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Abstract

Background: The tumor microenvironment (TME) is a complex mixture of tumor epithelium, stroma and immune
cells, and the immune component of the TME is highly prognostic for tumor progression and patient outcome. In
lung cancer, anti-PD-1 therapy significantly improves patient survival through activation of T cell cytotoxicity against
tumor cells. Direct contact between CD8+ T cells and target cells is necessary for CD8+ T cell activity, indicating
that spatial organization of immune cells within the TME reflects a critical process in anti-tumor immunity. Current
immunohistochemistry (IHC) imaging techniques identify immune cell numbers and densities, but lack assessment
of cell-cell spatial relationships (or “cell sociology”). Immune functionality, however, is often dictated by cell-to-cell
contact and cannot be resolved by simple metrics of cell density (for example, number of cells per mm?). To
address this issue, we developed a Hyperspectral Cell Sociology technology platform for the analysis of cell-cell
interactions in multi-channel IHC-stained tissue.

Methods: Tissue sections of primary tumors from lung adenocarcinoma patients with known clinical outcome were
stained using multiplex IHC for CD3, CD8, and CD79a, and hyperspectral image analysis determined the phenotype of
all cells. A Voronoi diagram for each cell was used to approximate cell boundaries, and the cell type of all neighboring
cells was identified and quantified. Monte Carlo analysis was used to assess whether cell sociology patterns were likely
due to random distributions of the cells.

Results: High density of intra-tumoral CD8+ T cells was significantly associated with non-recurrence of tumors. A cell
sociology pattern of CD8+ T cells surrounded by tumor cells was more significantly associated with non-recurrence
compared to CD8+ T cell density alone. CD3+ CD8- T cells surrounded by tumor cells was also associated with non-
recurrence, but at a similar significance as cell density alone. Cell sociology metrics improved recurrence classifications
of 12 patients. Monte Carlo re-sampling analysis determined that these cell sociology patterns were non-random.

Conclusion: Hyperspectral Cell Sociology expands our understanding of the complex interplay between tumor cells
and immune infiltrate. This technology could improve predictions of responses to immunotherapy and lead to a
deeper understanding of anti-tumor immunity.
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CD79a, Spatial organization
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Background

Information obtained from formalin fixed paraffin em-
bedded (FFPE) tissues is crucial for clinical management of
cancer patients. Standard of care includes routine immuno-
histochemistry (IHC) staining of FFPE sections for cancer
diagnosis, prognosis, and for guiding choice of therapy [1].
Increasingly, clinical research groups are transitioning to-
wards multicolor antibody panels to detect more complex
cell phenotypes from a single slide [2]. While this approach
offers additional biological information, multicolor staining
requires specialized equipment and analysis software.
Recently, commercially available multispectral imaging
and analysis systems have been developed that can
quantify cell types based on target protein expression
and assess their localization within epithelial and stromal
compartments [3].

These technologies have been instrumental in the ad-
vancement of cancer immunology as different immune
markers have both prognostic and predictive power.
For example, the presence of intratumoral T cells has
been associated with improved patient outcomes in
multiple cancer types [4—6], leading to increased focus
on enhancing the activity of these cells. In the therapeutic
setting, some studies have found that PD-L1 staining was
associated with improved response to immune checkpoint
blockade antibodies [7], which are thought to reverse T
cell exhaustion. However, inconsistencies in these studies
may be due to the acknowledged highly heterogenous
staining of PD-L1, rendering IHC staining difficult to
interpret [8—11]. We were intrigued by the possibility
that a more detailed analysis relating the spatial relation-
ships of specific immune cell subtypes with tumor cells
and stroma could enhance the value of IHC in the context
of prognostic and predictive biomarker staining.

Methods to understand the complex biology and the
prognostic and predictive implications of the many cell types
within the tumor microenvironment (TME) are rapidly pro-
gressing. Techniques to incorporate spatial information with
hyperspectral analysis typically involve identifying specific
compartments within the TME [3, 12, 13]. While these
methodologies identify clinically relevant compartments and
cell densities within them, they are currently severely limited
in their ability to reproducibly assess, in an automated
fashion, all aspects of tumor architecture and the associ-
ated immune cell population. Development of methods to
investigate these cell-cell spatial relationships is crucial for
advancing our understanding of tumor-immune inter-
actions and it is anticipated that this form of analysis
will generate a higher-order of useful information that
cannot be provided by crude measures of cell density
and distribution.

