tested. Neighborhood size refers to the
SD of the Gaussian distribution of local connectivity (Table 2).
Five independent simulations with 60,000 1 ms iterations were
run for each curve shown in Figure 1D. None of the tested neigh-
borhood sizes resulted in seizures.

Scale-free networks have a large number of neurons with a
small number of connections, and a few neurons with a large
number of connections. For this connectivity strategy, 5 dif-
ferent slopes of the log number of connections versus log
number of neurons curve were tested (Fig. 1E). Five indepen-
dent simulations with 60,000 1 ms iterations were run for each
slope value. None of the tested network configurations re-
sulted in seizures.

Effect of disinhibition

For network configurations that produced seizures and spikes,
we also ran simulations where the release of GABA into the net-
work was blocked. No discernible difference was observed in net-
work behavior, and the network continued to generate seizures
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and spikes. We then assessed glutamate release onto interneurons
and found that activity-dependent depression of glutamatergic
inputs profoundly depressed interneuron activity during spikes
and seizures.

Effect of spatial rearrangement

Neurons in the hippocampus are not arranged in checkerboard
fashion (Fig. 1A). In paired recordings, there was no relationship
between physical distance and synaptic correlation (Fig. 5C).
This spatial heterogeneity may explain why spiral seizure wave-
fronts have not been noticed in this widely used preparation.
Figure 10 demonstrates that, if synaptic connectivity is kept con-
stant but the physical locations of the neurons are scrambled, the
spiral waveform (Fig. 10A) is lost (Fig. 10B). However, the effect
on the field potential is much more modest: epileptiform ac-
tivity persists, with only a phase shift (Fig. 10C vs 10D). This
result supports the idea that, at least within the anatomical
constraints of this simulation experiment, electrographic epi-

leptiform activity is not dependent on the physical location of
the neurons. This is in sharp contrast to the dependence on
synaptic connectivity. From this, we can conclude that ana-
tomical spiral waves are not necessary to generate electro-
graphic epileptiform activity.

As a second test of these ideas, we used wide-field single-
photon calcium imaging of the entire hippocampal organotypic
slice culture preparation after 5 DIV, when the culture was gen-
erating spontaneous seizure activity (Dyhrfjeld-Johnsen et al.,
2010; Berdichevsky et al., 2012; Lillis et al., 2015). Ictal wavefronts
were not demonstrable by calcium imaging (Fig. 11A). However,
the physical location of the neurons could be rearranged to dem-
onstrate spiral ictal onset, and this onset persisted through the
subsequent seizure onset (Fig. 11B,C). Once ictal activity was
initiated, the neuronal calcium level remains high throughout the
seizure, and it is no longer possible to discern traveling waves
with this fluorophore. These data also support the idea that the
pattern of synaptic connectivity and the progression of ictal ac-
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tivity relative to synaptic recovery are im-
portant determinants of ictal onset, but
the physical location of neurons is not.

As another test of the biological feasi-
bility of this mechanism of ictal onset, we
recorded the rate at which neurons acti-
vated during interictal spikes and seizures.
The number of neurons whose calcium
increased above resting levels and re-
mained elevated was used as an assay of
neurons that had begun to participate in
epileptiform activity. Figure 8C predicts
that spike activity should spread more
rapidly than seizure activity (i.e., that the C
rate at which neurons join ictal spikes
should be higher than the rate at which
seizure activity spreads through the net-
work). Figure 8C also predicts that prop-
agation failure should be even slower than
seizure activity spread. Figure 12 demon-
strates that the initial rate at which neu-
rons join spikes and seizures is very high,
and that subsequently the rate falls off
dramatically. This is consistent with the
predictions of Figure 8C and the simula-
tions that show progressive reduction in
activity propagation velocity as seizure ac-
tivity begins (Movies 1, 2). Several spikes
terminated with slow nonpropagated ac-
tivity, consistent with the velocity of prop-
agation failure in Figure 8C.

