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Abstract

Background: Insights into the genetic capacities of species to adapt to future climate change can be gained by using

comparative genomic and transcriptomic data to reconstruct the genetic changes associated with such adaptations in

the past. Here we investigate the genetic changes associated with adaptation to arid environments, specifically climatic
extremes and new cactus hosts, through such an analysis of five repleta group Drosophila species.

Results: We find disproportionately high rates of gene gains in internal branches in the species’ phylogeny where
cactus use and subsequently cactus specialisation and high heat and desiccation tolerance evolved. The terminal
branch leading to the most heat and desiccation resistant species, Drosophila aldrichi, also shows disproportionately high
rates of both gene gains and positive selection. Several Gene Ontology terms related to metabolism were
enriched in gene gain events in lineages where cactus use was evolving, while some regulatory and developmental genes
were strongly selected in the Drosophila aldrichi branch. Transcriptomic analysis of flies subjected to sublethal heat shocks
showed many more downregulation responses to the stress in a heat sensitive versus heat resistant species, confirming the
existence of widespread regulatory as well as structural changes in the species’ differing adaptations. Gene Ontology terms
related to metabolism were enriched in the differentially expressed genes in the resistant species while terms
related to stress response were over-represented in the sensitive one.

Conclusion: Adaptations to new cactus hosts and hot desiccating environments were associated with periods
of accelerated evolutionary change in diverse biochemistries. The hundreds of genes involved suggest adaptations of

this sort would be difficult to achieve in the timeframes projected for anthropogenic climate change.
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Background

One approach to assessing the ability of species to adapt
genetically to future climate change is to reconstruct the
way such adaptation has occurred in the past. The best
way to do this is to compare the genomes of closely re-
lated species that have diverged for the relevant pheno-
types, but where genetic changes due to drift or other
adaptations irrelevant to those phenotypes are minimal
[1]. Drosophila is an ideal genus for such an analysis
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because many of its species have diverged in their re-
sponses to climatic extremes [2—-4].

One particularly promising species group to study in
this respect is the repleta group (subgenus Drosophila),
which originated about 15 million years ago in the
Americas [5]. Many species in this group, such as the
mulleri subgroup species Drosophila mojavensis, D. buz-
zatii and D. aldrichi, are desert-adapted and display ex-
tremely high heat, cold and desiccation tolerance [2, 3]
but other species, such as the hydei and repleta sub-
group species D. hydei and D. repleta, are largely found
outside the desert and are much less tolerant of these
stresses [2, 3, 6]. Notably also, while all the repleta group
species are saprophagous (feed on rotting tissue) they
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vary widely in their host preferences; the desert species
are dietary specialists that feed and breed on necrotic
cactus tissue, whereas D. hydei and D. repleta are dietary
generalists which can utilise a wide range of rotting
fruits and vegetables, as well as animal faeces and, in the
case of D. hydei, cacti as well [7-10].

Some comparative genomic studies have been con-
ducted on two repleta group species, the cactophilic D.
mojavensis and D. buzzatii. Both are relatively tolerant
to climate stresses [5, 11, 12] but the former is much
more restricted geographically and in the range of cacti
it will use [13]. Comparisons between these two species
and two other drosophilids outside the repleta species
group (D. virilis and D. grimshawi) showed expansions
of gene families involved in proteolysis, sensory percep-
tion and gene regulation in the cactophilic species [5].
The same study also found the cactophilic species were
undergoing rapid positive selection in genes involved in
gene regulation and the catabolism of some of the het-
erocyclic toxins found in the cacti [5]. Transcriptomic
comparisons of populations living on different hosts
within both D. mojavensis and another repleta species
group cactophile, D. mettleri, have also highlighted tran-
scriptional changes in key metabolic and sensory path-
ways which might contribute to desiccation and/or host
adaptation [12, 14—16]. There is thus evidence for both
regulatory and structural changes, in the form of gene
gains as well as positive selection, associated with the ac-
quisition of cactophilism in the repleta group. However
interpretation of the associations is limited by the few
species studied and in some cases the substantial phylo-
genetic distance involved in the comparison.

Several genome-wide association (GWAS) studies
have also found quantitative trait loci (QTLs) contribut-
ing to polymorphic variation in thermal and desiccation
stress traits within D. melanogaster [17-20]. Associa-
tions have been recorded with hundreds of different
genes, including a number of heat shock proteins, but
their relevance to the cactophilic repleta species is
questionable because of the ecological differences and
phylogenetic distance involved, and the fact that most
of the D. melanogaster studies are based on microarray
rather than sequencing data.

To follow up the work on the cactophilic species above,
the current study investigates gene gains and positive se-
lection in five sequenced repleta group species, and tran-
scriptional differences in two of them with very different
thermal tolerances. The five species are D. mojavensis and
D. buzzatii, plus one additional highly stress tolerant cac-
tophile, D. aldrichi (specifically its Clade A; [21]), and two
less tolerant dietary generalists, D. repleta and D. hydei.
We use the D. mojavensis genome (generated from its Cat-
alina Island clade; [22]) as published but we re-annotate
the published D. buzzatii genome [5] to improve gene
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model prediction for that species. We present new ge-
nomes for the other three species, acknowledging that an-
other version of the D. hydei genome has also recently
been published ([23] and see below). Comparative analyses
among these four genomes plus D. mojavensis, and be-
tween the five repleta species and previously published ge-
nomes from other Drosophila groups, are then used to
suggest genetic factors contributing to high temperature
tolerance and cactus vs generalist dietary adaptations.
These analyses are founded on a robust genome-wide
phylogeny for a total of 24 Drosophila species for which
good quality genomes were available at the time [24].
Orthologue and duplication predictions and branch site
modelling are then used to identify lineage-specific gene
expansions and bursts of positive selection in the repleta
species group. We also compare transcriptomes across a
time course of heat shock response for the heat sensitive
D. hydei and heat tolerant D. buzzatii, and test whether
gene sets showing divergent transcriptomic responses to
heat between these species are related to those showing
genomic divergence.

Results
Genome assemblies and annotations
Among the three newly sequenced species, the highly in-
bred D. hydei and D. repleta lines had better assembly
statistics than the D. aldrichi line, which was less inbred
than the other two (see Materials and Methods and
Additional file 1: Text S2). This is apparent from the lar-
ger scaffolds and smaller scaffold L50 s for D. hydei and
D. repleta compared to D. aldrichi (Additional file 2:
Table S1). The D. hydei assembly also had superior as-
sembly (and annotation) statistics to the other recently
published version of this genome [23]; compared to the
other version, our assembly had an N50 three times lar-
ger and covered 90% of the genome in less than half the
number of scaffolds (Additional file 2: Tables S1, S2).

The generalist feeders D. hydei and D. repleta yielded
assembled genome sizes of ~ 165 Mb, which is very close
to previous estimates generated using DAPI staining
(177+/-22 and 167+/-13 Mb respectively; [25]). No
DAPI estimate has been published for the cactophilic D.
aldrichi but our assembled genome size (191 Mb) for
this species was larger than the two generalists but simi-
lar to that previously published for the cactophilic D.
mojavensis (194 Mb; [26]), which itself was corroborated
by a DAPI estimate (183+/-3 Mb; [25]). Notably the
previously published assembly of the other cactophilic
species in our analysis, D. buzzatii, was only estimated
at 161 Mb, most likely due to significant underestima-
tion of both repeat and gene content during genome as-
sembly ([27] and see below).

The repeat contents of the various genomes were
highly variable across the five assemblies (Additional
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file 2: Table S3). At the extremes, D. buzzatii had only
8.4% total repeat content while D. aldrichi had 24.5%. The
lower D. buzzatii estimate however may in part reflect the
tendency of strict short read deBruijn graph assemblies
such as that one to underestimate repeat contents [27].

We identified 15,838, 14,790 and 16,070 genes respect-
ively in D. hydei, D. repleta and D. aldrichi, most of
which have annotated UTRs (Additional file 2: Table
S3). Our gene numbers for these three species are
slightly higher than the 14,680 and 13,919 published for
D. mojavensis and D. melanogaster respectively, and
higher again than the 13,158 published for D. buzzatii.
We think this is because the annotation pipeline used in
our study yields superior recovery and quality statistics
than many of its predecessors [24]. A reannotation of
the published D. buzzatii data resulted in the identifica-
tion of 1374 additional genes (Additional file 2: Table
S3) and brings the total gene numbers up to 14,532,
which is at the lower end of the range found for the
other repleta group species. The new annotation also in-
creased the number of identifiable orthologous genes in
D. buzzatii by 485 (Additional file 2: Table S4). Scans for
members of the conserved CEGMA [28] and BUSCO
[29] gene sets suggested that our new D. buzzatii anno-
tation was still missing about 10% of genes, compared
with less than 3% for the other species (data not shown).
Accounting for these missing genes would leave D. buz-
zatii with similar gene numbers to D. hydei, suggesting
no consistent difference in gene number between the
cactophilic and non-cactophilic species.