We utilize the term “cell sociology” to conceptualize the
morphological observation of adjacency and contiguity
between selected target cell populations. This incorporates
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the premise that direct cell-cell communication is one in-
tegral part of the biological process of anti-tumor immun-
ity, exemplified by the complex network of interactions
between antigen presenting cells, T cells, and target cells.
For example, interactions between CD4+ T cells and
CD8+ T cells help determine the level of anti-tumor
immunity [14], whereas the interaction between CDS8+
PD1+ T cells and PD-L1+ target cells can lead to T cell
exhaustion and reduction, if not outright abrogation, of
anti-tumor activity [15]. Importantly, quantification of
cell sociology has the potential to afford greater prognostic
and/or predictive insight on host anti-tumor immunity
than has historically been provided by cell density evalu-
ation alone.

To this end, we developed the Hyperspectral Cell
Sociology platform. This technology images multiplex
IHC-stained tissue, quantifies cell subsets, and mea-
sures spatial relationships between cell types of interest.
The multispectral detector component of this image
analysis sytem exploits the ability to detect IHC-linked
chromagens that may be difficult to resolve by human
microscopic observation due to different (often faint)
densities in staining or due to superimposition of
multiple-stained structures. This results in a detailed
map of cellular topography of any selected tumor area.
The individual elements of the map may then be quan-
tified and related in a spatial paradigm. As a proof of
concept, we illustrate the cell sociology of CD3+ T cells,
CD3+ CD8+ T cells, CD79a+ B cells, and unstained cells
in full tissue sections of lung adenocarcinoma, revealing
novel parameters that are important for anti-cancer
immunity.

Methods

Patient tissue accrual

British Columbia Cancer Agency. FFPE tumor tissues
(n = 20) were obtained from the Tumor Tissue Repository
of the British Columbia Cancer Agency or Vancouver
General Hospital under informed written patient consent
and with approval from the University of British Columbia
— BC Cancer Agency (BCCA) Research Ethics Board
(Table 1).

Multicolor immunohistochemistry

FFPE tumor tissues were sectioned to 4 um, baked at 37 °C
overnight, and deparaffinized. Antigen retrieval was per-
formed using Decloaking Chamber Plus with Diva decloa-
ker (Biocare). Sections were blocked with peroxidazed-1
and background sniper 1. Slides were then stained with an
anti-CD3 (SP7/Spring Biosciences)/ anti-CD8 (C8/144B/
Sigma-Aldrich) cocktail diluted in DaVinci Green diluent,
Mach2 Double Stain #2, IP Ferangi Blue, and IP DAB
within an Intellipath FLX rack. Slides were rinsed with
dH,O0, incubated in SDS-glycine pH 2.0 for 45 min at 50 °C,
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and rinsed with dH,O [16]. Slides were then stained with
Mouse AP polymer, Warp Red chromogen, and CAT
hematoxylin counter stain. Second round staining included
anti-CD79a (SP18/Spring Biosciences), DaVinci Green dilu-
ent, Mach 2 Mouse-AP polymer, IP Warp Red chromogen,
and 1:5 dilution of CAT hematoxylin counterstain [16].
White light images were analyzed using a Pannoramic
Digital Slide Scanner from 3D Histotech and the Pan-
noramic Viewer software (v1.15). A representative image
is shown in Fig. la.

Hyperspectral whole slide imaging system

Based on direction from a pulmonary pathologist (JCE),
five areas (8000 x 8000 pixels) were investigated from each
of 20 whole tissue sections. We developed an in-house
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automated hyperspectral whole slide imaging system that
consisted of a computer controlled x-y stage (Marzhauser
Wetzlar SCAN series), a Zeiss Axioscope 2 Mot plus
microscope, a CRI Varispec tunable light filter, an Andor
Neo (2K by 2 K) camera, and a Zeiss 20X (NA 0.75) plan
APROCHROMAT objective lens. We acquired images
with a pixel sampling spacing of 0.33 um (20X magnifica-
tion). The user selected the area to be imaged on the slides
and the absorption spectra of the labels (antibodies stain
color). Based upon previously recorded stain spectra, the
system automatically selected wavelengths to be imaged
and collected (using a continuously active focus) up to
16 different spectral images per camera field at 20 nm
increments (420 nm-720 nm). Spectral images from a
blank area of each of the slides were used for calibration

Fig. 1 Hyperspectral imaging of multicolor immunohistochemistry. a Example of a lung tumor section that was stained with multicolor
immunohistochemistry for CD3 (blue, black arrow), CD8 (dark brown, white arrow), CD79a (red) and counterstained with haematoxylin (nuclear
stain) and imaged in white light. b Following hyperspectral imaging and spectral unmixing, nuclei were identified using the haematoxylin
spectrum and are shown in blue. Nuclear boundaries were located using an edge location algorithm and are shown as red lines. ¢ Voronoi
diagrams were generated for each segmented cell and shown as red lines with dots as centers of cells. Cell neighbors are cell pairs that share a
Voronoi edge. d The interaction between each neighbor is indicated by a black line connecting nuclei centres. In panels B-D, unstained cells are
represented by a red centre, CD3+ T cells are represented by a blue centre, and CD3+ CD8+ T cells are represented by a green centre
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purposes, and each spectral image was corrected for
illumination intensity and uniformity, filter efficiency, and
camera fixed pattern noise. Once the area was imaged, the
system stitched all overlapping camera fields together to
make a seamless hyperspectral image. Regions of interest
(ROI) of each image were manually generated, under
direction of the pathologist, to encircle predominantly
epithelial tumor cell containing areas. This excluded tis-
sue artefacts or blank space that could have confounded
downstream analysis.