As a further test of the predictions of
the ictal traveling wave model, we quantified the relationship
between the predicted ictal network path length for the ictogenic
wave velocity and the degree of recovery shown in Figure 8C. For
monoexponential recovery with a recovery time constant of 5 s,
500 ms is required to restock an average of 1.5 releasable vesicles
at synaptic terminals that contain an average of 15 release sites,
assuming that the synapse is completely depressed (no releasable
vesicles) at the onset of recovery. For the ictogenic velocity of 0.5
neurons/ms shown in Figure 8C, the ictal pathlength should be
~250 synapses to provide sufficient time (500 ms) for the syn-
apses to replenish sufficiently. In other words, the ictal wavefront
needs to sequentially activate 250 neurons before returning to the
origin to reactivate the process again; 250 neurons is a reasonable
pathlength given the geometry of 100 X 100 neurons. The movies
demonstrate ictal periods of ~500 ms (i.e., 2 Hz).

In ictal onsets recorded in Figure 12C, the ictal onset time
from 3 to 4 s (shaded for clarity), during which ~20% of the
population activates, is most informative. The subpopulations
that activate before 3 s do so abruptly, indicating much more
rapid, pre-ictal activity patterns (Fig. 8 B,C); 20% of the slice
population is ~2000 neurons (Liu et al., 2017), corresponding to
an activation rate of ~2 neurons/ms. This is ~4 times faster than
the velocities in the simulations. However, the ictal velocity is
calculated differently in the simulations; it is calculated as the
shortest possible synaptic distance between the currently and
previously active neurons. In the calcium imaging data, we do not
have a way to know which neurons lie on this shortest ictal path-
way, and which neurons are extraneous to that pathway, so we
count all newly active neurons. The additional activation of neu-
rons that lie off the shortest ictal pathway contribute to the veloc-
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ity that is calculated as neurons per millisecond, resulting in a
higher apparent conduction velocity.

While ictal wavefronts may not be demonstrable by cellular
calcium imaging in the hippocampus, the principals of ictogen-
esis discovered in silico (active wavefront velocity in partly recov-
ered small-world networks matching the rate of recovery and the
dimensions of the network) appear to apply to hippocampal ic-
togenesis in vitro, although the physical distribution of the neu-
rons precludes observation of spiral waves seen in more spatially
homogeneous neocortical preparations (Rossi et al., 2017).

Discussion

These simulations demonstrate that distributed neural networks
can generate both spikes and spontaneous seizures without exter-
nal inputs or parameter adjustments. Seizures only occurred in
partially refractory networks. Potassium conductances and
GABA synapses are present in our model, but in the networks
tested here, activity-dependent synaptic depression was the dom-
inant mechanism of refractoriness. Synaptic depression con-
strained seizure activity to a spiral wavefront of neurons firing
action potentials. Wavefronts occurred because cooperative glu-
tamate release at many presynaptic terminals was necessary to
activate a postsynaptic neuron, and with small-world connectiv-
ity only local neurons contributed significantly to this coopera-
tive release (Fig. 8B). Wavefronts were quite thin, as has been
observed in human patients (Smith et al., 2016). In our simula-
tions, interictal and ictal wavefronts of neurons firing action po-
tentials were <10 neurons thick.

High levels of releasable glutamate vesicles available at recur-
rent excitatory synapses (i.e., minimal synaptic depression in the
network) correlated with fast propagation of the spiking wave-
front as well as spread of activity by long-distance synaptic con-
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neurons in A were transformed using onset time to create a logarithmic spiral pattern
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nections (Figs. 7A, starred areas; Fig 8 B, C). These processes led to
rapid recruitment of the entire network into an interictal spike. A
low level of releasable glutamate at synapses in the network (i.e.,
widespread synaptic depression) was associated with a quiescent
state, with scattered action potentials but neither seizures nor
interictal spiking; synchronous activity might start local but died
out due to propagation failure (Fig. 8C). A slightly higher level of
releasable glutamate (i.e., greater, but still incomplete, synaptic
recovery) was associated with the slowest sustainable propaga-
tion of the wavefront of activity, and continuously reentrant,
seizure-like behavior (Figs. 7B, 8C). In these models, a “barely
recovered” network, with just enough glutamate to sustain firing
of the spiking wavefront, was most conducive to seizure-like
behavior.