Orthonome [24] was used to identify orthologues, inpar-
alogues (species-specific duplications) and de novo gene
births (of which there were very few) in the gene sets of
these and 11 other Drosophila species (see Materials and
Methods). Orthonome classifies sequences as orthologues
if they meet three criteria relating to sequence similarity,
synteny and, where duplications have occurred, symmetric
sister group phylogenetic relationships (see Materials and
Methods); sequences only meeting one or two of these cri-
teria were classified as inparalogues and those meeting
none classified as gene births. Orthonome and Interpros-
can (v5.16-55; [30]) were also used to place 87-91% of
the genes in each species in various Gene Ontology (GO)
categories [31].

Phylogenomics shows a progression from host generalists
to cactophilic specialists

IQ-Tree [32] was used to obtain a species phylogeny
from the nucleotide coding sequences of 1802 orthogroups
(groups of 1:1 orthologues containing no inparalogues) that
had members in all five repleta group species plus
the 19 other Drosophila species for which the Dros-
ophila 12 genomes (ftp://ftp.flybase.net/genomes/) and
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modENCODE (https://www.hgsc.bcm.edu/arthropods/
drosophila-modencode-project) projects produced good
quality genome sequences. The well-resolved tree ob-
tained (100% bootstrap support for all branches in Fig. 1)
generally confirmed earlier phylogenies for the repleta
group [5, 13, 33]. Specifically it partitioned the cactophilic
species, which are all in the mulleri subgroup, into the
mulleri complex species D. aldrichi and D. mojavensis
and the buzzatii complex species D. buzzatii, with D.
hydei (in the hydei subgroup) the sister clade to that sub-
group and D. repleta (in the repleta subgroup) the sister
for all four of the other species.

Notably in the latter respect our phylogeny agreed
with one, but not the other, of the only two previously
published phylogenies we know of which included
both D. hydei and D. repleta. One of these, by our-
selves, which was based on similar methods as here
and 257 genes from a partially overlapping set of spe-
cies, also put the D. repleta split ancestral to that of D.
hydei [34]. The other, by Oliviera et al. [13], which ap-
plied maximum likelihood methods to four mitochon-
drial and six nuclear gene fragments, placed D. hydei
as the outgroup to the other four species and in so
doing suggested D. repleta had lost an ability to use
cactus that had itself emerged in the common ances-
tor of it and D. hydei. In putting D. repleta as an out-
group to the cactus-using species, our current and
earlier study do not require D. repleta to have second-
arily lost that ability. D. hydei’s ability to eat both
fruits/vegetables and faeces as per D. repleta and cacti
as per the mulleri subgroup is also consistent with its
positioning in our topology between the D. repleta
and mulleri subgroup branches. (We note here that
the nannoptera species group and its most closely
related outgroup D. machalilla, which all also sit in
the large virilis-repleta radiation, have independently
evolved cactophilism, in their case apparently from
flower-feeding ancestors [5, 35].)

We also note that our phylogenetic methods were
primarily built upon the supermatrix approach used in
the i5K study [36] and only used carefully selected
orthologues to run ModelFinder and 1Q-Tree ([32, 37]
and see Methods below). We obtained the same top-
ology if we used even more stringent filtering of input
genes (to remove 22% of the genes which showed com-
positional heterogeneity [38]) or another concatenated
sequence approach using FastTree2 [39] (analyses not
shown). On the other hand, we found that a Bayesian
consensus tree approach using *BEAST2 [40] could not
separate the two divergences and gave lower concord-
ance values [41] and partitioned coalescence support
(PCS) [42] across the gene set used (data not shown).
We conclude that the two divergences in question are
likely very close to one another but the topology with
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Fig. 1 Phylogenetic relationships of the five repleta group species and 19 previously sequenced Drosophila species based on concatenated
codon alignments of 1802 orthogroups shared by all species. The divergence time was estimated using the RelTime [102] package in MEGA7
[93]. All bootstrap values for nodes from 1000 iterations were equal to 1 and the ancestral repleta group branch is indicated with a hash
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D. repleta as the outgroup which we propose has stron-
ger statistical support.

Our dating analysis does however agree with Oli-
viera et al. [13] in suggesting an origin for the repleta
group around 10-15 MYA (Fig. 1). This was a period
of aridification through parts of the Americas where
the group is believed to have evolved, together with
the flat-leaved Opuntioideae believed to be the hosts
for the original cactophiles within the group [13].

Our genome-based tree also clarified some relation-
ships in the Sophophoran subgenus, as detailed in the
Additional file 1: Text S1.

Orthogroup generation rate is high when cactophilism
evolves but low in the specialist mulleri complex branch
Application of Orthonome to the five repleta species and
the 11 other species in the Drosophila 12 genomes project
(the somewhat lesser quality modENCODE genomes being
excluded from this analysis) identified orthologues for
11,780-13,883 genes in each of the 16 species (Table 1,
Additional file 2: Table S4). These orthologues were distrib-
uted across 15,907 orthogroups, 971 of which orthogroups
arose in the four internal branches within the repleta group
phylogeny. Figure 2 shows that 265 of the 971 orthogroups
arose in the earliest of these branches (hereafter the ances-
tral repleta group branch), 394 in the next one (ie after the

split of the four cactus using species off from D. repleta,
hereafter the cactus use branch), 194 in the next (ie follow-
ing the split of the three cactus specialists off from D. hydei,
hereafter the cactus specialisation branch), and just 22 in
the most recent one (ie after the two mulleri complex spe-
cies split off from D. buzzatii, hereafter the mulleri complex
branch). Thus, in proportion to the presumptively neutral
silent site branch lengths (calculated from 4-fold degenerate
sites in 1802 full length genes as detailed in the Methods
section, the rate of orthogroup creation was highest for the
branches in which cactus feeding and then, to a lesser ex-
tent, cactophilic specialisation evolved, and lowest in the
mulleri complex branch within the cactophilic specialists
(Fig. 2). The excess of orthogroups arising in the cactus use
and cactus specialisation branches in proportion to their si-
lent site branch lengths was of the order of 300 and 150
orthogroups respectively. Relevant here is that the cactus
specialisation branch is not only associated with the sub-
stantive loss of use of other hosts but also the acquisition of
greater heat and desiccation tolerance, all three of the cac-
tophilic species having significantly higher tolerance than
D. repleta and D. hydei [2, 3, 43-47].

In fact the rate estimated for the cactus specialisation
branch may have been slightly underestimated, and that
for the mulleri complex slightly overestimated, because
of the slightly lower rate of gene recovery from our D.



Rane et al. BMC Genomics (2019) 20:52

Page 5 of 22

Table 1 Summary of Orthonome analysis for D. melanogaster and five repleta group species. Average numbers of one-to-one orthologues
(genes identified by Orthonome as having at least one orthologous relationship) are calculated based on pairwise orthologue predictions
whereas total genes with orthologues and inparalogues are evaluated using the phylogeny-sensitive Orthonome analysis of all genomes

Species Number of Mean number of Total genes with Inparalogues
genes 1:1 orthologues orthologues All orthogroups Repleta group-specific
orthogroups
D. aldrichi 16,070 11,294 12,469 2141 100
D. mojavensis 14,680 11,669 13,147 948 69
D. buzzatii (improvement compared 14,532 (1374) 10,745 (485) 11,780 2161 173
to original annotation)
D. hydei 15,838 11,096 12,523 2625 514
D. repleta 14,790 11,222 12,588 1902 224
D. melanogaster 13,919 10,894 12,992 688 NA

buzzatii assembly noted above (which would have
meant we assigned a few orthogroups which actually
arose in the cactus specialisation branch to the mulleri
complex branch).

