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Balancing Prediction and Sensory Input in Speech
Comprehension: The Spatiotemporal Dynamics of Word
Recognition in Context
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Spoken word recognition in context is remarkably fast and accurate, with recognition times of �200 ms, typically well before the end of
the word. The neurocomputational mechanisms underlying these contextual effects are still poorly understood. This study combines
source-localized electroencephalographic and magnetoencephalographic (EMEG) measures of real-time brain activity with multivariate
representational similarity analysis to determine directly the timing and computational content of the processes evoked as spoken words
are heard in context, and to evaluate the respective roles of bottom-up and predictive processing mechanisms in the integration of sensory
and contextual constraints. Male and female human participants heard simple (modifier-noun) English phrases that varied in the degree
of semantic constraint that the modifier (W1) exerted on the noun (W2), as in pairs, such as “yellow banana.” We used gating tasks to
generate estimates of the probabilistic predictions generated by these constraints as well as measures of their interaction with the
bottom-up perceptual input for W2. Representation similarity analysis models of these measures were tested against electroencephalo-
graphic and magnetoencephalographic brain data across a bilateral fronto-temporo-parietal language network. Consistent with proba-
bilistic predictive processing accounts, we found early activation of semantic constraints in frontal cortex (LBA45) as W1 was heard. The
effects of these constraints (at 100 ms after W2 onset in left middle temporal gyrus and at 140 ms in left Heschl’s gyrus) were only
detectable, however, after the initial phonemes of W2 had been heard. Within an overall predictive processing framework, bottom-up
sensory inputs are still required to achieve early and robust spoken word recognition in context.
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Introduction
Processing spoken words involves the activation of multiple word
candidates and competition between them until one candidate
becomes uniquely compatible with the incremental speech input
(Marslen-Wilson and Welsh, 1978; Zhuang et al., 2014; Koca-

goncu et al., 2017). In everyday speech, despite the low predict-
ability of successive words in natural discourse (Luke and
Christianson, 2016), this recognition process is strongly affected
by the prior context, with recognition times of �200 ms from
word onset, well before all of the word has been heard (Marslen-
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Significance Statement

Human listeners recognize spoken words in natural speech contexts with remarkable speed and accuracy, often identifying a word
well before all of it has been heard. In this study, we investigate the brain systems that support this important capacity, using
neuroimaging techniques that can track real-time brain activity during speech comprehension. This makes it possible to locate the
brain areas that generate predictions about upcoming words and to show how these expectations are integrated with the evidence
provided by the speech being heard. We use the timing and localization of these effects to provide the most specific account to date
of how the brain achieves an optimal balance between prediction and sensory input in the interpretation of spoken language.
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Wilson, 1975; Marslen-Wilson and Tyler, 1975; Sereno et al.,
2003). The neurocomputational mechanisms underlying these
powerful and early contextual effects remain unclear and in
dispute.

Early bottom-up models assigned a primary role to the speech
input in generating an initial cohort of word candidates, with
context affecting the selection of the unique word candidate from
among this set (Tyler and Wessels, 1983; Marslen-Wilson, 1987).
A range of other models allowed contextual constraints to
modulate directly the state of potential word candidates before
any of the word was heard (Morton, 1969; e.g., McClelland
and Elman, 1986). More recently, the influential predictive
coding framework views language comprehension as being
driven by an internal generative model, which reduces uncer-
tainty about perceptual interpretation by generating probabilistic
top-down hypotheses about potential upcoming words (Friston
and Frith, 2015; Kuperberg and Jaeger, 2016). These hypotheses,
generated in frontal cortex (Sohoglu and Davis, 2016), result in
preactivation of brain areas relevant to the processing of lexical
form and content, so that top-down predictions can be compared
with upcoming sensory data.

The strength and specificity of such predictions will vary as a
function of preceding contextual constraints, with strong con-
straints generating lexically specific predictions and weaker
constraints generating more graded semantic and syntactic pre-
dictions (Kuperberg and Jaeger, 2016; Luke and Christianson,
2016). To date, however, almost all research into the neural sub-
strate for predictive processing has used constraining contexts
where the target is highly predictable. It remains unclear specifi-
cally where and when predictive constraints apply at more natu-
ral levels of constraint, and how these relate to incoming
constraints provided by the sensory input.

Here we use source-localized electroencephalographic and
magnetoencephalographic (EMEG) data, combined with multi-
variate representation similarity analysis (RSA), to determine di-
rectly the timing and the neurocomputational content of the
processes evoked as spoken words are heard in variably con-
straining contexts, reflecting the levels of predictability seen in
natural discourse. Participants listened to two word phrases (e.g.,
“yellow banana”), which varied the specificity of the semantic
constraint imposed by the modifier (W1) on the noun (W2). To
express these constraints as probability distributions of potential
word candidates, we used a gating task in which participants
listened to incremental fragments of the word pairs and produced
possible continuations (Grosjean, 1980). Based on these candi-
date sets, we devised several probes of the neural mechanisms
whereby the constraints generated by hearing W1 could affect the
processing of W2.