A similar conclusion can be drawn from the results of simu-
lations in which spontaneous glutamate release probabilities
were varied. Networks with high glutamate release probabilities
burst frequently. Networks with frequent release of glutamate
also generated the most seizures per unit time because network
recovery from each burst transitions through a partially recov-
ered state that is prone to generating a seizure. The pro-ictal effect
of an interictal spike is strongly supported by the well-established
“pre-ictal” or “sentinel” activity that precedes human seizures by
an interval of 1 to several seconds (Huberfeld et al., 2011). The
variability in the interval between the sentinel spike and seizure in
human recordings has not been explained previously but is most
consistent with the increased probability of ictogenesis in par-
tially recovered network states that we observed in our simula-
tions.

The first insight into ictogenesis obtained from networks that
spontaneously transition between interictal and ictal states is that
wavefronts of neuronal activity must propagate sufficiently
slowly through partially recovered synapses that the synapses
ahead of the active wavefront have time to recover before the
arrival of the wave of neuronal activation. This is analogous to
fibrillation activity in cardiac tissue, where wavefront propaga-
tion matches recovery from a refractory state and thereby engen-
ders sustained reentrant activity (Comtois et al., 2005). This
critical propagation velocity depends on the dimensions of the
network, the number of incoming glutamate vesicles necessary to
trigger an action potential, and the rate of recovery of the net-
work. The networks studied here could generate both spikes and
seizures because the propagation velocity could vary as a function
of the degree of recovery of the local synapses (Fig. 8C). This key
relationship arose from the requirement for cooperative presyn-
aptic activation of the postsynaptic neuron by multiple partially
recovered synapses. Long-distance connections were too sparse
to use cooperative action, so activity could not jump ahead of the
wavefront of activation. Because only local neurons were likely to
be connected to the postsynaptic neuron and firing, cooperative
activation was local and therefore slower than activity propagated
via long-distance synaptic connections. This effect may underlie
the intriguing finding that reducing glutamatergic synaptic
strength resulted in ictal activity in a smaller distributed model of
neocortex (van Drongelen et al., 2005, 2007).

<«

similar to the network model (Fig. 7). Each spiral blade represents a unique onset time,
i. Cells were evenly placed on the blade for 0 < t << 1 using the equations
x = efcos(t —0.2(i— 1))andy = e'sin(t — 0.2(i — 1)) C, Using the iden-
tical neural network locations for the next spontaneous seizure yields a similar ictal onset
pattern.
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Figure 12.  Rate of propagation of ictal versus interical activity: calcium imaging. 4, Raster plots of the time at which neurons activated during spikes and a seizure. A total of 600 neurons were
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activation is much slower for both the seizure and the nonpropagated spike activity, consistent with the modeling shown in Figure 7.
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In our simulations, we did not find seizures in networks con-
nected uniformly, or in a scale-free manner that was not also
small-world. In both of these connectivity schemes, for the pa-
rameters we tested, bursting by a group of neighboring neurons
did not initiate propagating bursts in neurons located farther
away. The spiking wavefront propagated in a smooth manner,
until it encountered the edges of the network. This behavior did
not create pathways of recovered neurons that enabled reentry of
the spiking wavefront into the network, and hence did not gen-
erate seizures.

The model presented here is conceptual and hypothetical. The
network is based on experimental data, but there are many ele-
ments of real neural networks that are not included (see Materials
and Methods). Nevertheless, the interictal-to-ictal transitions de-
scribed here share five important features with clinical and exper-
imental experience. First, seizures may be much less probable
than spikes (Staba et al., 2014; Karoly et al., 2016) because of the
narrow range of synaptic recoveries that make reentrant activity
possible, versus the broad range of synaptic recoveries that en-
gender spikes (Fig. 8C). Second, seizure activity occurs in par-
tially recovered networks, so the velocity of ictal propagation
must be slower than interictal propagation through networks
that are more fully recovered (Figs. 8C, 12C). Third, to be partly
depressed, the network must have undergone a recent activation
to support seizure activity. Such activation could be provided by
pre-ictal spikes and rhythmic activities that precede seizures in
human recordings (Ralston, 1958; Fisher et al., 1992; Bartolomei
et al., 2004; Huberfeld et al., 2011). Fourth, the spiral wavefronts
seen in these simulations have been recorded in the neocortex
(Rossi et al., 2017), where the physical neuronal distribution is
closer to the distribution of neurons in our 2D model. Fifth, the
model generated activity with the temporal characteristics of
spikes (homogeneously brief) and seizures (two orders of mag-
nitude longer, and of variable duration) established by clinical
and experimental observations (Afra et al., 2008; Kim et al., 2011;
Staba et al., 2014).

