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Abstract

Task- and stimulus-based neuroimaging studies have begun to unveil the central autonomic

network which modulates autonomic nervous system activity. In the present study, we

aimed to evaluate the central autonomic network without the bias constituted by the use of a

task. Additionally, we assessed whether this circuitry presents signs of dysregulation in the

early stages of Parkinson’s disease (PD), a condition which may be associated with dysau-

tonomia. We combined heart-rate-variability based methods for time-varying assessments

of the autonomic nervous system outflow with resting-state fMRI in 14 healthy controls and

14 de novo PD patients, evaluating the correlations between fMRI time-series and the

instantaneous high-frequency component of the heart-rate-variability power spectrum, a

marker of parasympathetic outflow. In control subjects, the high-frequency component of

the heart-rate-variability power spectrum was significantly anti-correlated with fMRI time-

series in several cortical, subcortical and brainstem regions. This complex central network

was not detectable in PD patients. In between-group analysis, we found that in healthy

controls the brain activation related to the high-frequency component of the heart-rate-vari-

ability power spectrum was significantly less than in PD patients in the mid and anterior

cingulum, sensorimotor cortex and supplementary motor area, insula and temporal lobe,

prefrontal cortex, hippocampus and in a region encompassing posterior cingulum, precu-

neus and parieto-occipital cortex. Our results indicate that the complex central network

which modulates parasympathetic outflow in the resting state is impaired in the early clinical

stages of PD.
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Introduction

While the brainstem centers that regulate the autonomic nervous system (ANS) are well

known from animal studies, less is known about the cerebral regions involved in central con-

trol of ANS functions in humans. Still, animal studies have converged towards proposing the

existence of a central autonomic network (CAN) that encompasses the insula, medial prefron-

tal cortex, cingulum, thalamus and amygdala and is involved in integrating and regulating

autonomic function [1]. In more recent years, non-invasive neuroimaging methods have

allowed to evaluate central autonomic centers in humans by combining the analysis of auto-

nomic outflow metrics like heart-rate-variability (HRV) (defined through analysis of the time

intervals between two consecutive R waves in the electrocardiogram (ECG)), with Positron

Emission Tomography (PET) or functional magnetic resonance imaging (fMRI). These studies

have highlighted that the CAN is more extended than previously hypothesized, possibly

involving a number of cortical, subcortical and cerebellar regions (for reviews, see [2, 3]).

In these studies, HRV changes have been correlated with brain fMRI/PET responses during

several tasks and stimuli that are known to involve the ANS (for reviews, see [2, 3]). However,

the results of such studies are selectively dependent on the type of the task or stimulus

employed. Therefore, a task and stimulus-free approach to CAN evaluation is desirable. To the

best of our knowledge, only one previous seed-based work [4] has investigated functional con-

nectivity in conjunction with HRV in the resting state. In this study, which was focused on

connectivity of the dorsal anterior cingulate cortex and amygdale in normal subjects, a number

of cortical region have been found to increase their functional connectivity with the seed

regions during states of elevated HRV.

Symptoms of cardiovascular dysautonomia are common in Parkinson’s disease (PD) and

have a significant impact on quality of life and daily activities of PD patients [5, 6]. While dys-

autonomia is more frequent in the advanced stages of the disease, it can also occur in de novo

(drug naïve) patients [7, 8]. This is in agreement with studies in PD patients that have demon-

strated the presence of Lewy bodies and degenerative changes in various autonomic regulatory

regions [9–12].

Previous studies have also described HRV changes in PD, both in advanced disease stages

[13–15] and in de novo patients [16, 17]. In this context, using a probabilistic point-process

framework, dynamical HRV measures [18] able to discriminate subtle ANS dysfunction in PD

have been recently developed [19–21].

In the present study, we aimed at a) performing a whole brain evaluation of the neural cor-

relates of ANS modulation without the bias constituted by the use of a task or stimulus or the

constraint of a seed-based analysis, and b) assessing whether this brain circuitry is dysregulated

in the early stages of PD, when patients are free of treatment-related confounds in ANS func-

tion. To this purpose, we have combined, for the first time, dynamical HRV-based methods

for time-varying assessments of ANS outflow with resting-state fMRI in 14 healthy controls

and 14 de novo (drug naïve) PD patients, and have evaluated the correlations between fMRI

time-series and the instantaneous high-frequency (0.15–0.50 Hz) component of the HRV

power spectrum (HF-HRV), a parasympathetic metric [22].