Inparalogue generation rates are high in D. aldrichi
Orthonome also identified 948 (D. mojavensis) - 2625 (D.
hydei) inparalogues arising in the terminal branches of the
repleta group phylogeny, with the number of orthogroups
giving rise to them varying between 783 (D. mojavensis)
and 1485 (D. hydei) (Table 1; Fig. 2). Much of this variation
was broadly proportional to the silent site branch lengths.
However the most heat and desiccation resistant species,
D. aldrichi [2, 3, 43—47], had about twice as many inpara-
logues and orthogroups giving rise to them (excesses of
several hundred in both cases) as might be expected from
its silent site branch length. The high number of inparalo-
gues in this species was not obviously explicable in terms
of its slightly poorer quality assembly (see above); only
171 out of 2140 of its inparalogues were found at the
same locations as their templates in the assembly and
were therefore possibly assembly errors (data not shown).
On the other hand, inparalogue numbers in D. buzzatii
may have been slightly underestimated because of the
slightly lower rate of gene recovery from its assembly.
Overall, the terminal branch inparalogue numbers esti-
mated are significantly higher in proportion to the silent
site branch lengths than are the numbers of orthogroups
which were estimated above to have been generated in
the internal branches. This may in part be a statistical
artefact; the very rigorous criteria we used for the classi-
fication of orthogroups, may mean some real ortholo-
gues were assigned as inparalogues (see Materials and
Methods). However it likely also has some biological
basis; only duplication events that survive long enough
as functioning genes to appear in at least two of the five
species will be classified as orthogroups, whereas the
inparalogues will include some functionless genes, not

necessarily transcribed and possibly including disrup-
tions to open reading frames.

There was no obvious correlation between the specific
orthogroups generating inparalogues in the different ter-
minal branches (Additional file 2: Figure S1). This would
indicate ongoing genetic divergence among the species,
even among the cactophiles. As noted, there are consid-
erable differences in the heat and desiccation tolerances
of the five species and even the cactophiles differ in host
use to a significant degree, specifically in their preferences
for various flat-leaved Opuntia species (D. buzzatii) versus
specific columnar cacti (the two mulleri complex species,
particularly D. mojavensis [33]).

Many positively selected genes in D. aldrichi but few in
the internal mulleri complex branch

Adaptive branch-site random effects likelihood (aBSREL;
[48]) testing of 7359 orthogroups with 1:1 orthologues in
each of the five repleta species and the 11 other FlyBase
species found between 75 and 496 orthogroups undergo-
ing positive selection in one or more branches of the
repleta group phylogeny (Fig. 2). In proportion to the re-
spective silent site branch lengths, the major outliers were
the terminal branch containing D. aldrichi, which showed
relatively high numbers of positively selected genes, and
the preceding internal branch, the mulleri complex
branch, which contained relatively few (of the order of
200 more and 200 less respectively). Drosophila aldrichi,
which has the highest heat and desiccation tolerance of
the species characterised [2, 3, 43—47], was also associated
with relatively high numbers of gene gains (as assessed by
inparalogues generated), consistent with its ecological
niche having diverged significantly from the others
species. Conversely, the mulleri complex branch showed
very low relative numbers of both gene gain events and
positively selected genes, suggesting a period of relative
evolutionary genetic stability. As with the inparalogue
analyses, there was little overall correlation between the
specific genes showing positive selection in the different
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Branch length

branches, even among the terminal cactus specialist
branches (Additional file 2: Figure S2).

We note here that this analysis only included the 7359
orthogroups/genes which had orthologues in all 16 species
analysed. While this was the most rigorous way to execute
the test, it also meant that many orthogroups which were
more variable in terms of their presence across species were
excluded from the analysis. The analyses below suggest that
orthogroups associated with gene gains are more likely to

show positive selection than those that do not. These consid-
erations suggest that our estimates of the proportions of
genes under positive selection in the various branches above
will underestimate the true proportions to some degree.

Genes generating inparalogues are more likely to be
positively selected

We used the approach developed by O’'Toole et al. [49]
to test whether there was an association between the
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orthogroups/genes generating inparalogues and those
that were under positive selection. The structure of this
analysis necessarily restricted it to the terminal branches
of the phylogeny but a fortunate corollary of this was
that we could include more genes than in the aBSREL
analysis for positive selection above (see Materials and
Methods); specifically we could include all orthogroups
which had members in all the repleta group species and
at least one other species from the same subgenus. We
found that genes generating inparalogues in the terminal
branches were more likely to be under positive selection
than genes which had not generated inparalogues in
those branches (Table 2), although the analysis does not
tell us whether the episodes of positive selection in-
volved occurred before or after the generation of the
inparalogues.

Metabolic and stress response functions are enriched in
the evolutionary changes

We screened the 18 branch-specific evolutionary ana-
lyses above (orthogroups created in the four internal
branches, orthogroups generating inparalogues in the
five terminal branches and positive selection in each of
the nine branches) for the enrichment of 23 mutually
exclusive sets of GO terms. These terms were obtained
by applying a Louvain clustering approach to all 28,912
terms nested under ‘Biological process’ in the Ontology
(see Materials and Methods). We then examined the as-
sociations found in more detail by analysing the enrich-
ments of 265 subsets of the 23 sets, again identified by
Louvain clustering. The constitutions of the different
GO sets and subsets are summarised in Additional file 2:
Table S5. Twenty eight significant enrichments of GO
sets were found and these 28 were not randomly distrib-
uted with respect to either the analyses or the GO sets
involved (Fig. 3).

Nine of the 28 occurred in just one analysis, namely that
assessing orthogroup generation in the ancestral repleta
group branch. While this branch had not generated dispro-
portionate numbers of orthogroups relative to its silent site
branch length, it was nevertheless a relatively long silent
site branch. The range of biological functions enriched
among the orthogroups generated in this branch may have
been prerequisites for the emergence of the very broad host
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range of D. repleta itself, the flower feeding habits of the
ancestors of the nannoptera group, fungus feeding in some
fasciola subgroup species, the cactophilic lineage studied
here, plus the soil-dwelling D. mettleri that feeds on the ex-
udate of rotting cactus [13, 15]. Another 12 of the 28 sig-
nificant enrichments occurred in just three other analyses,
three in orthogroups arising in the cactus use branch
(which had shown a pronounced excess of events relative
to the silent site branch length), five in orthogroups gener-
ating inparalogues in the D. mojavensis branch (which in-
volved increasing specialisation on particular chemically
complex columnar cacti), and four in positive selection
events in the D. buzzatii branch (which continues to exploit
a wide range of cacti).

Five GO sets were enriched in two or more of the 28
analyses; three (G - Primary metabolism, O - Nucleic
acid processes and P - Metabolite and ion transport) in
the orthogroups generated in both the ancestral repleta
group and cactus use branches above, and two others (B
- Cell fate determination and C - Development) each in-
volved in four terminal branch analyses, namely the
orthogroups generating inparalogues in the D. hydei, D.
buzzatii and D. mojavensis branches and positive selec-
tion in the D. buzzatii branch.

We then screened all the GO subsets for enrichments
in the 18 analyses, which we did in terms of both abso-
lute number and percentage increases (Fig. 4). Consist-
ent with the set-level analyses, increases in absolute
numbers were most evident for the orthogroups gener-
ated in the ancestral repleta group and cactus use
branches and the orthogroups generating inparalogues
in most of the terminal branches, with less marked in-
creases in the positive selection analyses. Notably the
four subsets contributing most strongly to these in-
creases were all subsets of the Primary metabolism set
(G), and three of these, Organic substance metabolic
processes, Nitrogen compound metabolic processes and
Primary metabolic process, would have obvious rele-
vance to host use, and in particular the very different
carbon and nitrogen contents of cactus over rotting fruit
diets [12].

The percentage increase data were more informative
for the smaller subsets. While they generally showed
patchier distributions across analyses and GO subsets,

Table 2 Proportions of genes with or without inparalogues that are under positive selection. 95% binomial confidence intervals are

shown for the percentages in parentheses

Species

% positively selected genes lacking inparalogues

% positively selected genes generating inparalogues

D. aldrichi 429/9615 =447 (041, 049)
348/10740 = 3.25 (0.29, 0.36)
327/8951 =3.66 (0.33, 041)
496/10070 =4.93 (045, 0.54)

371/10480 = 3.55 (0.32, 0.39)

D. mojavensis
D. buzzatii

D. hydei

D. repleta

95/1237 =768 (6.26,9.31)
21/431=4.88 (3.04, 7.35)
86/1173 =734 (591, 8.98)
36/692=521(3.67,7.13)
31/456 =6.80 (4.67, 9.51)
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Fig. 3 Summary of significant enrichments (FDR-corrected P < 0.05) of 23 sets of GO terms for biological processes in the 18 evolutionary analyses in
Fig. 2 and in the over-represented species in the six key fuzzy-c means clusters from the heat stress transcriptome analyses (Fig. 5 below)

they nevertheless did identify some relatively large ef-
fects for three subsets of Metabolite and ion transport
(P) and two subsets of Response to stimulus and stress
(W), which again could relate to the acquisition and spe-
cialisation of cactophilism.