Three measures were based on the candidate sets generated
when only W1 had been heard, asking whether different predic-
tive representations of candidate properties were computed as
W1 was heard, and how they modulated future processing events.
An Entropy model captured the degree of uncertainty about the
lexical identity of W2, given W1. A Semantic Similarity model
captured the overall semantic dispersion of the predicted candi-
date sets, probing the representational framework in terms of
which the Entropy measure was computed. Third, a Semantic
Blend model measured variations in the specific semantic con-
tent of the W1 candidate sets. These variations can potentially
affect semantically related processing activity in lexical represen-
tation areas, both before and after the onset of W2. A fourth
model, Entropy Change, reflects the shift in the distribution of
predicted W2 candidates given the early perceptual input from

W2. This measures the interaction between context-derived con-
straints and bottom-up perceptual input as W2 is heard. Using
RSA, we evaluated these four models against EMEG source-
localized activity estimates within an extended bilateral fronto-
temporo-parietal language mask.

Materials and Methods
Participants
EMEG data acquisition was performed on 20 healthy participants (9
males) with a mean age of 23.8 years (range: 20 –34 years). All were
right-handed native British English speakers with normal hearing and
normal or corrected-to-normal vision. The data for 4 subjects were dis-
carded due to poor EEG quality. The experiment was approved by the
Cambridge Psychology Research Ethics Committee.

Stimuli
The test stimuli consisted of 154 spoken English noun phrases where an
adjective modifier (W1) was followed by a noun (W2). All nouns were
concrete objects selected from the CSLB norms database (Devereux et al.,
2014) with average word form frequency of 14.9 per million, SD � 18.3
(CELEX) and mean noun duration of 605 ms, SD � 107 ms. In contrast
to previous studies which emphasized highly constraining contexts, here
we aimed for a moderate overall degree of constraint between W1 and
W2. The modifier adjectives were selected to vary the strength of the
semantic constraint they exerted on the noun. Constraint strength varied
from relatively weak (e.g., “yellow banana”) to relatively strong (e.g.,
“peeled banana”) and was quantified by using frequency information
from Google ngrams (2007–2008, British English corpus). This allowed
us to calculate the log-transformed conditional probability of a phrase
(“yellow banana”) given the modifier (“yellow”) as follows:

Constraint � �log�P�Cij�Ci�� � �log
P�Ci � Cj�

P�Ci�

Here Cij is the frequency of a given two-word phrase (“yellow banana”)
and Ci is the frequency of the modifier (“yellow”) alone. The average
constraint value for the test stimulus set was 1.89 (SD 1.06), correspond-
ing to a non–log-transformed conditional probability average of 0.08
(SD 0.19; minimum � 0; maximum � 0.8). This level and range of
transitional probability between the word pairs are similar to the results
of parallel computations for larger corpora, including short narratives
(e.g., Luke and Christianson, 2016). This confirms that the balance of
lower and higher constraint in the present stimulus set is consistent with
naturally occurring degrees of predictability between successive words.

A separate gating study with 35 participants was also conducted on
these word pairs (as described in the next section), from which we could
calculate the cloze probability of W2 given W1. This was estimated at 0.17
(SD � 0.29), confirming that the probability of predicting the specific
target word (W2) was generally low for this stimulus set.

To reduce the overall proportion of predictive modifiers in the set of
word pairs heard by the participants, we also included 77 modifier-noun
filler pairs in which the noun was preceded by an unrelated word so that
the 2 words did not form a meaningful phrase (e.g., “lullaby banana”).
These filler items were not analyzed. This manipulation brought down the
relatedness proportion from 100% to a relatively high 67%, so that the
majority of W1 items were still predictive (generally quite weakly) of
the properties of the following W2 (but see Delaney-Busch et al., 2017).

The presentation order of the phrases was pseudo-randomized and
split into three blocks. To minimize the effects of block order, blocks were
presented in 6 different orders across participants. The mean duration of
phrases was 1213 ms, and the duration of each block was �10 min.

The stimuli were recorded onto digital audio tape at a sampling rate of
44,100 Hz by a female native speaker of British English. All word pairs
were recorded as a single spoken phrase, with no added interval inserted
between W1 onset and W2 offset. Recordings were transferred to com-
puter and downsampled to 22,050 Hz, 16 bits, mono-channel format
using Cool Edit Software (Syntrillium Software).
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Experimental design and statistical analysis
Behavioral pretesting and gating. A behavioral pretest was conducted to
rate the naturalness of the test stimulus phrases. Twenty participants
(mean age 24.8 years, 13 females), who did not participate in the MEG
experiment, listened to the stimuli and rated the naturalness of each two
word test phrase on a scale of 1–5 (5 � high naturalness). The final set of
154 phrases contained only phrases judged to be highly natural (mean �
4.32, SD � 0.42).

We also ran a behavioral gating study (Grosjean, 1980) with a separate
group of 35 participants (mean age 20.6 years, range 18 –35 years, 13
males) who were instructed (1) to listen to W1 followed by spoken seg-
ments of W2 presented incrementally in 50 ms intervals; (2) to type in
their best guess of what that word might be after each segment; and (3) to
rate their confidence (1–7 from least to most confident). We used re-
sponses at the offset of W1 (Gate 0) to derive measures of Entropy,
Semantic Similarity, and Semantic Blend. Responses at later gates were
used to estimate an Entropy Change model, as well the W2 identification
point, defined as the average time (ms) from W2 onset when 80% par-
ticipants produced the correct W2 response twice in a row (Grosjean,
1980; Tyler and Wessels, 1983). The mean identification point of W2 was
240 ms (SD 125 ms) from word onset.