Spectral unmixing

Using the absorption spectra of each antibody and
haematoxylin, the stains were computationally unmixed
to determine the concentration of each stain for every
pixel in the selected area (Additional file 1: Figure S1).
The program assumed that every pixel in the flat field
and dark field corrected recorded images (16 wavelegths)
were a linear combination of the concentration of the
individual stains occurring at that pixel weighted by the
absorption characteristics of each of the stains occurring
at that pixel. When mathematically separating the com-
ponents, the program added an addition error term to
each pixel to compensate for the electronic and photonic
noise in the images. To separate these linear combinations
of absorption stains with differing concentration at each
pixel, the Multivariate Curve Resolution — Alternating
Least Squares algorithm was used (MATLAB R2014a).
For this process, the collected hyperspectral image data
was logl0O transformed and modeled to consist of 4
concentration images (one per stain used) multiplied by
the spectra of each stain plus an error term [17, 18]. To
use this method, the following were assumed throughout
the analysis: (1) the spectra were constant; (2) there were
no negative concentrations; and (3) the concentration at
each pixel was not required to add to one (denoted as
additivity). These assumptions removed the requirement
of prior knowledge of the absorption spectra of the glass,
stains and tissue, which would be required if the additivity
constraint was used.

Image segmentation

Each image was visualized and evaluated for sample
quality; areas with a large proportion of empty space
were discarded, leaving a total of 94 areas for further
analysis. Automatic thresholding for stain positivity and
nuclei segmentation were performed as previously described
[19] and customized for each image to adjust for variability
in the tissue architecture, cellular composition, and stain
intensity. To identify individual nuclei, the unmixed
haematoxylin image was segmented using multiple itera-
tions of increasing stain intensity thresholds with the Otsu
algorithm. The first iteration removed small objects (<50
pixels) and classified large objects (>1000 pixels) for
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additional segmentation iterations. Subsequent iterations
used increasing intensity thresholds resulting in increasing
segmentation of nuclei. Segmented objects that were >
150 pixels were considered as new separate objects, and
segmented objects < 150 pixels were considered part of the
original object and reattached to it. After each iteration,
segmented objects were processed by a distance transform
and watershed algorithms to determine whether the
objects required additional segmentation, and objects >
1000 pixels were reprocessed with further, more strigent
segmentation (higher thresholds), for up to three itera-
tions. Finally, an edge relocation algorithm refined the
nuclei boundaries [20] (Fig. 1b).

Multicolor stain characteristics of segmented cells

The intensity threshold of each stain within the boundary
of segmented nuclei was manually adjusted to differentiate
stain positivity from background. Segmented cells were
visualized in order of decreasing concentration of the
selected antibody intensity, and the user determined the
intensity threshold at which true positive cells were differ-
entiated from background (Additional file 2: Figure S2).
Thresholds were customized for each stain on each slide
and applied across all areas imaged from the same slide.
A three level binary decision tree was constructed to
categorize each cell into a group based on the positivity
or negativity of each stain, resulting in eight (2°) possible
groups (Additional file 3: Figure S3A). During classifica-
tion, each cell that was assigned incompatible markers
was assessed manually (for example CD3, a T cell marker,
co-stained with CD79a, a B cell marker). The majority of
double (CD3+ CD79a+) or triple (CD3+ CD8+ CD79a+)
positive-stained cells were overlapping T and B cells that
could not be differentiated by the segmentation algorithm.
Cells within groups corresponding to overlapping T and B
cells were processed such that a nucleus was automatically
added beside the existing nucleus, and one nucleus was
assigned as a T cell and one as a B cell (Additional file 3:
Figure S3B). However, when evidence of stain positivity of
incompatible markers was observed in a single cell (and
not in overlapping cells), the cells were excluded from
analysis (Additional file 3: Figure S3C). Cells categorized
as CD3-CD8+ CD79a+ and CD3-CD8+ were rare and
were assigned to the unstained group to preserve the
tissue architecture. Most cells in this category were
staining artifacts, though some CD3-CD8+ cells may
have been CD8+ natural killer cells.