Evolution in the D. aldrichi branch involves many functions
We were particularly interested to screen for the bio-
chemical functions implicated in the bursts of inparalo-
gue generation and positive selection in the terminal D.
aldrichi branch. The GO set-level analysis above showed
it was significantly enriched for two relatively ill-defined
sets, namely A (Cell component organisation or biogen-
esis) and I (Miscellaneous biological processes), for
inparalogue generation and positive selection respect-
ively. The subset-level analyses also showed this branch
was enriched for a wide range of terms, most of which

were also involved to some degree in one or more ana-
lyses of other branches. These analyses suggest that a
broad range of functions were involved in the evolution
occurring in this branch, with little differentiation be-
tween these genes and those involved in some of the
other branches.

To further interrogate the functions involved we then
looked at the functional annotations of the 20 genes
most strongly implicated (ie having the lowest P values)
in this branch in the positive selection screen above
(Table 3). Most of these 20 genes had regulatory or de-
velopmental functions, suggesting such functions might
have been particular targets for the positive selection in
this branch. Unfortunately we could not do the equiva-
lent analysis for the inparalogues generated in this
branch because the nature of those data prohibited any
ranking of genes in terms of strength of the effect.
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Fig. 4 GO subsets most represented in the 18 evolutionary analyses, where representation is expressed in terms of either the total number (top)
or percentage (below) of genes in the subset involved in the respective gene gain or positive selection events. Only subsets containing more
than ten genes were analysed and only those where more than ten genes (top) or more than 5% (below) were involved in the events in any
one of the analyses are shown. These values are shaded. However for those subsets included on these criteria, any non-zero involvement in
any of the other analyses is also shown, but not shaded. See the Methods section for further details of the methods used to generate this figure

Heat stress depresses transcription more in the sensitive
D. hydei than tolerant D. buzzatii

Mass bred progeny of wild-caught D. hydei and D. buzza-
tii females (an appropriate D. aldrichi strain not being
available at that time) were subject to a set of pilot heat
stresses to determine equivalent sublethal exposures. We
found that 37.0 °C and 39.5 °C respectively were the max-
imum temperatures to which we could expose adults of
the two species for 60 min without causing lethality. This
difference between the two species’ maximum sublethal
heat stress is consistent with previous reports on their
relative thermotolerances (Kellermann et al. 2012b). We

therefore carried out an experiment in the same gener-
ation in which we sampled cohorts of the two strains for
transcriptomic analysis at the start, middle and end of
their respective 60 min exposures to heat and then at five
time points through the first 24 h of a recovery phase at
25.0°C. The transcriptome analysis yielded 9109 genes
from D. hydei for each of which we recovered a total of
more than 50 RNA-Seq reads, and 9461 such genes from
D. buzzatii. Of these, 1031 and 993 respectively were dif-
ferentially expressed (DE) (FDR adjusted p-value < 0.05,
log2 fold change in expression >1 in at least two time
points) relative to their pre-exposure level of expression.
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Table 3 Top 20 genes undergoing positive selection in D. aldrichi. Orthogroups with Bonferroni corrected p-value < 1.0e” % and
Likelihood ratio test statistic estimate from aBSREL > 82. Functional information for each gene was summarised based on Flybase
descriptions for D. melanogaster orthologues, classification of the protein sequence using gene ontology and/or Pfam family
annotations. Asterisks indicate two genes which also have inparalogues in the D. aldrichi branch

D. aldrichi gene D. melanogaster orthologue Gene name

Gene function

DALD015788*  FBgn0001341 lethal (1) 1Bi (/(1)1Bi)

Transcriptional regulator during larval and
embryo stages

DALDO015521 FBgn0034583 CG10527 DUF3421; Farnesoic acid O-methyl transferase

DALDO11516  FBgn0034031 CG12963 NA

DALDO11555 FBgn0029518 CG13376 NA

DALDO014639 FBgn0038654 CG14298 Serine-type endopeptidase inhibitor activity

DALD008141 FBgn0037244 CG14647 Transcriptional regulator of protein homo-
oligomerisation

DALDO001586 FBgn0029686 CG2941 NA

DALDO15580*  FBgn0050440 CG30440 Involved in positive regulation of Rho protein
signal transduction

DALD010188 FBgn0266566 CG45105 Centrosome organising gene

DALD004399 FBgn0038921 CG6332 Testicular haploid expressed repeat

DALD000608 FBgn0036179 CG7368 Transcription factor regulating phagocytosis

DALDO007329 FBgn0045495 Gustatory receptor 28b (Gr28b) Taste receptor involved in perception of
chemical stimuli

DALD007082 FBgn0032416 Gustatory receptor 33a (Gr33a) Taste receptor involved in perception of chemical stimuli
and courtship behaviour

DALDO009511 FBgn0031275 metabotropic GABA-B receptor subtype 3 G-protein coupled receptor regulating glucose

(GABA-B-R3) metabolic processes
DALDO010061 FBgn0051025 Protein phosphatase 1c interacting protein 1 DUF4788, involved in protein phosphatase binding
(Ppil)

DALD012340 FBgn0003460 sine oculis (so) Homeobox gene regulating circadian rhythm,
reproduction and development

DALD002312 FBgn0260861 TRAPP subunit 23 (Trs23) Trafficking protein involved in vesicle-mediated
transport

DALD007827 FBgn0033055 Tubulin-specific chaperone E (Tbce) Regulates neurogenesis and neuromuscular synaptic
transmission

DALDO005587 FBgn0085362 Vitellin membrane-like (Vm/) vitellin membrane formation and dorsal/ventral axis
specification

DALD009987 FBgn0015569 o-Esterase10 (a-Est10) Regulator of imaginal disc-derived wing morphogenesis

Our first analyses of these data focused solely on the
10,443 1:1 orthologues in the two species that met the >
50 reads inclusion criterion above in either one of them.
We found 123 of these showed DE in both species, 702
did so just in D. hydei and 681 did so just in D. buzzatii.
This distribution represents about a 2 fold excess (123
cf. 63. 5; x> =124, df=1, P <0.001) of shared DE re-
sponses compared to a null hypothesis of independent
effects in the two species. However the majority of each
species’ DE genes were not shared by the other species.

Our second analysis of the DE data used fuzzy c-
means clustering of the temporal expression profiles of
all 1031 DE genes in D. hydei and 875 of those in D.
buzzatii (118 of the D. buzzatii DE genes showed erratic
profiles which did not fit within any of the clusters
formed) across all eight time points to organize them

into eight clusters, representing eight major patterns of
response over time (Fig. 5). Both species had genes in
each expression trajectory cluster but the number of
genes in most clusters varied considerably between the
two species.

Two clusters (7 and 8) contained genes that were ini-
tially downregulated but subsequently recovered to around
pre-exposure transcript abundances. Drosophila hydei
genes greatly outnumbered D. buzzatii genes (combined
across clusters, 219, or 288%, more genes) in both these
clusters, even though D. buzzatii had been exposed to a
2.5 °C higher heat shock.

Genes in the other six clusters all showed initial upreg-
ulation, but each cluster showed a distinct trajectory
through the recovery phase. Two clusters (3 and 5) con-
taining the most similar numbers of genes from the two
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Fig. 5 Fuzzy c-means clustering of genes that were differentially expressed (normalized values) in D. hydei and D. buzzatii. The y-axes are standardized
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species are not considered further. Two others con- Overall there were over 700 genes from the dis-
tained a large excess of D. buzzatii genes and were ei- criminating clusters (ie excluding clusters 3 and 5) in
ther downregulated relatively late in the recovery excess in one or other of the species, indicating a
phase (cluster 1; 76, or 75%, more D. buzzatii genes) profound difference in the transcriptional response of
or showed a bimodal response with a second burst of the two species to their respective ~ maximal sub-
upregulation late in the recovery phase (cluster 4; 189, lethal high temperature shocks.

or 485%, more D. buzzatii genes). Two clusters con-

tained a large excess of D. hydei genes which showed Heat stress changes transcription of stress response

little change through the recovery phase (cluster 2; 65, genes in D. hydei and metabolic genes in D. buzzatii

or 63%, more D. hydei genes) or ongoing upregulation  We investigated the functions of the genes that differen-
followed by a mid-recovery phase downregulation tiate the transcriptional responses of D. buzzatii and D.
(cluster 6; 185, or 298%, more D. hydei genes). hydei in the heat shock experiment above by screening
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for enrichments of the GO sets and subsets above
among the six discriminating expression trajectory clus-
ters we had identified. Specifically we focussed our at-
tention on the genes in the species in excess in each of
these clusters which did not have orthologues in the
other species in the same cluster (hereafter the discrim-
inating genes).