Cognitive models for RSA analyses. To determine how the probabilistic
distribution of W2 candidates (derived from the gating experiment at the
offset of W1) differed according to the strength of W1 constraints, and
how these interacted with the processing of W2, we generated four cog-
nitive models, as described below. The multivariate RSA technique then
allows us to test for neural activity corresponding to these models against
source-localized brain data covering an extended bilateral fronto-
temporo-parietal language mask.

Entropy
To capture the shape of the probability distribution of potential W2
candidates for each word pair, as estimated by gating data obtained at the
offset of W1 (Gate 0), we calculated a single metric of Entropy, using
Shannon’s entropy (H) formula as follows:

H � ��
i�1

n

P� xi�logP�xi�

Here P(xi) is the summed confidence score for a given W2 competitor at
Gate 0 across all participants divided by the sum of all confidence scores
of all W2 competitors for that item across all participants.

High entropy indicates that there are many possible W2 candidates
with low confidence scores because W1 only weakly constrains upcom-
ing W2 responses. In contrast, low entropy indicates that most partici-
pants in the gating task selected only one or two specific word
continuations, reflecting stronger W1 constraints on W2 for that word
pair.

These computations of probability distributions are relevant to the
predictive processing approach in two ways. First, this approach requires
that such representations (viewed as hypotheses about the future prop-
erties of the sensory input) are computed incrementally as the input is
interpreted, so that they can modulate expectations of the properties of
this input at the relevant levels of neural description. Second, the pattern
of variation in these probability distributions should modulate these
patterns of neural activity before the onset of W2 as well as after. A
bottom-up priority model, in contrast, predicts that such effects can
only be seen after W2 onset, when an initial cohort has begun to be
established.

Semantic similarity. The Entropy measure reflects the probability dis-
tribution of word candidates produced at the offset of W1 for each
phrasal modifier. This measure, however, simply tabulates the number
(and associated confidence) of the word candidates generated. It is likely,
however, given the low average transitional probability of the modifier-
noun pairs used here, that the words generated for most W1 modifiers
reflected broad semantic and syntactic constraints on possible W2 con-
tinuations rather than specific hypotheses about lexical forms.

To measure the semantic distributional properties of these candidate
sets, we calculated the pairwise similarity of the same sets of words, using

a corpus-based Distributional Memory database (Baroni and Lenci,
2010). This represents words as vectors �5000 semantic dimensions,
where these dimensions are distilled from word co-occurrence data. The
Semantic Similarity of the candidates for each phrasal modifier was de-
fined as the average pairwise cosine similarity between vectors for all its
Gate 0 word candidates. The stronger the semantic constraint that the
modifier places on the following word, the less semantic dispersion there
will be in the set of candidate words that it evokes. After the modifier
“cashmere,” for example, gating participants tended to produce words
from the semantic category “clothing” (e.g., “sweater,” “scarf”). For a less
constraining modifier like “massive,” there was much more variability in
the semantics of suggested words, “car,” “tower,” and “blow.”

If the probability distributions for W2 candidates are well captured by
the semantic dispersion between candidates, then model fit should par-
allel the results for the Entropy measure because they would both reflect
the semantic constraints generated by the W1 modifier. Further, if the
informational substrate for computing constraints is primarily semantic/
distributional in nature and represented in middle temporal cortices,
then any top-down modulation involving frontal regions (e.g., Musz and
Thompson-Schill, 2017) may primarily affect lexical semantic represen-
tations rather than phonological representations in superior temporal
gyrus and Heschl’s gyrus (HG) (Binder et al., 2000).

Semantic blend. Entropy and Semantic Similarity models capture the
overall properties of the distribution of expected word candidates, the
shape of the candidate distribution, and its dispersion in the semantic
domain. However, they do not directly test the retrieval of the predicted
candidate-specific semantic content of W2. To test when, with respect to
W2 auditory onset, and in which brain regions such information is ac-
cessed, we derived the Semantic Blend model.

The Distributed Cohort Model of speech perception (Gaskell and
Marslen-Wilson, 1997, 2002) assumes that lexico-semantic information
associated with any given item involves a distributed activity pattern
across the lexico-semantic representational space. When multiple word
candidates are accessed, the resulting pattern of activation should reflect
this ambiguity and encode a “blend” of overlapping representations,
where lexico-semantic features shared across multiple candidates domi-
nate the activation pattern. To derive Semantic Blends for each stimulus
(e.g., “yellow banana”), we first normalized the semantic vectors (Baroni
and Lenci, 2010) obtained from the gating responses collected at Gate 0.
This was to prevent outlying values for a given candidate from dominat-
ing the blend. These normalized (by vector length) candidate vectors
were averaged to produce a single “blend” vector, weighting each vector
by its associated confidence score. The resulting blend therefore mixed
together the semantics of every W2 candidate, with a more coherent
blend reflecting greater degrees of W1 constraint. In terms of evaluating
the balance between predictive and bottom-up inputs under the rela-
tively weak levels of constraint present in this study, we ask here whether
these variations in the predictability of W2 candidate semantics will be
reflected before W2 onset in the patterns of neural activity in temporal
lobe areas responsible for the representation of lexical semantics, or
whether they will require the additional constraints provided by the ini-
tial phonemes of W2.