Materials and methods

Subjects

The Ethics Committee of Area Vasta Nord Ovest (CEAVNO) approved this research. Fourteen

(3 women and 11 men, age 63.7±11.1 years, mean ± standard deviation) patients with de-novo

parkinsonian syndrome consecutively referred to a Neurology Unit for the evaluation of PD
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over a 24-month interval (from June 2012 to June 2014) were recruited in this prospective

study. Clinical evaluation included history of disease-related symptoms and signs and neuro-

logical examination. All subjects were clinically screened for cardiovascular and gastrointesti-

nal symptoms, urinary and sexual dysfunction, thermoregulatory changes and pupillary

abnormalities. Signs and symptoms of autonomic dysfunction suspicious of atypical Parkin-

sonism were considered exclusion criteria. All patients satisfied the criteria for the diagnosis of

PD of the UK Parkinson’s Disease Society Brain Bank [23]. Severity of the disease was evalu-

ated by the Hoehn–Yahr (HY) ranking scale [24] and the Unified Parkinson’s Disease Rating

Scale (UPDRS) [25]. PD patients were screened for depressive features by the Geriatric

Depression Scale Short Form [26]. Diagnosis of depression was made according to DSM

IV-TR (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text-Revision)

criteria [27]. A 123IFP-CIT SPECT scan was performed to confirm nigrostriatal degeneration.

After clinical evaluation, all patients underwent MRI examination; then, the dopaminergic

treatment was started. Patients were clinically assessed every six months. The follow-up was at

least one year [mean ± standard deviation (SD), 2.4 ± 0.4 years] in order to evaluate the treat-

ment response and the appearance of signs of atypical parkinsonism.

Fourteen age- and gender-matched healthy subjects (3 women and 11 men, age 64.7±9.6

years, mean ± SD) with no history of neurological diseases and normal neurological examina-

tion were recruited as controls. No significant difference in age was found between the two

groups (p = 0.93, Mann-Whitney test, null-hypothesis of equal medians) and the same propor-

tion of gender was observed.

None of the patients and controls had any disease (except PD in the patient group) or took

drugs known to affect the autonomic nervous system. All subjects gave their written informed

consent to participate in the study. The clinical features of PD patients are detailed in S1 Table.

MRI examination and physiological monitoring

MRI was performed on a 1.5 T MR scanner system (Magnetom Avanto, software version

Syngo MR B17, Siemens, Erlangen-Germany) equipped with a 12-element matrix radiofre-

quency head coil and SQ-engine gradients. The SQ-engine gradients had maximum strength

of 45 mT/m and slew rate of 200 T/m/s.

All subjects underwent high resolution 3D T1-weighted imaging and resting state fMRI

(rsfMRI), the latter with simultaneous cardiorespiratory monitoring. T1-weighted MR images

were acquired with an axial high resolution 3D sequence (Magnetization Prepared Rapid Gradi-

ent Echo, MPRAGE) with repetition time (TR) = 1900 ms, echo time (TE) = 3.44 ms, inversion

time (TI) = 1100 ms, flip angle = 15˚, slice thickness = 0.86 mm, field of view (FOV) = 220

mm×220 mm, matrix size = 256×256, number of excitations (NEX) = 2. A fluid attenuated

inversion recovery (FLAIR) sequence (TR = 9000 ms, TE = 88 ms, TI = 2500 ms, slice thick-

ness = 3 mm, FOV = 172.5 mm × 230 mm, matrix size = 154×256, turbo factor = 16, NEX = 1)

was also obtained in the axial plane. For the rsfMRI experiments, we used a T2�-weighted echo-

planar imaging (EPI) sequence (TR = 2130 ms, TE = 40 ms, flip angle = 90˚, slice thickness = 5

mm; FOV = 256 mm×256 mm, matrix size 64×64; number of slices = 32; interleaved slice acqui-

sition) exploiting the blood-oxygen-level-dependent (BOLD) effect. Two hundred and thirty

volumes were acquired for a total acquisition time of about 8 minutes and 10 seconds. The slices

were oriented along and parallel to the bi-commissural plane and covered the entire brain. Dur-

ing rsfMRI acquisition the subjects were instructed to lie still with their eyes closed and not to

think of anything in particular. Cushions were used to minimize head motion during the scan.