The discriminating genes showed significant GO set
enrichments (compared to the full gene set for the re-
spective species) in four of the clusters, one with D. buz-
zatii genes in excess and three with D. hydei genes in
excess (Fig. 3). The discriminating D. buzzatii genes in
the initially upregulated Cluster 4 were enriched for sets
F (Hydrolase activity), G (Primary metabolism) and H
(Catalytic activity), suggesting upregulation of many
metabolic enzyme activities in response to stress. Of the
three clusters with D. hydei genes in excess, the discrim-
inating genes in the initially upregulated cluster 2 were
enriched for sets A (Cell component organisation and
biogenesis), C (Development), S (Homeostasis) and W
(Response to stimulus and stress); those in the initially
upregulated cluster 6 were enriched for sets A and C
again, plus B (Cell fate determination), I (Miscellaneous
biological processes) and T (Receptor regulator activity);
and those in the initially downregulated cluster 8 were
enriched for sets K (Nucleotide sugars metabolism) and
P (Metabolite and ion binding). The enrichments for
these latter three clusters suggest impacts on a variety of
fundamental cellular processes.

Repeating these analyses at the subset-level (Fig. 6)
showed enrichments in terms of absolute numbers and/
or percentage increases for various metabolic, stress re-
sponse and occasionally developmental terms. Of the
two initially upregulated clusters with D. buzzatii genes
in excess, the discriminating genes in cluster 1 were
enriched, albeit weakly, for developmental and metabolic
functions, and those in cluster 4 were quite strongly
enriched for three metabolic functions and one stress re-
sponse function. The discriminating genes in the initially
upregulated clusters 2 and 6 which had D. hydei genes
in excess were also enriched for metabolic and stimulus/
stress response functions, but not the same ones as for
cluster 4. The discriminating genes in the initially down-
regulated clusters 7 and 8 with D. hydei genes in excess
were weakly enriched for various developmental, meta-
bolic and stimulus/stress response functions.

Thus, overall, stress response functions were more
often enriched in clusters where D. hydei genes were in
excess, whether they were initially up- or downregulated.
On the other hand, metabolic functions were more often
enriched in the four initially upregulated clusters where
D. buzzatii genes were in excess.

We also scrutinised the functions of individual genes con-
tributing most strongly to the discrimination between the
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species in the six discriminating clusters. Specifically we
looked at the ten genes showing the best fit (ie highest
membership value) to the profile for each of those clusters
in the species in excess which did not have orthologues in
the other species in the same cluster (Table 4). The ten dis-
criminating D. buzzatii genes contributing most strongly to
each of the two initially upregulated D. buzzatii-dominated
clusters principally implicated functions related to non-en-
zymatic responses to stimuli (cluster 1) and enzymes with
potential roles in detoxification (cluster 4). The ten discrim-
inating D. hydei genes contributing most strongly to each
of the two initially upregulated D. hydei-dominated clusters
principally implicated functions related to stress response
(cluster 2) and regulation and stress response (cluster 6).
The ten discriminating D. hydei genes contributing most
strongly to each of the two initially downregulated D.
hydei-dominated clusters principally implicated functions
related to regulation (cluster 7) and development (cluster
8), with both clusters also implicating stress response genes.
Thus all four D. hydei-dominated clusters involved various
stress response genes but such genes were not prominent
in either of the D. buzzatii-dominated clusters. This agrees
well with the findings from the set and subset enrichment
analyses above.

None of the 60 genes contributing most strongly to
the discrimination between species in the six discrimin-
ating clusters above were among the orthogroups gener-
ated in the cactus use branch or those generating
inparalogues or under positive selection in the D. aldri-
chi branch.

Discussion
We have found an unusually high frequency of gene
gain events in internal branches of the repleta species
group phylogeny during which the topology of our phy-
logenies suggests the ability to use cactus hosts was
acquired. The frequency of gene gains also remained
quite high in the subsequent cactus specialisation
branch, which was associated with the lost use of other
hosts but the gain of relatively high heat and desicca-
tion tolerance. It seems more likely that the gene gains
in this branch were associated with the gain of climatic
tolerance than the narrowing of host range; a loss of
function seems more likely to be linked to gene loss
rather than gene gain [50]. The rate of gene gains then
slowed considerably in the following mulleri complex
branch, before picking up again in certain terminal
branches, in particular the D. aldrichi branch, as the
species diverged in their use of different cactus hosts
and in climatic tolerance and D. aldrichi evolved the
highest level of heat and desiccation tolerance.

There is no direct precedent for our analytical ap-
proach to assessing rates of accepted duplication events
during adaptive evolution. There are many cases where
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Fig. 6 GO subsets most represented among the genes in the species in excess that lack orthologues in the same cluster in the other species in
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other species in the same cluster). Only subsets containing more than 10 genes were analysed and only those where more than ten genes (top) or
more than 5% (below) were involved in any one of the six clusters analysed are shown. These values are shaded. However for those subsets included
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the methods used to generate this figure

high numbers of duplication events for specific genes or
gene families have been associated, in several cases caus-
ally, with host shifts [34, 51, 52], or the development of
insecticide resistance, in insects [53, 54]. However our
data show for the first time a suite of duplications across
a range of genes, families and physiologies associated
with adaptive changes. Further they do so for both in-
ternal and terminal branches of the phylogeny.

We did not find unusually high frequencies of positive
selection events in the early branches of the phylogeny
with the high frequency of gene gains, but did so in the
terminal D. aldrichi branch and overall we found a posi-
tive association between the specific genes involved in
duplication events and those subject to positive selection
in the later branches. Our findings are broadly consistent

with the hypothesis that the evolution of new functions
is associated with gene duplication and subsequent neo-
functionalisation events ([55], but also see [56]).

A broad range of biochemical functions were impli-
cated both in the evolutionary changes above and in
the changes in other branches associated with the cac-
tophilic species which did not show such unusually
high rates of change. Notably Gene Ontology terms as-
sociated with the metabolism of organic and nitrogen-
ous compounds were enriched in a number of branches
associated with cactophilism. The nitrogen and second-
ary compound constitutions of rotting cacti differ
markedly from those of rotting fruits and these enrich-
ments are consistent with the idea that some of the
evolutionary changes were causally linked to changes in
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Table 4 Top 10 genes driving differential expression in six most divergent clusters between D. hydei and D. buzzatii, along with the
membership coefficient ranges of the genes in parentheses. Functional information for each gene was summarised based on
Flybase descriptions for D. melanogaster orthologues, where available, and otherwise, domain classification of the protein sequence
using gene ontology and Pfam family annotations

Gene ID Gene name Gene function

Cluster 1: Initial upregulation & late downregulation (0.51, 0.59); D. buzzatii in excess, mainly response to stimuli

DBUZ02014318 Odorant receptor 10a (Or10a) Chemoreceptor that mediates response to volatile chemicals
DBUZ02013263  Ucp4C (Ucp4Q) Protein uncouples respiration and energy dissipation

DBUZ0O2011185 (CG17387 Involved in cilium dependent cell motility

DBUZ02010006 CG11475 (DUF89) May be involved in protein methylation in response to DNA damage
DBUZ02009533 Ppmi Involved in protein serine/threonine phosphatase activity
DBUZ02005585 (CG9702 Transmembrane transporter involved in sulfate transport and regulation

of intracellular pH
DBUZ0O2002166 NA
DBUZ02001878  Gustatory receptor 97a (Gr97a) Involved in sensory perception of taste
DBUZ02001291 (CG5538 Voltage gates chloride channel
DBUZ02001235 NA

Cluster 2: Initial upregulation & then stable (041, 0.45); D. hydei in excess, mainly stress response

DHYD012352 Heat shock protein 83 (Hsp83) Heat shock protein 90 family, regulates response to abiotic stress
and circadian behaviour

DHYDO011340 NA Heat Shock protein 70 family

DHYDO011253 CG14516 Zing ion binding peptidase

DHYDO011218 frayed (fray) Protein serine/threonine kinase involved in several development
processes

DHYDO007159 Egg-derived tyrosine phosphatase (EDTP) Protein-tyrosine phosphatase-like gene involved in oogenesis and
dephosphorylation