Entropy change. The above models capture potential predictive con-
straints that can be generated once W1 has been recognized and before
W2 onset. To examine how these W1 constraints interact with the early
perceptual input for W2, we subtracted the entropy values calculated at
Gate 0 (as in the Entropy model) from the entropy values calculated from
the candidates generated at Gate 1, 50 ms after the onset of W2. At Gate
1, the first phoneme of W2 will in most cases be identifiable, so that
the candidates generated could potentially be constrained both by
bottom-up phonological cues and by the constraints derived from W1.
There was a significant drop ( p � 0.001, paired t test) in Entropy at Gate
1 (mean 1.78), compared with Gate 0 (mean 2.14).

On a predictive processing approach, the bottom-up constraints avail-
able early in W2 should serve to update expectations about existing W2
lexical candidates, with corresponding reductions in lexical uncertainty.
This in turn could lead to model fit in brain areas responsible both for
computing candidate probabilities and for using these hypotheses to
modulate incoming perceptual analyses. The timing of these activations
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is uncertain but may require more input than just the first 50 ms of the
word in question.

Procedure
The auditory stimuli were delivered binaurally through MEG-
compatible ER3A insert earphones (Etymotic Research). The instruc-
tions to the participants were visually presented on a monitor screen
positioned 1 m in front of them. They were told to listen attentively to the
word pairs. To encourage them to do so, on 10% of the trials, the spoken
phrase (e.g., “school bus”) was followed by a single written word in the
middle of the screen (e.g., “children?”). Participants were instructed to
judge the semantic compatibility of the written word with the preceding
phase and to give a yes/no answer via button presses. These semantically
related question trials were followed by a standard spoken phrase trial,
which was treated as a dummy and not included in the analyses.

E-Prime Studio version 2 (Psychology Software Tools) was used to
present the stimuli and record participants’ responses. The experiment
began with a short practice run, which was followed by three experimen-
tal blocks. The duration of the entire experiment was �40 min. Before
each spoken stimulus presentation, a cross appeared in the middle of the
screen for 650 ms prompting the participant to focus their eyes on the
cross. The intertrial interval, measured from the offset of the spoken
phrase, was jittered between 3000 and 4000 ms. The duration of the
intertrial interval for the infrequent “question trials” was the same overall
as for the standard trials. To reduce the potential contamination of the
EMEG recordings by blink artifacts during the test phase, the last 1500 ms
of each intertrial interval was made up of a “blink break,” during which
participants were encouraged to blink their eyes. The start of the blink
break was indicated by an image of an eye that appeared in the middle of
the screen. Participants were also asked to refrain from movement during
the entire block of recording.

EMEG recording
Continuous MEG data were recorded in a magnetically shielded room
(Imedco) at the MRC Cognition and Brain Sciences Unit in Cambridge,
using the Vector View system (Elektra-Neuromag) containing 102 mag-
netometers and 204 planar gradiometers, arranged within a helmet cov-
ering the head of the subject. The position of the head relative to the
sensors was monitored using the Head Position Indicator coils attached
to the subject’s head. EEG was recorded simultaneously from 70 Ag-AgCl
electrodes within an elastic cap (Esacycap) on the subject’s head. Vertical
and horizontal EOGs were also recorded for blink detection. A 3D digi-
tizer was used to record the position of the EEG electrodes and the Head
Position Indicator coils and �100 –150 head points along the partici-
pants’ scalp, relative to the three anatomical positions (the nasion and the
left and right preauricular points). Acquired data were sampled at 1 kHz
and bandpass filtered from 0.03 to 330 Hz.

Data preprocessing
The raw data were processed using MaxFilter 2.2 (Elekta). Static magne-
tometer and gradiometer bad channels were identified and reconstructed
using interpolation. Temporal extension of the signal space separation
technique (Taulu et al., 2005) was applied to separate the external noise
from the head-internal signals. Finally, correction for head movement
across the blocks was applied, and each subject’s data were transformed
to a default head position. The EEG raw data were then manually in-
spected and noisy EEG channels were removed.

The raw data were low pass filtered to 200 Hz and notch filtered at 50
Hz (to remove the mainline frequency components). Independent com-
ponent analysis was applied to the MEG and EEG data separately for
further denoising (minimum norm estimate [MNE] python) (Gramfort
et al., 2013). The ICA components most strongly correlating with the
vertical EOG channel were identified and removed. For the current anal-
ysis, raw data were then further bandpass filtered 0.1 to 40 Hz, all previ-
ously identified bad channels were interpolated.

The data file for each test trial was then epoched with respect to the
auditory onset of W2. The W2 onset epoch was 500 ms in length (range:
�200 to 300 ms, aligned to W2 auditory onset). During epoching, the
data were baseline corrected using 100 ms of prestimulus data that did
not contain any speech signal. Trials with large artifacts were considered

noisy and were removed (EEG � 150 �V, magnetometer � 5e-12T
gradiometer � 2000e-13T/cm).