Quantification of cell sociology

The coordinates of cell nuclei were used to build Voronoi
diagrams [21]. The Voronoi diagram represented a simple
geometric and topological model of epithelial tissues, from
which spatial relationships and neighborhood information
could be extracted [22]. A neighborhood was defined by
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the user, and can be conceptualized as a neighborhood in
a city. In this analogy, cells in a tissue sample could be
considered as houses in a neighborhood, and two adjacent
cells would be next-door neighbors. Cell neighbors were
identified by first associating a Voronoi polygon to each
nucleus, whereby the boundary between cells was posi-
tioned at the geometric mean between cell nuclei centers.
The Voronoi polygon served as a good approximation of
the cell membrane location (Fig. 1c). Cell-neighbor infor-
mation was calculated for every cell in an imaged area
(Fig. 1d), and these specific relationships were used to
examine the cell sociology in each tumor.

Cell sociology was quantified by calculating the fre-
quency of each cell-cell interaction in each imaged area.
Figure 2a shows an example where a given “red” cell
has five neighbors: one “red” neighbor (1/5), one “blue”
neighbor (1/5), and three “yellow” neighbors (3/5). The
neighbor frequency of red cells neighboring the central
red cell is 0.2, blue cells neighboring the red cell is 0.2,
and yellow cells neighboring the red cell is 0.6. In contrast,
Fig. 2b shows a more homogeneous example, whereby all
neighbors of a given red cell are red, a neighbor frequency
of 1.0. The neighbor frequency of each cell-neighbor rela-
tionship was calculated for every cell in the imaged area,
and a mean neighbor frequency and standard deviation
was generated for each unique cell-neighbor relationship
in each area. Importantly, the mean neighbor frequency
was not a function of the density of a given cell type. For
example, if two rare cell types often clustered together
(low cell density), the neighbor frequency would be high.
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In contrast to algorithms that use pixel distances from
target cells to define neighbors, our method assigns
neighbors as any cells that shares a Voronoi polygon
border, thereby allowing cells of different sizes and distances
between nuclei to be assessed as neighbors (Fig. 2a-c).

To assess the benefit of cell sociology measures to
individual patients, we assessed whether individual ROIs
differed from the range covered from the mean + standard
deviation of the recurrent and non-recurrent groups. The
minimum and maximum values were calculated for each
cell type, and for each ROI, the density and mean neigh-
bor frequency were assessed as similar (within the range
defined by the means) or different (outside the range of
standard deviations). Each ROI that fell within the range
by density and outside the range by cell sociology was
given a + 1 value, and each ROI that was misclassified by
cell sociology was given a—1 value. Values within the
range of the standard deviations were assigned a value of
zero. These ROI-specific values were then summed for
each patient and cell type and displayed as a heatmap
(Fig. 5).

Monte Carlo analysis of cell sociology

Monte Carlo analysis was performed on the calculated
neighbor frequencies scores to determine whether these
scores could be expected by random arrangements of
the different cell types. The positions of all cells in the
imaged area were fixed and the category of each cell
position was randomized in 500 in silico simulations,
while keeping the number of cells in each category fixed.

Fig. 2 Quantification of cell sociology. Three examples where the neighbor fractions of a single cell per image is shown. Lines represent cell — cell

interactions between neighbors to the central cell and the color of the lines represent the color of the neighbor cell. For cell sociology, all cells in the
image would be analyzed in the same manner to determine average neighbor frequencies of each cell type. a An example of a red cell with five
neighbors (cells that share a common Voronoi edge) is shown: one red neighbor (1/5), one blue neighbor (1/5), and three yellow neighbors (3/5). For
the red cell in the centre, the neighbor frequency of red cells is 0.2, the neighbor frequency of blue cells is 0.2, and the neighbor frequency of yellow
cells is 0.6. b An example of a red cell with eight neighbors. In this case, all neighbors are red generating a neighbor frequency of 1.0. ¢ An example of
a blue cell with 13 neighbors: 10 red neighbors, two blue neighbors, and one green neighbor. For the blue cell in the centre, the neighbor frequency
of red cells is 0.769, the neighbor frequency of blue cells is 0.154, and the neighbor frequency of green cells is 0.077. Circles represent a fixed pixel
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This produced a histogram of neighbor frequency scores
for each cell — cell interaction from the simulations,
thereby allowing the calculation of z-scores for the experi-
mental neighbor frequencies. Two hypothetical scenarios
depicting a random distribution and a non-random distri-
bution illustrate this concept (Additional file 4: Figure S4).
Highly negative z-scores indicate a tendency towards
avoidance while highly positive z-scores indicate a tendency
towards co-localization. An absolute z-score value >3
signifies a non-random neighbor score.