DHYD006916 CG89%44 DNA binding zinc finger domain gene

DHYD005532 NA
DHYD003416 CG4950

DHYD001898 tramtrack (ttk) DNA binding RNA polymerase promoter involved in response to
external stimulus

DHYD000023 Cyclin E (Cych) Cyclin dependent protein kinase, positively regulates cell cycle and
morphogenesis

Cluster 4: Bimodal upregulation (0.69, 0.76); D. buzzatii in excess, mainly enzymes involved in detox

DBUZ02012733 NA Cytochrome P450

DBUZ02012084 NA S1 peptidase

DBUZ02011594 CG3699 Short-chain dehydrogenase/reductase, involved in fatty-acid
beta-oxidation

DBUZO2009194 NA Cytochrome P450

DBUZ02005738 CG31087 (DUF227) Involved in neurogenesis

DBUZ02005447 alpha-Esterase-5 (alpha-£st5) Type B carboxylesterase

DBUZ02002940 Maltase A4 (Mal-A4) Glycosyl hydrolase, involved in carbohydrate metabolism

DBUZ02002034 Tetraspanin 42 Eq (Tsp42Eq) Cell surface receptor

DBUZ02001132  (CG42335 M1 peptidase involved in proteolysis

DBUZ02000745 (CG31198 M1 peptidase involved in proteolysis

Cluster 6: Ongoing upregulation &mid-recovery downregulation (0.50, 0.53); D. hydei in excess, mainly regulation & stress response

DHYDO014524 Hira (Hira) Histone H3-H4 chaperone, involved in various replication-independent
nucleosome assembly processes

DHYD014213 ellipsoid body open (ebo) Complexes with actin, chic, and Ran-GTPase to mediate actin nuclear export

DHYDO014093 Ajuba LIM protein (jub) Protein inhibits activation of the Hippo pathway kinase
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Table 4 Top 10 genes driving differential expression in six most divergent clusters between D. hydei and D. buzzatii, along with the
membership coefficient ranges of the genes in parentheses. Functional information for each gene was summarised based on
Flybase descriptions for D. melanogaster orthologues, where available, and otherwise, domain classification of the protein sequence

using gene ontology and Pfam family annotations (Continued)

Gene ID Gene name Gene function
DHYDO11516 CG7065
DHYDO011485 maroon-like (mal) Molybdenum cofactor sulfurase involved in ommochrome biosynthesis
DHYDO010172 slow as molasses (slam) Involved in protein localisation and migration
DHYD008182 withered (whd) Involved in response to starvation, ethanol, oxidative stress and metal ions
DHYD007200 Enigma (Egm) Involved in response to endoplasmic reticulum stress; fatty acid beta-

oxidation; lipid homeostasis and cellular response to oxidative stress

DHYD006980 CG8611 Involved in unwinding RNA secondary structure
DHYD001526 Hillarin (Hif) W180-domain protein, affects cytokinesis, developing nervous system

Cluster 7: Initial downregulation & early upregulation (0.42, 0.44); D. hydei

DHYDO015984 Catalytic subunit 3B of the

oligosaccharyltransferase complex

(Stt3B)

DHYDO015297 Ror

DHYDO012423 Myocardin-related transcription factor
(Mrtf)

DHYDO009550 pasilla (ps)

DHYD008649 epithelial membrane protein (emp)

DHYD006908 NA

DHYDO006727 NA

DHYD004130 CG31522

DHYD004039 Heterogeneous nuclear
ribonucleoprotein at 87F
(Hrb87F)

DHYDO001282 CG16713

in excess, mainly regulation & stress response

Involved in post-translational protein modification

Involved in protein phosphorylation; central nervous system development
and transmembrane receptor protein tyrosine kinase signalling pathway

Transcription factor with roles in cell migration during development

A nuclear RNA binding protein implicated in splicing

Associated with autophagic cell death

Involved in fatty acid elongation
Involved in fatty acid elongation

Involved in regulation of alternative mRNA splicing and responses to
starvation and heat

Pancreatic trypsin inhibitor involved in development and signalling

Cluster 8: Initial upregulation & late upregulation (0.40, 0.43); D. hydei in excess, mainly development & stress response

DHYDO018935 short stop (shot)

DHYDO016713  Gp150 (Gp150)

DHYDO016696 acyl-Coenzyme A oxidase at 57D distal (Acox57D-d)
DHYDO014956 rugose (rg)

DHYDO012466 Laminin A (LanA)

DHYD009427 Glutathione S transferase 72 (GstZ2)

DHYD009383 CG43222

DHYD001387 Not1

DHYD001006 CG42500

DHYD000649 NA

Cytoskeletal linker molecule in the nervous system and other tissues
Transmembrane glycoprotein; regulates Notch signalling in development
fatty acid beta-oxidation

Involved in olfactory learning and short-term memory

Regulates growth and locomotion of cells

Involved in aromatic amino acid and glutathione metabolic process

Muscular development, morphogenesis, MRNA catabolic processes

Induced during the immune response of Drosophila

host use. They are also consistent with previous com-
parative genomic and transcriptomic studies of host
races of the cactophilic D. mojavensis and D. mettleri
which also associated differences in host use with such
biochemical functions [12, 14—-16].

We found that gene gains in the relatively long ances-
tral repleta group branch were enriched for Gene Ontol-
ogy terms associated with a particularly wide range of
metabolic functions. This may relate to the wide array of

host uses that evolved in various daughter lineages, ran-
ging from the cactophiles in the iydei subgroup of inter-
est here to the flower feeders in the bromeliae subgroup,
the independently evolved cactophilism in the nannop-
tera subgroup, the fungus feeders in the fasciola sub-
group and animal faeces in D. repleta itself.

A range of functions were also enriched among the dis-
proportionately high number of genes generating inpara-
logues and/or under positive selection in the terminal D.
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aldrichi branch, but the twenty genes contributing most
strongly to the positive selection events in this branch pre-
dominantly involved regulatory and developmental pro-
cesses. These events may contribute to the extreme heat
and dessication tolerance of this species.

We also carried out a comparative transcriptome ana-
lysis on freshly caught collections of another heat toler-
ant species, D. buzzatii, and the relatively heat sensitive
D. hydei in order to further investigate the potential mo-
lecular basis of the thermal tolerance differences in the
repleta group. Several hundred genes were found to re-
spond differently to comparable levels of sub-lethal heat
stress in the two species. Even though the heat shock ad-
ministered to D. hydei was less extreme in terms of
temperature than that given to D. buzzatii, D. hydei
genes more often showed initial downregulation re-
sponses than did D. buzzatii genes and more of their re-
sponsive genes had orthologues associated with stress
responses in other species. However, there was no sig-
nificant overlap between the heat responsive genes in ei-
ther species and those implicated in the gene gain and
positive selection events in D. aldrichi, suggesting that
the genes showing different transcriptional responses to
heat shock in the two repleta group species tested are
not those on which natural selection has acted to confer
extreme heat tolerance in D. aldrichi. Interestingly, there
was also no significant overlap (data not shown) between
the heat responsive genes in either species and a panel
of candidate genes associated with heat stress responses
in intraspecific comparisons in D. melanogaster [17, 18].
This could be because of differences in methodologies,
the very different ecologies of the different species, or
the phylogenetic distance between D. melanogaster and
the repleta group species studied here.

Finally we note that hundreds of genes were impli-
cated in the disproportionately high rates of gene gains
and positive selection events associated with the pheno-
typic changes above. This suggests large-scale genomic
changes underlay the phenotypic evolution, which is
consistent with the findings of the previous comparative
analyses involving the cactophilic repleta group species
([5, 14-16] and see Background). The scale of change
specifically associated with the cactus use branch is also
consistent with the scale of nucleotide differences found
in reduced representation genomic analyses of host
shifts in Rhagolites flies [57], but it is greater than those
so far associated with such analyses of host shifts in
Timema stick insects [58] or in full genome analyses of
adaptation to the otherwise toxic host Morinda citrifolia
in D. sechellia and some D. yakuba [59, 60]. In so much
as the rate of adaptation to the anthropogenic climate
change now in prospect may be limited by the rate at
which new duplication and mutation events are generated,
the scale of change in the internal cactus specialisation
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and terminal D. aldrichi branches associated with in-
creased climatic tolerance also suggests it would be be-
yond the capacity of many current species to achieve
equivalent shifts in climate niches in the timeframes now
projected for climate change.