Source reconstruction
The preprocessed data were source localized by using the MNE proce-
dure (MNE Python) (Gramfort et al., 2013) based on distributed source
modeling (Lin et al., 2006). MNE constrains the sources of currents by
using a priori assumptions about their distributions (dipole orientation
and location summarized in the lead field matrix, derived from the struc-
tural MRI scans) and the noise estimates covariance matrix.

The first step in source localization was the acquisition of structural
MRI images of each participant using the GRAPPA 3D MPRAGE
sequence (time repetition � 2250 ms; time echo � 2.99 ms; flip
angle � 9; acceleration factor � 2) on a 3-T Trio scanner (Siemens)
with 1 mm isotropic voxels. MRI structural images were processed
with FreeSurfer software (Fischl, 2012) to parcellate brain volumes
into inner and outer skin and skull, white and gray matter. Subse-
quent steps were performed using the MNE Python environment. The
source grid was set up on the white-gray matter boundary surface and
downsampled to 4098 sources per hemisphere. The MRI and MEG
coordinate systems were coregistered using the MNE analysis inter-
face, with respect to the anatomical locations marked during acquisi-
tion (the nasion and the left and right preauricular points) and
additional 100 –150 head points.

Second, for each subject, the forward model (lead field matrix) was
created using a 3-layer boundary element model that assigned different
electrical conductivities to inner and outer surfaces (5120 triangles per
surface) of the skull. A regularized covariance matrix was estimated from
the epochs using the baseline period. The forward solution and the co-
variance matrix were used to estimate the linear inverse regularization
parameter (inverse operator) for every source across all channels. To
improve the spatial accuracy of the localization and correct for a bias
toward assigning signals to superficial sources, a loose source orientation
(0.2) constraint and a depth constraint (0.8) were applied (Lin et al.,
2006). To derive the source estimates at every time point and for every
trial, the inverse operator was applied to preprocessed data by taking the
norm of the dipole components. The estimated activations were normal-
ized with respect to signal noise by dividing the estimates by their pre-
dicted SE, thus producing unsigned dynamic statistical parametric maps
(Dale et al., 2000). To account for increased noise levels in the single-trial
estimates, the � 2 parameter was set to 1. The subject-specific estimates
were then morphed to the averaged brain surface (produced with Free-
Surfer) for further statistical analysis.

RSA
RSA makes it possible to compare directly the correlational structure in
patterns of brain activity with the correlational structures predicted by
different cognitive models (Kriegeskorte et al., 2008). We used a sliding
window RSA, in which each subject’s data Representational Dissimilarity
Matrices (RDMs) across the length of the epoch were compared with
cognitive model RDMs within every ROI (for a schematic overview of the
RSA and parameters used, see Fig. 1). Distinct cognitive model RDMs
were derived for each cognitive measure (matrix size 154 	 154, reflect-
ing the number of test phrases). The Entropy RDM was defined by taking
the absolute pairwise differences between the lexical Entropy scores for
all word pairs. The Semantic Similarity model RDM was produced by
taking the absolute pairwise differences of the Semantic Similarity scores
associated with each word pair. The Semantic Blend model RDM was
computed by taking the pairwise cosine distances between every pair of
“blended” semantic vectors (of Gate 0 predicted candidates for each
word pair). The Entropy Change RDM was calculated by taking the
absolute pairwise differences in the Entropy Change measure. Group-
level data were derived by extracting subject-specific model-fit r values
and conducting a one-sample t test across subjects at each ROI and time
point. Only t value clusters that survived this initial p � 0.01 threshold
and then the correction for multiple comparisons (cluster-permutation
permutation analysis) (Maris and Oostenveld, 2007; Su et al., 2012) at
p � 0.05 threshold are reported. We did not apply an additional correc-
tion for the number of ROIs tested.
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The cognitive models outlined above (converted into model RDMs)
were tested against activity patterns (captured in subjectwise data RDMs)
in a set of bilateral frontotemporal ROIs (Fig. 1, inset, brain, ROIs taken
from the Desikan-Killiany Atlas, Freesurfer) consisting of BA44, BA45,
BA47, HG, posterior superior temporal sulcus, supramarginal gyrus,
inferior-parietal area (which included the angular gyrus), and temporal
pole. Temporal ROIs, superior temporal gyrus, middle temporal gyrus
(MTG), and inferior temporal gyrus were split into mid-posterior and
anterior parts, and the latter joined to form a functional anterior tempo-
ral lobe ROI. These ROIs were selected on the basis of previous studies
showing their involvement in processing spoken language (Hickok and
Poeppel, 2007; Hagoort, 2013; Tyler et al., 2013; Kocagoncu et al., 2017).

Finally, to assess the independence of the model-fit results for each
RSA model from the other three models, we ran a set of additional partial
correlation analyses. For each model separately, the model fit (r) was
estimated after a partial correlation analysis where the contribution of
the other relevant models was partialled out. The rest of the procedure
was identical to the main ROI RSA described above. The results of these
analyses are reported alongside the results for each model tested
separately.