Physiological signals (pulse oximetry and respiratory signals) for HRV assessment were

recorded simultaneously with the rsfMRI examination through a built-in Siemens
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physiological measurement unit. Patients were instrumented with a peripheral pulse sensor on

the left hand index finger and a respiratory cushion in contact with the upper abdomen

attached to the patient via a respiratory belt. Pulse and respiratory signals were sampled at 50

Hz. In order to provide enough signal time for initializing the point process model (see

"Dynamical HRV assessment" section below), physiological recordings were started 2 minutes

before the beginning of the rsfMRI sequence.

Synchronization of DICOM images with physiological recordings was carried out by using

time-stamps derived from the scanner clock, stored both in DICOM images and in physiologi-

cal log files.

Data analysis

Physiological signals and MRI images were preprocessed separately and successively entered

into joint rsfMRI-HRV analysis (see below and Fig 1).

Dynamical HRV assessment. R–R intervals were obtained annotating pulse data through

automated methods [28]. The absence of detection errors or ectopic beats was ensured by the

application of an effective point process-based artifact removal method [28], as well as visual

inspection. Through this approach, over all records, 99.9282% of total beats were retained for

further analyses (i.e., 55 beats were corrected).

We then applied a linear point-process method [18] to compute instantaneous estimates of

heart rate (HR) and HRV defined in the time and frequency domains. Briefly, this approach

models the stochastic nature of heartbeat generation considering a physiologically plausible,

history-dependent, inverse-Gaussian process of ventricular repolarization [18]. More specifi-

cally, the mean value of the inverse-Gaussian probability function explains the dependence on

past R–R intervals as a linear function of the past k samples. This allows us to use the k regres-

sive coefficients to estimate the dynamics of the sympathetic and vagal influences on the sino-

atrial node of the heart, as well as the total spectral power as decomposed in the high frequency

(HF, 0.15–0.5 Hz) spectral component. Of note, all the time-varying HRV measures can be

estimated at arbitrary time resolution, and can be therefore accurately aligned to fMRI vol-

umes in time.

In this study, as a reference measure of HR we have considered the instantaneous HR

index, i.e., the mean of the inverse-Gaussian function associated with the inverse variable of

the R-waves time occurrences. The instantaneous HF-HRV index has been considered to esti-

mate the vagal influence on the sinus node. Both HR and HF-HRV series were estimated by a

fixed model with a regression of order k = 8, determined after preliminary goodness-of-fit

analysis of the data, and were updated every Δ = 5 ms. In order to be synchronized with the

fMRI TR series, the series were further low-pass filtered and resampled at the proper time

points. Before being used as regressors in the fMRI analysis, the HF-HRV power was filtered

using a 12-span local linear regression with weighted linear least squares. Subject specific

median (across time) HF-HRV values were compared group-wise using nonparametric statis-

tics (Mann-Whitney U test).

Custom T1-weighted template construction. In order to improve co-registration accu-

racy within our specific population, we build a custom T1 template specific to this study. This

involved using all T1-weighted images which, using the ANTs package [29], were co-registered

and averaged iteratively [30], where the group average was recreated at the end of each itera-

tion. The procedure was based on symmetrical diffeomorphic mapping (and in particular the

SyN tool). In this study, we employed five total iterations [31, 32].

RsfMRI pre-processing. We analyzed rsFMRI data were analyzed in FEAT (FMRI Expert

Analysis Tool), version 6.00, part of FSL (FMRIB’s Software Library, www.fmrib.ox.ac.uk/fsl)
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PLOS ONE | https://doi.org/10.1371/journal.pone.0210324 January 17, 2019 4 / 17

http://www.fmrib.ox.ac.uk/fsl
https://doi.org/10.1371/journal.pone.0210324


- Symultaneous rsfMRI volumes acquisition 
and physiological monitoring 
- Synchronization retrieval of physiological 
recordings to DICOM images