Conclusion

Our phylogenomics analysis of fourteen Drosophila spe-
cies finds bursts of duplication and selection events as-
sociated with adaptation to arid environments. These
adaptations include both acquisition of cactophilic host
use and greater tolerance of climatic extremes. The
bursts of duplication and selection, which support the
duplication and neofunctionalisation theory of adapta-
tion, have occurred across both internal and terminal
branches of the phylogeny encompassing 6—8 million
years. The genes involved cover a wide range of physio-
logical functions and there is little overlap between them
and the genes whose transcriptional profiles after heat
stress differ between the two species.

Methods

Fly strains

The D. hydei and D. repleta strains used for genome se-
quencing were collected from Townsville, QLD, Australia
and Wandin, VIC, Australia, respectively and then inbred
in the laboratory for 17 generations of single pair full-sib-
ling mating to reduce their heterozygosity (expected in-
breeding co-efficient >0.7 [61]). The D. aldrichi strain
sequenced was originally caught in Mexico in 2002 and
was likely inbred to some degree while being maintained
in the University of California San Diego Drosophila Spe-
cies Stock Center (stock number: 15081-1251.13). It was
further inbred for two generations of sibling mating from
a single pair of flies prior to sequencing.

Individuals for the mixed life stage transcriptome se-
quencing that we used to augment the annotations
were obtained from the inbred D. hydei and D. repleta
lines above and from a wild-caught mass bred line of D.
aldrichi from Inglewood, QLD, Australia. RNA was
prepared from a mixture of six life stages (embryos,
first, second and third instar larvae, pupae and adults,
combined in approximately equal weight amounts) for
each species.

Recently collected strains of D. hydei and D. buzzatii
were used in the thermal stress transcriptomics experi-
ment. The offspring of 50 field females were pooled to
establish a mass bred population for each species. The
D. hydei females were collected from Pascoe Vale, Mel-
bourne, VIC and the D. buzzatii from Inglewood, QLD,
Australia. The mass bred strains were maintained at 25°
C for one generation prior to the experiment.
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Genome sequencing and assembly

Sequencing

Adult females from the inbred D. repleta, D. hydei and D.
aldrichi strains were harvested and DNA extracted from
heads to minimise contamination with DNA from their
gut flora. Six libraries were then prepared from the DNA
from each species for sequencing on an Illumina HiSeq
2000 platform; three paired-end libraries spanning 250 bp,
500 bp and 800 bp using 150 bp or 100 bp paired-end se-
quencing runs, plus three long insert mate-pair libraries
with insert sizes of 2kbp, 5kbp and 10kbp using 49 bp
paired-end runs. All library preparation and sequencing
were carried out at Beijing Genomics Institute (BGI),
Shenzhen. At least 35Gb of raw sequence data were ob-
tained per species, yielding a final read coverage of ~210x
of the estimated genome size.

Assembly

The raw paired-end and mate-pair reads were assessed
using FastQC [62] and novel contaminant sequences iden-
tified using K-mer counting with Jellyfish [63] to provide
inputs for trimming and filtering using Trimmomatic
[64].The insert size for each library was then re-estimated
by aligning the trimmed reads to the D. mojavensis gen-
ome [see Additional file 1: Text S2]. Quorum [65] was
then used to correct the trimmed reads for D. hydei and
D. repleta while BFC [66] was used for D. aldrichi (be-
cause higher levels of heterozygosity were expected for
this species). The corrected reads were then assembled
using the MaSuRCA assembler [67] and contigs extended
and scaffolded using the SSPACE 2 scaffolder [68].

The scaffolded genomes were further improved by local
realignment and gap-filling carried out using multiple
rounds of Pilon [69], with reads aligned using SNAP
aligner [70], until no iterative gains were observed. The
final assemblies were then benchmarked using the BUS
CO pipeline [29] following the authors’ instructions.

Repeat sequence analysis

Tandem repeats and transposable elements (TEs) in D.
hydei, D. repleta, D. buzzatii and D. aldrichi were iden-
tified following the strategy of Zhang et al. [71]. TRF
[72] and RepeatMasker [73] were used to characterise
tandem repeats; RepeatMasker was used with the
Repbase [74] database of known repeat sequences in D.
melanogaster to identify repeats shared with the latter
species; and previously undescribed repeats were identi-
fied using LTR_FINDER [75], PILER [76] and RepeatSc-
out [77]. Repeat proteins were also identified using
RepeatProteinMask (version 3.2.2) as implemented in
RepeatMasker. All the repeat sequences in each species
identified by the different methods were combined into
a final repeat library and categorized in a hierarchical
way, as per [71].
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Genome annotation

Transcriptome sequencing for gene prediction

We made RNA-Seq transcriptomes from mixed life stage
RNA preparations of D. repleta, D. aldrichi and D. hydei
on the Illumina HiSeq 2000 platform to assist in gene
annotations. The RNAs were prepared using the Zymo
Direct-zol™ RNA extraction kits (Zymo Research, Irvine,
USA). A standard RNA-Seq library was prepared for D.
hydei, while strand-specific libraries were prepared for
D. repleta and D. aldrichi according to Borodina et al.
[78]. All three libraries were prepared by BGI following
standard Illumina protocols. Hundred bp unstranded
paired-end RNA-Seq sequencing yielded 4Gb of data for
D. hydei and 3Gb each for D. repleta and D. aldrichi.
These data were then filtered to remove reads which had
more than 10% of bases unknown, more than 40 bases
with Phred scores less than 7, or >20% of the sequence
comprising adaptor sequence. This left a high quality
read set of ~2 Gb for D. hydei and D. repleta and ~ 3
Gb for D. aldrichi.

Annotation of gene models

We identified, evaluated and collated protein coding and
putative non-coding genes in D. aldrichi, D. buzzatii, D.
hydei and D. repleta using ten sets of RNA-Seq data plus
homologue-guided and ab-initio based gene prediction
as detailed in Additional file 1: Text S2. The repeat se-
quences were first used to soft-mask the genome, upon
which we mapped 2315 single copy D. melanogaster
genes (248 using CEGMA [28] and 2067 from Ortho
DB7 [79] using Exonerate [80]) and the D. melanogaster
and D. mojavensis proteomes [80] to generate splice-
aware alignments.

The resulting splice junctions were used to guide
two-pass mapping of RNA-Seq data onto the respective
genomes using GMAP/GSNAP (v 2014-08-20; [81] and
STAR aligner (v 2.4.0; [82]. The RNA alignments were
then used to annotate transcripts using StringTie [83] and
genome-guided Trinity [84], while trimmed RNAseq data
were used for de novo assembly of the species’ transcripts
using Trinity. All three transcript sets were collated using
PASA2 [85] to create a comprehensive transcript database
and high-quality training dataset (GTrainSet) for training
and subsequent annotation of genes using four ab-initio
predictors; Genemark-ET [86], Glimmer [87], Augustus (v
3.0.2; [88] and SNAP [89].

All ten sets of gene models created were finally passed
to EvidenceModeler [90] to create a comprehensive whole
genome annotation. Greatest weight was given to String-
Tie (15) followed by GTrainSet (12) and homology-based
(11) evidence, and least to the ab initio predictions (2—4).
The gene set was then updated to annotate alternative
splice events, 3" and 5" UTRs and to refine gene boundar-
ies using RNA-evidence in PASA2. Finally, nested genes
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were added using the homology matches in D. melanoga-
ster and D. mojavensis, creating the official gene sets
(OGSs).

Comparative genomics

Classification of orthologues

The Orthonome pipeline (http://www.orthonome.com/;
[24, 91]) was applied to sets of 1:1 orthologues and
orthogroups extracted from the OGSs. The pipeline also
identified gene birth events and inparalogues. Only the
longest isoform for each gene in each genome was used
in this analysis. Note that while Orthonome partitions
the output into orthologues, inparalogues and gene
births, the number of inparalogues will be inflated to a
degree by artefactual inparalogues — which are biologic-
ally orthologous genes where one member is missing
from the data or where the duplication event occurred
so close to a speciation event that it could not be distin-
guished from two independent post-speciation duplica-
tion events.

Three Orthonome analyses were carried out, the first
for calculating the phylogeny and the remaining two for
comparative genomics. These were (i) one using the
twelve Flybase genomes [92] (D. ananassae, D. erecta,
D. grimshawi, D. melanogaster, D. mojavensis, D. persi-
milis, D. pseudoobscura, D. sechellia, D. simulans, D. vir-
ilis, D. willistoni and D. yakuba), eight modENCODE
genomes (https://www.hgsc.bcm.edu/arthropods/droso-
phila-modencode-project; D. biarmipes, D. bipectinata,
D. elegans, D. eugracilis, D. ficusphila, D. kikkawai, D.
rhopaloa and D. takahashii) and our newly annotated D.
aldrichi, D. buzzatii, D. hydei and D. repleta genomes,
(ii) one using this set minus the eight lesser quality mod-
ENCODE genomes, and (iii) one just using the five
repleta species and D. melanogaster.