Results
The questions at issue here concern the role of the constraints
generated by W1 in the perception and identification of W2:
Whether or not the context (the W1 modifier) triggers access to a

distribution of potential word (W2) candidates, what is the tim-
ing of this activation relative to W1 processing, whether and
when this information affects the processing of W2, and how it
interacts with the bottom-up constraints made available as W2 is
heard. Three models, Entropy, Semantic Similarity, and Seman-
tic Blend, encoded different properties associated with the prob-
abilistic distribution of W2 candidates elicited at W1 offset,
whereas the Entropy Change model tested for potential interac-
tions between top-down contextual constraints and the early
analysis of the perceptual input for W2 (for details, see Cognitive
models). For all four models, the analyses were aligned to W2
onset, looking for potential model fit both before and after the
start of the critical word (Fig. 2). While the average Identification
Point for W2 (as estimated from the gating data) falls 240 ms after
W2 onset, we expect to see much earlier effects on model fit as
lexical candidates begin to be selectively activated by the incom-
ing speech.

For all of the models reported below, the size of the model-fit
r values falls within the range of values obtained in comparable
RSA analyses reported previously (Nili et al., 2014; e.g., Devereux
et al., 2018).

The Entropy model (Fig. 2A) showed significant model fit in
left BA45, starting �70 ms before W1 offset and persisting until

Figure 1. Schematic overview of RSA multivariate analysis procedures. (1) RDMs are derived for each ROI and each subject across the length of the analysis epoch. These data RDMs summarize
the differences between the activation patterns (1� r) between trials in a given time window (20 ms in width) every 5 ms across all vertices of a given ROI. (2) Each data RDM is compared with model
RDMs (Spearman r), derived separately for each cognitive measure. To produce group-level statistics, a one-sample t test is taken for each ROI and each time point across subjects. The resulting t maps
were thresholded at the p � 0.01 level. To correct for multiple comparisons, values surviving the primary threshold were entered into a cluster-permutation analysis (1000 permutations) (Maris and
Oostenveld, 2007; Su et al., 2012). Only clusters that survived the p � 0.05 cluster-correction threshold are reported (red bar).

Klimovich-Gray et al. • Spatiotemporal Dynamics of Word Recognition in Context J. Neurosci., January 16, 2019 • 39(3):519 –527 • 523



Figure 2. Spatiotemporal coordinates of RSA model fits for the W1 modifier-based constraints. A–C, Left, The ROIs (in green on the inflated MNE brain) producing significant model fit for the four
models. A, Right, Subject-averaged model fit r value in left BA45 across the analysis epoch (�200 ms to 300 ms relative to W2 onset) for the Entropy (green) and the Semantic Similarity (pink)
models. B, Semantic Blend (blue) model fit in left middle and posterior MTG. C, Entropy Change (orange) model fit in left HG. Shaded areas represent the SE of the model-fit means. Thick lines below
the r curves indicate the significant t value model-fit clusters (corrected for multiple comparisons at p � 0.05). Vertical broken red line indicates W2 onset. D, Left, Key specifying the mean and SD
of the critical time points overlaid (right) on the auditory waveform of a sample test phrase.
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165 ms after W2 onset: (1) from �70 ms to 15 ms (p � 0.001);
(2) from 35 to 80 ms (p � 0.001); and (3) from 120 ms to 165 ms
(p � 0.007). The Semantic Similarity model (Fig. 2A) closely
paralleled the Entropy model, also showing model fit only in left
BA45, and also beginning at �70 ms before W1 offset though
finishing slightly earlier at 95 ms after W2 onset. The significant
clusters were as follows: (1) from �70 ms to �45 ms (p � 0.02);
(2) from �5 ms to 15 ms (p � 0.03); and (3) from 65 ms to 95 ms
(p � 0.01). The significant fit for both of these models starts after
the W1 Identification Point (on average, 194 ms before W2 on-
set) and ends before W2 is recognized (on average, 240 ms after
W2 onset). These results show that the number and probability
(Entropy model) and the semantic dispersion (Semantic Similar-
ity) of the W2 candidate distributions corresponded to patterns
of neural activity that were activated after the modifier word had
been recognized but before the onset of W2, and remained rele-
vant to left inferior frontal processes well into the perceptual
analysis of W2.

The close parallels between the timing and the location of the
model fits elicited by the Entropy and Semantic Similarity models
are consistent with the strong correlation (0.79) between their
respective model RDMs, and with the claim that they both derive
from the same underlying probabilistic source. The results of the
partial correlation analysis confirm that the model fits for En-
tropy and Semantic Similarity are not independent, model fit in
BA45 disappears across the board if Entropy is partialled out
when estimating the effects of Semantic Similarity (and con-
versely for Semantic Similarity when Entropy is partialled out).

Turning to the Semantic Blend model, which tested for the
processing relevance of the semantic content of the W2 candi-
dates, we see a markedly different spatiotemporal pattern of
model fit (Fig. 2B). No effects were found before W2 onset, and
only left temporal locations were significant, with model fit in left
middle and posterior MTG (Fig. 2B). The model fit was signifi-
cant from 100 to 160 ms after W2 onset; initially from 100 to 120
ms (p � 0.02) and then from 130 to 160 ms (p � 0.03). These
results show that semantic information about potential W2 can-
didates was accessed in MTG soon after the onset of W2 and
before the word was uniquely identified. Furthermore, and con-
sistent with the weak correlations between the Semantic Blend
model RDM and the other cognitive model RDMs, the model fit
remains significant in the partial correlation analysis with un-
changed locations and almost identical time courses (p � 0.04 for
a first cluster from 100 to 115 ms and p � 0.02 for a second cluster
from 130 to 155 ms) after partialling out the other three cognitive
models. This implies that the Semantic Blend model captures
processes distinct from those of Entropy and Semantic Similarity.