MRI examination and physiological monitoring

time

Pulse oxymetry

Respiratory signal

- RETROICOR
- conventional preprocessing

rsfMRI preprocessing
- Preprocessing
- Point process 
- HF-HRV

Dynamical HRV analysis

rsfMRI/HRV joint analysis
- First level

• Design covariates:
   - RVHRCOR time-series

Single subject (HF-HRV regressor)

β > 0 β < 0

- Second level

• Design covariates:
   - age and gender

Within-group: HC

βHC > 0
(S2 Tab, Fig 3)

Between-groups

βHC > βPD (S4 Tab, Fig 5)

Within-group: PD patients

βPD> 0 (S3 Tab, Fig 4)

βHC < 0

βPD < 0

βHC < βPD

BOLD
signal

HF-HRV regressor

β<0

Linear regression of fMRI data and HRV

One-sample t-test 
for within-group

Two-sample t-test 
for between-groups

Fig 1. Architectural diagram of data analysis. Resting-state fMRI and physiological signals have been acquired

simultaneously: a separate pre-processing is followed by a joint rsfMRI/HRV analysis. β is the effect of HF-HRV while

controlling for RVHRCOR regressors in the first level GLM. βHC and βPD are the mean brain activity relating to

HF-HRV regressor while controlling for age and gender in the healthy controls (HC) and PD patients group,

respectively.

https://doi.org/10.1371/journal.pone.0210324.g001
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and AFNI, (latest release on July 2nd 2014). Preprocessing involved: (1) removal of the first 5

dummy scans; (2) regressing-out of cardiac and respiratory artifacts by using retrospective

image correction (RETROICOR) [33]; (3) motion correction using MCFLIRT [the mean

(across voxels) absolute displacement (each time point with respect to the middle-time point

rsfMRI image) was less than 1.15 mm, i.e. less than half a voxel] [34]; (4) slice-timing correc-

tion using Fourier-space time-series phase-shifting; (5) high-pass temporal filtering (Gauss-

ian-weighted least squares straight line fitting) with cut-off of 100 s; (6) spatial smoothing (10

mm FWHM); (7) grand-mean intensity normalization with no additional temporal low-pass

filtering [35].

RsfMRI images were then co-registered to the custom T1 template through affine bound-

ary-based registration (BBR) [36] in FLIRT. The individual T1-weighted images were co-regis-

tered to the custom T1-weighted template using an affine transformation [34] which was then

further refined using non-linear transformations in FNIRT [37]. All above transformations

were concatenated into a single warp which took subject-specific rsfMRI images into the cus-

tom template space for statistical analysis (see below) in a single step. Additionally, we co-reg-

istered the custom template to the standard-space Montreal Neurological Institute (MNI) 152

brain using an affine and non-linear transformation [37]. These transformations were used for

atlas-based localization purposes of statistically significant clusters (see below).

Joint RsfMRI/HRV analysis. To establish the neural correlates of ANS in every subject,

we used time-resolved estimates of parasympathetic outflow (HF-HRV) as an explanatory var-

iable in first-level analysis (Fig 2). Additional physiological noise was modeled using combined

respiratory variation and heart rate correction (RVHRCOR) [35, 38] as nuisance covariates.

The respiratory variation (RV) time series was calculated as the standard deviation of the respi-

ratory signal over a 6s sliding window centered on each TR [35], whereas the HR time series

were calculated from the RR series extracted above as the inverse of the average beat-to-beat

interval in a 6s sliding window [35]. The HF-HRV regressor was formed by convolving the

HF-HRV time-series with a double gamma hemodynamic response function. We tested both

positive and negative correlations between rsfMRI time-series and HF-HRV regressor within

the same general linear model (GLM).

Fig 2. Illustration of the significance of dynamic HF-HRV estimate. At each point in time, the value of the HF-HRV

signal (top pane) is equivalent to the power spectral density of the RR series (RR-PSD) which, in a classical approach, is

calculated by integrating the Fourier-derived RR-PSD in the HF band (depicted in insets). The dynamic HF-HRV

signal is synchronous with the measured BOLD signal (bottom pane).

https://doi.org/10.1371/journal.pone.0210324.g002
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To then test the hypothesis of group-wise correlations (as above) both in healthy subjects

and in PD, we employed one-sample t-test and a mixed effects model implemented in FLAME

(FMRIB’s Local Analysis of Mixed Effects) [39], including age and gender as nuisance

covariates.