Results

High T cell density is associated with absence of tumor
recurrence

Increased T cell density has been associated with non-re-
currence and/or survival in most tumor types analyzed
to date, including lung cancer [23, 24]. To determine
whether our cohort of lung adenocarcinoma samples
would be sufficient to demonstrate this prognostic asso-
ciation, we assessed the T cell densities in our cohort of
eight recurrent and 11 non-recurrent cases (Table 1).
Overall survival was the only clinical variable with a statisti-
cally significant difference between recurrence groupings
(p =0.005). For each imaged area, we selected a sub-region
that contained mostly tumor epithelium, as intraepithelial
(versus intrastromal) tumor-infiltrating lymphocytes (TILs)
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carry the greatest prognostic significance (with implications
for tumor-immune cell sociology below). Firstly, the
densities of CD3+ T cells, CD3+ CD8+ T cells, and
CD79a+ B cells/plasma cells were assessed. Examples of
a recurrent and a non-recurrent case with low and high
levels of immune cell infiltration, respectively, are
shown in Fig. 3a & b. We observed significantly increased
densities of both CD3+ CD8- T cells and CD3+ CD8+ T
cells in non-recurrent cases of lung adenocarcinoma
(p =0.003 and p = 0.011, respectively). However, density
of CD79a+ B cells was not associated with recurrence
(p >0.05) (Fig. 4a).

Distinct cell sociology patterns were observed in
non-recurrent cases

The primary mechanism of CD3+ CD8+ T cell activity is
mediated through direct contact of the T cell receptor
on the CD3+ CD8+ T cell with the MHCI/peptide/B2M
complex on tumor cells, while anti-tumor activity of
CD3+ CD8- T cells is mediated through both contact
dependent and independent mechanisms [14]. We hy-
pothesized that the frequency of neighboring tumor cells
and T cells would be increased in non-recurrent cases. To
test this hypothesis, we quantified the neighbor frequencies
between unstained cells and CD3+ CD8+ T cells, unstained
cells and CD3+ CD8- T cells, and unstained cells and

RECURRENT = NON-RECURRENT

Fig. 3 Comparison of cell densities between a recurrent and a non-recurrent lung tumor. Multiplexed immunohistochemistry staining of a
non-recurrent case (top row) and a recurrent case (bottom row) of lung adenocarcinoma is shown. a White light imaging of the IHC stained
tissue (CD3 (blue), CD8 (dark brown), CD79a (red), haematoxylin (nuclear counter stain)). b Voronoi diagrams of these cases are shown at equal
magnification (left panels) and at increased magnification (right panels). Voronoi diagrams and cell centres are false colored red (unstained), blue
(CD3+ T cells), green (CD3+ CD8+ T cells), and pink (CD79a+ B cells). (C) Cell densities of each cell types are indicated in the bar graph to the
right, with “excluded” cells colored grey. These correspond to cells excluded from analysis, defined in Additional file 3: Figure S3

B Other

W CD7%a+

W CD3+CD8- T cells
W CD3+CD8+ T cells
W unstained

1.0
0.8
06

04

w
o
@
<
[

o

°

O

02

0.0




Enfield et al. Journal for InmunoTherapy of Cancer (2019) 7:13

Page 8 of 13

A CD3+CD8+ T cells CD3+CD8- T cells

p=0.003

Density (%)

o
o
o

C

B CD3+CD8+ T cells CD3+CD8- Tcells
_ 018, p=0.001 _ 03, p=0008
8 - 8 > :
22010 5202
23 23
c QO c QO
= s

CD7%a+ cells

CELLTYPE
@ uwatancd
©® CO3+CO8-Toud
® CD3CO8+Tou
® CO7%-* cel

UNSTAINED CELLNEIGHBORS
CD79a+ cells ‘." CO3+CDB- T cells

I

g 0.15 ns , < CO3+CD8+ T ooits
) g 0.10 R. o
20 § CD79at cels
c o
® 0.05
b3

0.00

2. - 9‘ L *
§. _._é ..% ‘:.'-%
E - E .- . .. - ...‘.:
m e 9 ﬁ‘( 1 :

_§ . Eo: ..0’: }"/_' L 1
£ O >

8 | - 2.' ' .. ‘,

LIING G A L
E l . § ~ ..' !\.\. ; .... ; = o.....

in neighbor frequencies of individual tumor cells

Fig. 4 Cell densities and cell sociology of recurrent and non-recurrent lung tumors. a Densities of CD3+ CD8- T cells (blue), CD3+ CD8+ T cells
(green), and CD79a+ cells (pink) calculated from tumor epithelial areas were compared between recurrent (n = 11) and non-recurrent (n = 8)
cases of lung adenocarcinoma. b Cell sociology of unstained (mostly tumor) cells with CD3+ CD8- T cell neighbors (blue), CD3+ CD8+ T cell
neighbors (green), and CD79a+ cell neighbors (pink) was calculated across tumor epithelial areas. The mean neighbor frequency of these
interactions was compared between recurrent and non-recurrent cases of lung adenocarcinoma. In all analyses a Mann-Whitney U test p < 0.05
was considered significant, and bars indicate mean + standard deviation. ¢ Cell sociology of non-recurrent (left) and recurrent (right) case of lung
adenocarcinoma. Each plot shows example analyses of a single unstained cell (red) within 3 fields taken from one patient slide. Cell-neighbor
interactions are represented by a line color coded to match the neighbor of the unstained cell of interest. These examples highlight differences

CD79a+ B cells for all areas (n = 95; 8 non-recurrent and 11
recurrent patients, 5 ROIs per patient). The areas analysed
were assessed by a pathologist as containing mostly tumor
epithelial cells, so we considered the majority of unstained

cells as tumor cells, though we could not definitively rule
out some unstained stromal cell contamination.