Fourth, the Entropy Change model (Fig. 2C), which captures
the update in the W1 Entropy model after 50 ms of W2 perceptual
input had been heard, produced significant model fit in left HG,
from 140 to 180 ms (p � 0.025) after the perceptual onset of W2.
These effects again proved to be independent from the other
three models, as confirmed through partial correlation analysis
where a similar significant cluster (p � 0.035) was observed be-
tween 145 and 165 ms after W2 onset, consistent with the weak
correlations between the Entropy Change model RDM and the
other cognitive models.

A different set of partial correlation analyses were conducted
to test the robustness of the model fit observed after W2 onset for
the three “prediction” models (Entropy, Semantic Similarity, and
Semantic Blend) against potentially uncontrolled variation in the
bottom-up phonological and semantic properties of the W2
stimulus set. To address this issue, two additional models were

constructed. To capture W2 semantics, we calculated pairwise
cosine distances between the semantic vectors (Baroni and Lenci,
2010) for the W2 targets (as in Kocagoncu et al., 2017). For a
phonological model, we converted the first two phonemes of each
W2 into a binary articulatory feature vector (Wingfield et al.,
2017), calculating pairwise cosine distances between each such
vector to derive the model RDM. Separate partial correlation
analyses were run for each cognitive model using the W2 seman-
tic and phonological RDMs separately (the Entropy Change
model was not included because this was already based on the
integration of W1 predictions and bottom-up W2 constraints).
For the critical period of interest from the onset of W2, we see no
evidence that the timing and significance of model fit for the
cognitive models expressing constraints derived from W1 are
significantly confounded with W2 stimulus properties. There is
no general weakening of the significance of the model fits ob-
tained, nor is there any change in the basic timing of the relevant
effects in relation to W2 onset for the three models.

Finally, to provide more fine-grained information about the
spatiotemporal distribution of the model fit for each cognitive
model, we also conducted searchlight analyses across the entire
language mask bilaterally. The results of these exploratory analy-
ses confirm that the ROI analyses reported in Figure 2 correctly
identified the time periods and locations exhibiting consistent
model fit for each model. No other spatially and temporally con-
sistent clusters were visible in the searchlight data.

Discussion
This study addresses the specific neurobiological processes that
underpin the dynamic and early integration of top-down and
bottom-up constraints in the perceptual interpretation of spoken
words heard in constraining contexts. We investigated these pro-
cesses for a set of spoken two-word English phrases, presented in
a minimal task “attentive listening” environment, and sampling a
naturalistic range of degrees of constraint. The average predict-
ability of the second word in the phrase was low, so that the
available constraints were in general lexically nonspecific and
broadly semantic in nature.

Using gating data, we generated four computational measures
that captured specific properties of the probabilistic distribution
of potential word candidates, where the combination of spatio-
temporally well-resolved EMEG measures of dynamic brain ac-
tivity, together with RSA multivariate techniques, made it
possible to use these models to probe the neurocomputational
content of processing activity as spoken words are heard. This
provides a novel and revealing perspective on the dynamic func-
tional architecture underpinning the integration of contextual
prediction and sensory constraint in speech comprehension.

Overall, the results suggest a system for dynamically combin-
ing bottom-up and top-down constraints in speech interpreta-
tion that shares key characteristics of predictive processing with a
strong dependence on the incoming speech input, necessarily so
under conditions of weak contextual constraint. Consistent with
the predictive processing approach, as soon as listeners recog-
nized the W1 context word, they began to generate estimates of
the probability distributions associated with potential W2 candi-
dates. Significant RSA model fit for both Entropy and Semantic
Similarity models was seen 70 ms before W2 onset (Fig. 2A).

These probability estimates, viewed as potential hypotheses
about the upcoming word (W2), have several notable properties.
The first is that model fit was seen only in left BA45 and not in any
of the potential target regions for top-down modulation, such as
auditory processing areas (HG and superior temporal gyrus) or

Klimovich-Gray et al. • Spatiotemporal Dynamics of Word Recognition in Context J. Neurosci., January 16, 2019 • 39(3):519 –527 • 525



lexical content regions in posterior and middle MTG. Although
the processing role of BA45 is not fully understood, it is widely
thought to be involved in semantic control processes (Novick et
al., 2005; Musz and Thompson-Schill, 2017), and provides a
plausible substrate for the computation of probabilistic semantic
constraints (as indicated by the joint Entropy and Semantic Sim-
ilarity model fit). We found no evidence, however, that the vari-
ations in constraint per se across word pairs being computed in
BA45 were directly modulating neural patterns elsewhere in the
language system.