Additionally, we compared (healthy controls vs. PD patients), i.e. the regression coefficients

(β’s) from first-level analysis. This was accomplished by between-group analysis using

unpaired t-test and a mixed effects model using FLAME [39], again including age and gender

as nuisance covariates.

In each analysis, Z (Gaussianized T/F) statistic images were thresholded using clusters

determined by Z>2.3 value and a (corrected) cluster significance threshold of p<0.05 [40].

Finally, we reported in-sample effect size of our primary outcome, i.e. of the between-group

analysis, following the American Psychologist Association (APA) guidelines [41]. Given that

unstandardized effect size (i.e. the difference between regression coefficients fitted while con-

trolling for nuisance covariates) could be cumbersome to interpret, we chose to report a stan-

dardized voxel-wise effect size through Cohen’s d [42].

All group analyses were performed in the custom T1-weighted template space and the result-

ing thresholded Z statistic images were transformed into MNI space by applying the affine

transform and the nonlinear warp described above. Spatial localization of significant clusters at

group analyses was performed using the automated anatomical labeling (AAL) atlas [43].

Results

Within-group analyses

Healthy control group. We found that HF-HRV was significantly anti-correlated with

rsfMRI time-series in several areas (S2 Table and Fig 3), encompassing, bilaterally, anterior,

Fig 3. Statistical map (Z>2.3, p<0.05 corrected) showing that brain activation is significantly anti-correlated to

HRV-based assessment of parasympathetic outflow (HF-HRV) in a group of 14 healthy controls.

https://doi.org/10.1371/journal.pone.0210324.g003
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middle and posterior cingulum, insula, sensorimotor cortex, supplementary motor area

(SMA), hippocampus and parahippocampal cortex, basal ganglia, pons, cerebellar vermis and

hemispheres as well as a number of cortical gyri (S2 Table). No significant positive correlations

were observed.

De novo PD group. We found that HF-HRV was significantly anti-correlated with

rsfMRI time-series in right temporal superior, middle and inferior gyri, temporal pole, frontal

middle, inferior and middle orbital gyri, olfactory gyrus, angular and supramarginal gyrus,

Rolandic operculum, occipital inferior gyrus, caudate, putamen and pallidum (S3 Table and

Fig 4). No significant positive correlations were observed.

Between-group analysis

In healthy controls, the brain activation related to HF-HRV was significantly less than in de

novo PD patients in cerebellar vermis and hemispheres, bilateral middle cingulum, anterior

left cingulum, bilateral sensorimotor cortex, bilateral SMA, right insula, right putamen, bilat-

eral precuneus, left posterior cingulum, left parietal inferior gyrus, right supramarginal gyrus,

left calcarine gyrus, bilateral lingual and fusiform gyrus, right temporal superior gyrus and

Heschl gyrus, right frontal superior gyrus and right hippocampus (S4 Table and Fig 5).

Discussion

Neural correlates of ANS in healthy subjects

By combining a point-process framework for dynamical HRV assessment with fMRI analysis,

we found that in control subjects several cortical, subcortical, cerebellar and brainstem regions

modulate cardiovascular parasympathetic outflow in the resting state.

Previous studies in animal and human have consistently indicated the vast majority of these

areas as constituents of the CAN [2, 3, 44]. Other regions, however, and in particular the occip-

ital cortex, have been less frequently reported in this context [2] and their involvement in

HRV modulation might be a peculiarity of the resting state condition.

Interestingly, both in healthy controls and PD patients, we consistently found an anti-corre-

lation between rsfMRI time-series and HF-HRV in every part of the network of brain areas

Fig 4. Statistical map (Z>2.3, p<0.05 corrected) showing that brain activation is significantly anti-correlated to

HRV-based assessment of parasympathetic outflow (HF-HRV) in a group of 14 de novo PD patients.

https://doi.org/10.1371/journal.pone.0210324.g004
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significantly associated with ANS activity. This could suggest that in the resting state, when

parasympathetic (“rest and relax”) activity dominates over sympathetic (“fight or flight”) auto-

nomic responses, a physiological decrease of brain activity in the CNS areas related to HRV

modulation takes place, possibly reflecting lower physiological requests.