We observed significantly higher neighbor frequencies

of tumor cells with CD3+CD8+ T cell neighbors in
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non-recurrent cases (p = 0.001, Fig. 4b, c), an association
that was more significant than CD3+ CD8+ T cell density
alone (p =0.011, Fig. 4a, b). Figure 4c shows examples of
epithelial cells interacting with other epithelial and immune
cells, where the neighbor frequencies of a single tumor cell
are visualized by color-coding the neighbor interactions.
Even in this small sample set, these results provide intri-
guing preliminary data to support the improved prognostic
value of cell sociology readouts over cell density alone.

Interestingly, the neighbor frequency of tumor cells with
CD3+ CD8- T cell neighbors was also significantly higher in
non-recurrent cases (p = 0.008), but the association was at a
similar significance level to that observed with CD3+ CD8-
T cell density alone (p = 0.003). The lack of increased signifi-
cance is concordant with the tumor contact-independent
mechanisms of anti-tumor CD3+ CD8- T cell activity [14].
Finally, we found that neither the density nor the neighbor
frequency of tumor cells with CD79a+ B cell neighbors was
significantly different between recurrent and non-recurrent
cases, in agreement with the inconsistent prognostic signifi-
cance of B cells in lung cancer [25-27] (Fig. 4a-c).

We then assessed whether cell sociology of tumor cells
with CD3+ CD8-, CD79a+, and CD3+ CD8+ immune cell
neighbors was able to improve recurrence classification of
individual patients as compared to the density of these three
cell types. As a baseline, CD3+ CD8+ T cell density in at
least one ROI was able to correctly classify eight patients;
CD79a+ cell density was able to correctly classify three
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patients; CD3+ CD8- T cell density was able to correctly
classify two patients; while eight patients were not correctly
classified by any density metric. To compare, we then con-
sidered the cell sociology of these cell types with tumor cells
across the ROIs. Cell sociology of CD3+ CD8+ T cells was
able to perform equally as well as density in 17 patients,
improve classification of one patient, and misclassified one
patient. Cell sociology of CD79a+ cells was able to perform
equally well as density in 8 patients, improve classification
of six patients, and misclassified three patients. Cell
sociology of CD3+ CD8- cells was able to perform
equally as well as density in five patients, improve classifi-
cation of 10 patients, and misclassified four patients.
Taken together, consideration of cell sociology metrics
improved classification of 12 patients as compared to
density (Fig. 5). This further supports the use of cell
sociology metrics as a clinically relevant read-out, which
warrants further investigation in larger studies.

To assess whether the observed cell neighbor frequen-
cies would be expected due to random distribution of the
cells, we applied the Monte Carlo iterative re-sampling
method. The majority of the z-scores between unstained
(tumor) cells and CD3+ CD8+ T cells were highly sig-
nificantly negative (z < -3), indicating a non-random
distribution of cells and a tendency towards avoidance
(Additional file 5: Figure S5). This suggests that the
increased proximity of tumor cells and CD3+ CD8+ T
cells observed in non-recurrent cases is indicative of a

Patient Number 2
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Fig. 5 Patient-level comparison of cell sociology compared to density measurements in the prediction of recurrence. Each column represents an
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(non-recurrent) and light orange (recurrent). Patients correctly classified by any cell density metric are indicated in green and those incorrectly
classified in grey. For each patient ROI, the benefit of assessing cell sociology of tumor cells with immune cells (CD3+ CD8-, CD3+ CD8+, and
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biologically relevant immune process associated with dis-
ease recurrence. Thus, our pilot study demonstrates the
promise of utilizing tumor and immune cell sociology
features to improve prognostic accuracy.

Discussion

The quantification of cell-cell interactions and spatial rela-
tionships within the tumor architecture is likely to provide
more precise biological information compared to cell dens-
ities alone, and holds as-of-yet unknown clinical potential.
We have developed a novel pipeline for hyperspectral
imaging and cell sociology analysis of multiplexed IHC
specimens (Fig. 6), and applied it to 100 areas from 20
FFPE tumor sections of lung adenocarcinoma (CD3,
CD8, CD79a, haematoxylin). The quantification of cell-cell
spatial relationships within the TME allowed a more com-
prehensive examination of immune-tumor cell interactions.
Our cell sociology analysis revealed that the spatial
organization of CD3+ CD8+ T cells within the tumor epi-
thelium may provide additional prognostic value compared
to CD3+ CD8+ T cell density alone. This research provides
a framework for future studies investigating how the spatial
context of diverse cell types in the TME could reveal new
insights for both biological and clinical studies.