A further significant property of the BA45 model fit is that it
persisted well into the processing of W2, only dropping below
significance at 165 ms after W2 onset for the Entropy model, and
at 95 ms for the Semantic Similarity model. The probability esti-
mates for W2 possible candidates based on W1 constraints, as
computed by BA45, were apparently not modulated by bottom-up
information about actual W2 candidates until at least the first two
phonemes of W2 had been identified. In a predictive processing
framework, where top-down hypotheses modulate the percep-
tual interpretation of the incoming sensory input, any mismatch
between hypothesis and input is fed back, in the form of predic-
tion error, to refine top-down hypothesis formation. The relative
lateness with which W1 hypothesis sets continue to fit patterns of
neural activity in BA45, together with the evidence that BA45 is
operating in semantic terms, leads to the inference that the re-
quired feedback to BA45 is in terms of the semantic properties of
actual W2 candidates and that the availability of this information
depends on bottom-up cues to the identity of these candidates.

The claim that the operations of BA45 are primarily semantic
in nature is consistent with the observed close similarity between
the Entropy and Semantic Similarity models, not only in the
model fit they exhibit over time (Fig. 2A), but also the close
relationship of their respective RDMs in the partial correlation
and cross-correlation measures. However, this lack of indepen-
dence of the two models means that further research is still
needed to confirm their specific shared underlying properties.

Supporting evidence for the role of W2 sensory input in en-
hancing access to candidate semantics comes from the Semantic
Blend model (Fig. 2B), which captures variations in the semantic
coherence of the sets of W2 candidates generated at Gate 0. This
shows a very different pattern of model fit to the Entropy and
Semantic similarity models. There is no model fit before W2
onset, and none is seen until 100 ms into W2. The localization of
this to left middle and posterior MTG is consistent with evidence
that these regions support the processing of lexical semantic in-
formation (Binder et al., 2000; Hickok and Poeppel, 2007; Ha-
goort, 2013) but begs the question of why these regions only
generate model fit well after W2 onset.

The timing and location of the Semantic Blend model fit make
several points. First, the significant fit for predicted W2 semantics
in left MTG is indeed likely to reflect an interaction between
semantic hypotheses generated in BA45 and the processing of
potential lexical candidates in relevant brain regions. However,
this interaction only becomes neurocomputationally visible at
100 ms after W2 onset, once the bottom-up input has started to
generate lexical candidates whose semantic properties overlap
with those of W1-generated constraints. This also shows that the
bottom-up activation of lexical contents occurs very early in the
word, as early as access to lexical form (Marslen-Wilson, 1975;
Kocagoncu et al., 2017). Third, the interaction is short-lived, ter-
minating at 160 ms after onset, suggesting that the probabilistic
constraints provided by W1 are rapidly superseded by new infor-
mation from W2. The timing here is consistent with the termi-

nation of model fit at 165 ms in BA45 for the W1 Entropy model,
similarly displaced by new W2-based constraints.

Finally, the results for the Entropy Change model provide
further evidence for the timing and the consequences of the in-
teraction between bottom-up and contextual constraint. This
model captures the reduction in lexical uncertainty generated by
the integration of W1 constraints with the constraints provided
by the initial 50 ms of W2. The resulting model fit is seen, with
some delay at 140 ms after W2 onset, and is located in left HG, a
brain region that supports the bottom-up perceptual analysis of
the auditory input (Scott and Johnsrude, 2003; Uppenkamp et
al., 2006; Warrier et al., 2009). The timing of this effect matches
the time course indicated by the Semantic Blend results for the
integration of semantic and phonological constraints, and sug-
gests that convergence on specific word candidates is largely com-
plete within 150 –200 ms of word onset, consistent with
behavioral evidence for the timing of word recognition in context
(Marslen-Wilson, 1973, 1975). The location of the Entropy
Change model fit in auditory cortex suggests, finally, that the
interaction of bottom-up phonological cues with contextual se-
mantic constraints is able to modulate activity in primary sensory
processing regions as candidate words are heard, consistent with
predictive processing claims (Sohoglu and Davis, 2016). How-
ever, at the generally weaker levels of constraint provided by the
word pairs used here, the role of bottom-up perceptual evidence
seems critical.

In conclusion, research into the neural substrate for predictive
processing in language comprehension has emphasized stimulus
sequences where predictive constraints are strong and lexically
specific, and delivered in “prediction-friendly” experimental sit-
uations. In the current study, listeners heard words in less con-
straining contexts, arguably more representative of everyday
language. In this situation, an “all-or-nothing” predictive pro-
cessing regimen cannot hold, where contextual constraints pre-
dict the actual sensory forms of future inputs. Our word pairs
were rarely sufficiently constrained to support such predictions.

We see instead a neurocognitive system where the basic com-
ponents of a predictive processing framework are present, but
where its forward predictions are tailored to the types of con-
straint that are at hand (largely semantic), and where bottom-up
constraints are essential to the formation of phonologically and
semantically specific perceptual hypotheses. There is evidence for
early computation of probabilistic constraint representations,
well before W2 onset, but we see no corresponding evidence for
early modulation of neural activity in brain regions relevant to
lexical form and content. It is only after information about the
initial phonetic properties of W2 becomes available that we can
detect interactions between W1 constraints and W2 interpreta-
tion, at 100 ms for the Semantic Blend model and at 140 ms for
the form-specific predictions picked up by the Entropy Change
model. The timing of the integration of these contextual and
sensory constraints during W2 processing, while consistent with
the rapid recognition of words in context, demonstrates that the
sequential statistical properties of natural language require con-
tinuous contact with the sensory input to achieve the robust ear-
liness of human real-time speech interpretation.
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