Neural correlates of ANS dysfunction in PD

The anti-correlations between rsfMRI time-series and HF-HRV were weaker in PD patients.

This differential behavior of the CAN in PD patients as compared to controls could represent

either a compensatory attempt to maintain homeostasis, or an a priori pathologic functional

activity, or both. Our results suggest that a disarrangement of central autonomic control, inde-

pendent of treatment, already occurs in the early clinical stages of the disease.

To the best of our knowledge, the present study is the first to directly demonstrate changes

in the CAN regulating cardiovagal outflow in PD. Comparing group differences in the correla-

tions between fMRI time-series and the instantaneous high-frequency component of the HRV

power spectrum (HF-HRV), we detected significant differences in mid and anterior cingulum,

sensorimotor cortex and SMA, insula and temporal lobe, prefrontal cortex, hippocampus and

in a region encompassing posterior cingulum, precuneus and adjacent parieto-occipital

cortex.

The insula, anterior and mid cingulate cortex are key nodes of the CAN. In particular, the

insula, regarded as the ‘visceral sensory’ cortex, is a somatotopically organized region that

receives visceral sensory information and modulates ANS responses [2, 44], while the anterior

and mid-cingulate cortex have been constantly associated with cardiovascular control [2, 3].

Fig 5. Statistical map (Z>2.3, p<0.05 corrected) showing areas where brain activation relating to HR-HRV in 14 healthy controls was significantly less than

in 14 de novo PD patients (a), and effect size map (Cohen’s d>0) for the same axial slices (b).

https://doi.org/10.1371/journal.pone.0210324.g005
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The link between the sensorimotor cortex and adjacent perimotor cortex as well as SMA

and ANS modulation has been underlined in a recent meta-analysis of task-based imaging

studies [2]. In the context of our resting state study, the anti-correlation between fMRI time-

series in cortical motor areas and HF-HRV could reflect the decreased activation of areas

linked to “fight or flight reaction” at rest, when parasympathetic influence predominates.

The possible role of the putamen in ANS modulation of cardiovascular and respiratory

functions has been suggested both by experimental studies in animals and by imaging studies

in humans [44–46]. Furthermore, putaminal involvement in pathological conditions with dys-

autonomia, such as Multiple Systems Atrophy, is well known [47].

The cerebellum plays an important role in autonomic cardiovascular control [48, 49]. Stud-

ies in animals have demonstrated the involvement of the cerebellum in blood pressure and

heart rate modulation [48, 50] while several imaging studies have consistently reported cere-

bellar involvement in responses to tasks and stimuli that are known to cause HRV changes [51,

52].

Animal studies have evidenced the neural connections that link hippocampus and brain-

stem autonomic nuclei [53] as well as the cardiovascular responses elicited by hippocampal

stimulation [54], while fMRI studies have shown the role of hippocampus in hearth rate modu-

lation [2, 52].

Several imaging studies have underlined the role of precuneus/posterior cingulate cortex in

ANS modulation [2, 55, 56]. The posteromedial parietal cortex is a key component of the

default mode network [57], the task-negative network of associated brain regions that exhibits

high levels of neural activity when an individual is at rest. Interestingly, in two previous studies

in normal subjects, BOLD signal at rest in posterior cingulate and precuneus was found to pos-

itively correlate with concurrently recorded muscle sympathetic nerve activity (MSNA) [55]

and skin sympathetic nerve activity (SSNA) [56], both metrics of ANS sympathetic outflow.

We also found significant differences between de novo PD patients and healthy controls in

brain regions that have not been investigated in animal studies evaluating the CAN, and specif-

ically in temporal superior, supramarginal and parietal inferior gyri, in lateral prefrontal cortex

and parieto-occipital cortex. These regions, however, have been reported to be involved in

ANS modulation in imaging studies (for reviews, see [2, 44]) and their role should be further

addressed in the future. Our results reinforce the idea that the human CAN encompasses more

regions than previously hypothesized.