The analysis of tumor architecture and spatial
organization of cell-cell interactions in histology specimens
is challenging. While two other systems exist to identify
neighborhoods, they both rely primarily on distance be-
tween nuclei [28, 29]. Our system uses Voronoi tessella-
tion, which has the advantage of not requiring arbritrary
definitions of neighborhoods (Fig. 2). Since each Voronoi
polygon is interpreted as an approximation of the cell
boundary, only cells contacting each other (sharing
common Voronoi edge) are considered neighbors. This
approach accounts for the natural variability in tissue
architecture in which cell neighbors can be observed to
be closely packed (e.g. clusters of small immune cells)
or distant (e.g. disorganized tumor cells) from one an-
other (Fig. 2). Despite using different neighborhood
concepts, these technologies should provide similar
results, though discrepancies could arise when analyzing
low frequency cell populations. Further studies are required
to compare and validate experimental data generated by
these different technologies.

As the complexity of staining panels increases in the
quest to improve resolution of cell types, so does the
importance of statistical methods to ensure the correct
interpretation of results. We incorporated the Monte
Carlo iterative re-sampling methodology to provide a
z-score indicating that a cell-cell interaction was increased
or decreased more than random distribution would antici-
apte. Indeed, our results demonstrate that the spatial
organization of different cell subsets is highly non-random,
likely indicating underlying biological phenotypes. The use
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of these and other statistical methods are becoming
increasingly important as technology improvements
allow for the analysis of whole slide images, that consist
of greatly increased cell numbers and exponentially in-
creased cell sociology.

The investigation of the prognostic value of immune
cell infiltrate in tumors has gained much interest over
the last decade, and several new immunotherapies have
been approved for treatment of a variety of cancer types
[30]. For example in colorectal cancer, the density of
CD8+ T cells at the tumor invasive margin (dubbed the
“immunoscore”) is more predictive of outcomes compared
to the traditional Tumor; Node; Metastasis (TNM) scoring
[6] or microsatellite instability scores [31, 32]. Our meth-
odology may be used to augment the prognostic value of
the immune infiltrate. Despite the limited sample size of
our pilot study (n =20), we demonstrate that the spatial
organization of CD3+ CD8+ T cells and unstained cells in
tumor epithelial areas is more significantly associated with
recurrence than CD3+ CD8+ T lymphocyte density alone.
On the patient level, we also find that cell sociology
improves the classification of 6/8 non-recurrent and 6/11
recurrent patients when compared to classification by cell
density. This reinforces our contention that the addition of
cell sociology quantifications to currently available prog-
nostic or predictive tools would add advance our insight
into anti-tumor immunity. Furthermore, our technology
could be used for investigating immune phenotypes in
patients receiving immunotherapy. For example, the use of
PD-L1 expression as a biomarker for anti-PD1 immuno-
therapy response is currently under investigation [33-35],
but major challenges have arisen due to staining hetero-
geneity [10, 11]. PD-L1 may be expressed as a continuum
ranging from low to high levels on tumor cells, and on
tumor-associated immune cells (macrophages, being a
relevant population in this regard). Thresholds for treat-
ment are based on combinations of positive tumor cells,
and sometimes immune cells, and cut-off points in the
treatment algorithm vary with different analytical IHC
antibody clones and detection platforms and remain a
source of uncertainty for pathologists and oncologists
involved in lung cancer [36]. Our cell sociology approach
could conceivably identify specific spatial relationships
between T cells, other immune cells, and PD-L1 expressing
cells with the intention of refining checkpoint blockade
immune oncology treatments.

Hyperspectral Cell Sociology analysis revealed patterns
congruent with our current understanding of anti-tumor
immunity. For example, an increased frequency of CD3+
CD8+ T cells neighboring unstained cells (predominantly
tumor epithelial cells but also stromal cells) was highly
associated with non-recurrence. This morphological ob-
servation correlated with the known biological mechanism
of action of cytotoxic T cells, which exert their tumor cell
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killing function through direct cell-to-cell contact. Indeed,
in our analysis, there was no association between absence
of recurrence and any immune cell type neighboring any
other immune cell type (CD3+CD8+-T cells, CD3+
CD8- T cells, CD79 + -B cells; data not shown). These data
suggest that clusters of immune cells — typically observed
in fibrovascular stromal areas juxtaposed to tumor epithe-
lium of certain lung cancers — may be less important to
tumor rejection than dispersed within the tumor epithe-
lium. Additionally, we found that CD3+ CD8- helper T
cells were associated with absence of tumor recurrence,