The number of parameters explored over the several years of
work on this project still represents only a tiny fraction of the
parameter space of a 10,000 neuron network, and the number of
parameters used to describe each neuron was also simplified. The
synaptic connectivity in the model (40 one-way inputs and 40
one-way outputs) represents a simplification factor of 4 in con-
nectivity if only the strongest synapses are considered, and a fac-
tor of 15 if all synapses regardless of strength are considered.
These simplifications may reduce the accuracy of the simulations
(Horwitz, 2003), although the simplified network generates the
fundamental result of ictal spiral waves that have recently been
recorded in experimental and human seizures (Viventi et al.,
2011; Gonzélez-Ramirez et al., 2015; Smith et al., 2016; Rossi et
al., 2017). Further, the simulations were run in a 2D network.
These simplifications were used for practical reasons. Expanding
the number of synapses or network dimensions would have been
prohibitive in terms of computational time and resources. Our
experimental experience with epileptic networks is based on
acute and organotypic hippocampal networks that are largely 2D.
The 2D networks also facilitated the visualization of network
activity. Larger and 3D networks comprised of more realistically
heterogeneous neurons and synapses (Markram et al., 2015)
would provide a more realistic number of paths for propagation
of ictal wavefronts, which would likely expand the variety of ic-
togenic conditions. However, we would expect that these more
complex networks would still demonstrate that seizure probabil-
ity is dependent on synaptic depression and recovery, coalescence
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of spiking activity into traveling wavefronts, the propagation ve-
locity of these wavefronts, and network dimensions.

Neurons in biological networks are not laid out in a grid as in
Figure 1. Imaging of the activity of individual neurons will there-
fore lead to more complex ictal activity patterns that may not look
like logarithmic spirals (Fig. 11). However, in real networks with
these more complex anatomical synaptic distributions, the
spread of ictal activity is still congruent with the relationship we
describe between the dimensions of the network, the velocity of
spread, and the rate of synaptic recovery (Fig. 12). Spatial rear-
rangement of synaptic connectivity demonstrates consistent spi-
ral waves in the calcium imaging data (Fig. 11). More regular
patterns of synaptic connectivity in the neocortex, particularly
after imposition of homogenizing conditions, such as the block-
ade of inhibition (Sabolek et al., 2012), produce more obvious
ictal spiral waves (Viventi et al., 2011; Gonzélez-Ramirez et al.,
2015; Smith et al., 2016). We did not investigate the effects of
network inhomogeneities, but it may very well be that local
changes in the density of recurrent synapses, such as might occur in
a damaged, gliotic hippocampal network (Bliimcke et al., 1999;
Thom, 2014), would slow the propagation of the wavefront of neural
activity and thereby increase the probability of ictogenic reentrant
activity.

Electrical brain stimulation is now being used to prevent sei-
zures, although the mechanisms are not known (Fisher and
Velasco, 2014). Understanding the relationship between pre-ictal
activity, the resulting induced refractoriness, and the consequent
seizure probability (Fig. 8C) may provide the framework for de-
veloping more effective anticonvulsant stimulation strategies.

Our next steps are to transfer the insights gained from this
model to biological experiments in an isolated preparation that
undergoes spontaneous interictal-to-ictal transitions, such as the
organotypic hippocampal slice culture preparations (Lillis et al.,
2015) to develop strategies to interrupt or prevent ictogenesis.
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