Species phylogeny

The orthologues obtained from analysis (i) above led to the
identification of 4935 orthogroups. The orthogroups were
then filtered to keep only those that satisfied the following
criteria: (1) none of the species had any traceable duplica-
tions (i.e. best blast hit was always an orthologue), (2) rela-
tively slowly evolving, with no genes presenting a Ka/Ks >
1 (see below for calculation method), (3) > 200 amino acids
in length (unless all members of the orthogroup were
within five residues length of each other), and (4) all genes
within a 1.5 median absolute deviation from the median
length of the orthogroup. The nucleotide coding sequences
from the 1802 orthogroups retained were used to con-
struct both a concatenated species phylogeny using Fas-
tTree2 [39] with 1000 internal boot-strap replicates and a
consensus tree using [Q-Tree [32] allowing a free rate
model and with each gene treated as its own partition. The
two phylogenies had the same topology but the IQ-Tree
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tree was chosen for all subsequent analyses. Divergence
time was estimated with MEGA7 (Rel-Time) [93] based on
a calibration for Drosophila obtained according to Obbard
et al. [94].

We also constructed two other trees to interrogate
more closely the D. hydei — D. repleta relationship. One
was another IQ-Tree based tree and the other was a
*BEAST2 Bayesian tree [40]. Both were constructed
using the inferred amino acid sequences for the 100 best
genes (< 1% gappyness and no compositional heterogen-
eity; x’p-value > 0.05). Concordance factors [41] and par-
titioned coalescence support scores [42] were then used
to compare the support for the different phylogenies,
finding the *BEAST2 tree performed less well than the
others on both measures.

Functional annotations

We first augmented the functional annotations for D.
melanogaster genes obtained from FlyBase using Inter-
ProScan 5 (January 2016 release) [30]. These updated
annotations were transferred to D. aldrichi, D. buzzatii,
D. hydei and D. repleta based on orthologous relation-
ships estimated using Orthonome (see above). Func-
tional annotation of the inparalogues remaining was
carried out by identifying the phylogenetically closest
orthologue or inparalogue from D. melanogaster while
de novo annotation was carried out for gene births using
InterProScan 5. Gene interaction networks were also
transferred from D. melanogaster using orthology [95].
FlyBase Gene Group annotations were transferred to the
repleta species in a similar fashion.

Evolutionary rate analyses
Branch-site model tests (adaptive branch-site random
effects likelihood; aBSREL) were carried out to identify
specific lineages in the phylogeny (both terminal and in-
ternal branches) in which orthogroups identified by
Orthonome may have been under positive selection.
This analysis was carried out using all the FlyBase ge-
nomes and the four repleta group genomes annotated in
the current study. We assumed fixed branch lengths
based on the phylogeny constructed above and calcula-
tions used the HYPHY package [48]. Each branch in the
repleta lineage was analysed and a False Discovery Rate-
(FDR-) corrected X2P—value cut-off of < 0.05 was used.
As per O’'Toole et al. [49], the terminal branches were
also analysed to compare the proportions of genes under
positive selection in the branches that had versus had
not generated inparalogues.

Comparative thermal stress transcriptomics for D. hydei
and D. buzzatii

The goal of this experiment was to compare the tran-
scriptional responses to thermal stress of species that
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differed in high temperature tolerance. Mass-bred popu-
lations initiated from recently-collected flies were used
for these experiments to minimise issues with changes
in gene expression during laboratory adaptation. We also
conducted pilot studies on these mass bred populations
to identify the most suitable testing temperatures (see
Additional file 1: Text S2 for details). These were found
to be 37 °C for D. hydei and 39.5°C for D. buzzatii, con-
sistent with previous findings of their differences in ther-
mal tolerance [3].

For the stress assays, three independent replicates,
each of ten virgin adult females aged two days since
emergence, were harvested at each time point indicated
in Additional file 2: Figure S3 and snap-frozen in liquid
nitrogen. One time point was frozen immediately prior
to exposure (used as the control for differential expres-
sion comparisons), one half way through the exposure,
one immediately after the exposure and five at defined
intervals over the next 24 h. The snap-frozen material
was stored at — 80 °C until RNA extraction (pooling all
ten flies in each replicate) using the Zymo Direct-zol™
RNA extraction kits (Zymo Research, Irvine, USA).
RNA-Seq libraries were prepared and sequenced with
the Illumina HiSeq 2000 platform as above. All 48 librar-
ies (8 time points and 3 replicates for each species) were
run on the same instrument in the same flow cell.

The sequence reads for each species were filtered for
low quality and adapter sequences and trimmed with
Trimmomatic [64] as above. The cleaned reads were
then aligned to their respective genomes using a two-
pass strategy in STAR aligner (v 2.4.2a) [82], which also
produced the read counts matrix for each alignment.
These outputs were combined to create an expression
value matrix for each gene across all eight time points as
input for subsequent analyses.

Counts for all genes with more than 50 reads (thresh-
old for genes with low expression) were normalised
across samples using the trimmed mean of M-values
method [96] and converted to log2 counts per million
values (log2cpm) with associated quality weights using
the voom-limma pipeline [97]. Batch effects due to
manual handling were corrected with ComBat [98]
against an intercept only model. Changes in gene ex-
pression over time were then modelled in limma. Genes
with a significant difference in expression relative to
the first time point, ie the one immediately prior to the
treatment, (FDR) adjusted P value less than 0.05 and a
log2 fold-change in expression greater than 1) in at
least two of the subsequent time points were consid-
ered to be heat responsive.

To identify common patterns of expression among dif-
ferentially expressed genes, the expression of each gene
across the different time points was first standardised
(independently in each species) to have a mean of 0 and
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standard deviation of 1. The standardised expression
values for both species were then combined and sub-
jected to fuzzy c-means clustering [99]. Trials with
from four to 20 clusters yielded the highest fuzzy
means partitioning coefficient with eight clusters, so
further analysis was based on those eight clusters.
Membership exponent values were then calculated for
each gene in each cluster to identify the genes best
explaining the cluster pattern across time points. The
expression patterns for the genes with the highest
membership exponent in each cluster were then plot-
ted to visualise trends. The core genes of each cluster
(membership value greater than 0.5) were used for the
functional enrichment analysis below.

Functional enrichment analyses

Functional enrichment of gene ontologies was carried out
after first clustering the 47,676 GO terms ([31]; release:
2016-11-03) into 43 mutually exclusive sets using a Lou-
vain clustering method [100] and allocating semantic simi-
larities as edge weights between connected hierarchical
GO terms. We used 23 of these sets that represent bio-
logical processes as the framework for our enrichment
analyses. Additional file 2: Table S5 summarises the con-
stitution of these sets in terms of the major subsets within
them. For each analysis, the respective gene lists were
tested for enrichment of each GO term based on fre-
quency with Goatools (https://github.com/tanghaibao/
goatools) and the GO terms obtained as significantly
enriched were then compressed using REVIGO [101] and
assigned to the sets and subsets above. The 23 sets were
given names which summarised the dominant highest
level GO term(s) within them, while the subsets sim-
ply took the names of the dominant highest level GO
term (which was always a lower level than in the sets)
within them.

Additional files

Additional file 1: Text S1. Phylogenetics of sophophoran subgenus.
Text S2. Detailed materials and methods for genome assembly and
annotation. (DOCX 49 kb)

Additional file 2: Figure S1. Overlap between the orthogroups generating
inparalogues in the different species. Figure S2. Overlap between
orthogroups belonging to genes under positive selection in each
repleta group species. Figure S3. Scheme for heat stress and recovery assay.
Table S1. Scaffold and contig length based statistics as well as results from
BUSCO genome assessment using the dataset for the five assembled repleta
group genomes and D. melanogaster. Table S2. Repeat content analysis for
the six species analysed in this study, characterising transposable elements
as well as tandem repeats. Table S3. Genome annotation statistics for the
five assembled repleta group genomes and D. melanogaster. Table
S4. Number of pairwise orthologues between D. melanogaster and
the five repleta species, plus the previously published annotation of
D. buzzatii. Table S5. Sets of functional terms describing hierarchical
grouping of gene ontology terms and the number of genes in
Drosophila melanogaster within each set. (DOCX 301 kb)
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