but at a similar level as the CD3+ CD8- T cell density alone.
CD3+ CD8- T cells can exert their effects by expressing im-
mune activating (or inhibiting) cytokines, expressing growth
inhibitory cytokines, killing target cells, and/or increasing
the activity of other T cells and B cells [14]. These mecha-
nisms may have actions on cells more distant than the near-
est neighbor of the T cell. To address this, the relationship
of 2nd and 3rd order neighbors (ie. cells 2 and 3 cells away
from a given cell) on tumor behavior is an avenue for fu-
ture investigation. Finally, we found that cell sociology
between B cells and tumor cells was not associated with
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recurrence. Since antibodies produced by B cells circu-
late systemically, direct interactions of B cells and tumor
cells may not be necessary for anti-tumor B cell activity.
Analysis of a larger cohort of lung cancer patients would
be required to resolve the more subtle influences that B
cells may have on the TME.

Conclusions

We have developed a pipeline for the analysis of cell
sociology from hyperspectral IHC images in lung cancer.
We believe future studies quantifying cell-cell spatial
interactions will generate enhanced biological insight
not currently available from cell density information
alone. The study of cell sociology could be applied to
any number of scenarios such as interactions between
immune cells and tumor cells, different subclonal tumor
cells, and tumor cells and stromal cells. Cell sociology
has broad cross-dispiplinary applications, and is powerful
tool for the understanding of biological events in which
cell-cell spatial interactions dictate functionality, including
cancer immunology.

Additional files

Additional file 1: Figure S1. Spectral unmixing. An example of a region
of interest captured by white-light imaging (top left). The subsequent
panels represent the concentration maps of the spectrally unmixed
hyperspectral image for all spectra of interest: haematoxylin, CD79a (red),
CD3 (blue), CD8 (brown), and black artifacts. (TIF 1141 kb)

Additional file 2: Figure S2. Histogram of the integrated intensity
values of a given stain. The histogram represents the number of
segmented cells (y-axis) as a function of integrated stain intensity (I13)
(x-axis, max =0, min = 255). In this example, cells below a threshold of
234 are considered positively stained (blue), while those above a
threshold of 234 are negative (red). (TIF 102 kb)

Additional file 3: Figure S3. Cell categorization into groups based on
stain characteristics. (A) A binary decision tree was used to catetgorize all
segmented cells into groups. Cells positive for incompatible lineage
markers (CD79a+/CD3+ or CD79a+/CD3+/CD8+) required reassignment,
whereas CD8+ CD3- and CD8+ CD79a+ cells were rare and excluded
from analysis. (B) Cells positive for incompatible markers were visually
assessed for evidence of cell overlap occurring as a result of improper
segmentation due to object proximity. In this example of a CD3+ CD79a
+ cell, the topmost image shows CD3+ (blue) and CD79a+ (red) channels
visualized in false color simultaneously and the nuclear boundary is
shown as a red line. The second image shows only the CD3+ channel.
The third image shows only the the CD79a+ channel. Since the presence
of two overlapping cells is clear, a second nuclear centre is produced
and the CD3+ CD79+ cell is reassigned to a CD3+ cell immediately
adjacent to a CD79a+ cell (bottom image). (C) In this example of a CD3+
CD79a+ cell, there is not clear evidence of two adjacent cells. As double
positivity for these markers is not supported by current literature, these
cells were rare and excluded from analysis. (TIF 207 kb)

Additional file 4: Figure S4. Monte Carlo simulation. (A) Hypothetical
samples depicting a random distribution (sample 1) and a non-random
distribution (sample 2) are shown and colors represent different
phenotypes of cells. (B) The neighbor score (top) and z-scores (bottom) of
each combination of nearest neighbor interactions are shown. Low neighbor
frequency of red cells with blue cell neighbors were present in sample 1;
furthermore, the z-score of this observation was near zero, indicating this
interaction would be expected from random (non-meaningful) distributions
of the cells. In contrast, in sample 2, the neighbor frequency of red to blue
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cells was 0.6 and the z-score value was 24. The interactions happened much
more frequently than would be expected by random distribution of the
cells, meaning experimental data matching this pattern may indicate an
underlying biological phenotype. (TIF 653 kb)

Additional file 5: Figure S5. Monte Carlo z-scores of mean neighbor
frequencies. Histograms of cell sociology z-scores generated by Monte
Carlo analysis of unstained (tumor) cells with CD3+ CD8+ T cell neighbors in
non-recurrent (top) and recurrent (bottom) cases. Cutoff z-scores of +/— 3 were
used to assess whether the distributions were likely to be non-random; the
highly negative scores represent a tendency towards avoidance. (TIF 122 kb)
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