We did not find significant activation related to HF-HRV in the amygdala, neither in

healthy controls nor in PD patients. This was an unexpected result, given that the amygdala is

considered a core constituent of the CAN [2–4, 44]. However, the amygdala has been shown

to play a major role in the mediation of autonomic responses during emotionally relevant

stimulation, and it has been suggested that amygdala may be a detector of potential threats,

and a mediator of adaptive “fear” responses [3]. We therefore submit that during a resting

state experiment, in which subjects are instructed to relax, the role of the amygdala in modulat-

ing HRV might be less relevant.

In healthy controls, we found a significant association between HF-HRV and BOLD signal

in the dorsal pons, while we did not find significant autonomic-associated activation neither in

the medulla nor in the mesencephalon. Indeed, according to Braak’s pathologic staging system

for PD, the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus in

the medulla as well as the peripheral autonomic nerves and ganglia are affected by Lewy

pathology and by neurodegeneration since the pre-symptomatic stages of the disease, and

their involvement antedates that of cortical and subcortical structures [9, 58]. However, func-

tional neuroimaging of the brainstem is problematic, because of artifacts due to blood and

cerebrospinal fluid (CSF) pulsatility as well as to its close proximity with bone and air-filled
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cavities [59–61]. It is therefore possible that brainstem-focused approaches, probably encom-

passing higher field strength, smaller voxel size and tailored co-registration methods [62],

could aid in unveiling autonomic related activation in the small brainstem nuclei in the resting

state.

Accordingly, the functional changes we found in the supratentorial CAN in our de novo

PD patients, could represent a compensatory or pathologic (or both) response to the neuronal

changes that, in these early stages of the disease, are expected to extensively involve the vagal

nuclei complex in the brainstem and peripheral ANS constituents. However, it is possible that

structural supratentorial changes have contributed to our findings. In this context, the cingu-

lum, medial prefrontal cortex and insula are expected to be involved in inclusion bodies

pathology since the clinical onset of the disease [9, 58]. Furthermore, other MRI studies based

on voxel-based or tensor-based morphometry, surface-based methods or shape analysis tech-

niques have described gray matter changes which, while with partially conflicting results, were

seen to involve prefrontal, temporal, parietal and occipital cortex and in basal ganglia in early

PD patients. These changes were more widespread in patients with mild cognitive impairment

(MCI-PD) [32, 63–66].

Joint rsfMRI/HRV analysis

In our study, we regressed the BOLD signal against ANS activity estimates on a single-subject

level and entered the resulting correlation maps in second-level, group-wise analysis. This was

done to establish a) if these correlations are significantly different from zero (i.e., to explore

evidence for neural correlates of ANS activity in healthy controls or PD patients), and b)

group-wise differences in these correlations (i.e., to explore possible evidence for a dysfunction

in neural correlates of ANS in PD). This approach is commonly adopted in most fMRI studies

(see, e.g., [67]). Specifically, it is the standard approach in both task-based studies (where the

regressor is typically the task paradigm convolved with a model HRF) and resting-state which

involve external regressors.

Rather than referring to a finite HRV quantifier, like entropy or spectral power, the point

process analysis provides a set of “instantaneous” estimates suitable for fMRI regression analy-

sis, without the need of interpolation [18]. Importantly, traditional interpolation techniques

(linear, spline, etc.) do not account for knowledge about the physiological processes underlying

the input series. Besides fitting advantages, the point-process inverse Gaussian model describes

the first passage to threshold of the membrane voltages of the heart’s pacemaker cells, while

the model’s autoregressive structure describes the dependence of the R-R interval lengths on

the recent history of the autonomic inputs to the sino-atrial node. Also, the model’s time- vary-

ing parameters capture the dynamic character of these sino-atrial node inputs [18].

Extensions and limitations

The main limitation of our study is the relatively small sample size and hence possible low sta-

tistical power which, however, does not reduce the validity of the significant results we

observed. It may however have prevented the detection of additional ANS-related fMRI signal

changes and, among those, of possible areas with positive correlations between fMRI time

series and HF-HRV. In addition, in between-group analysis, we observed large effect sizes

(Cohen’s d>0.8) [68]. This was as expected, since significant effects found in relative small

sample sizes correspond to large effects [69, 70].

In line with previous studies [2, 52, 71], among the variety of measures that have been used

to operationalize HRV, we selected HF-HRV due to its clear interpretability as a marker of

purely parasympathetic autonomic outflow. On the contrary, estimates of purely sympathetic
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activity cannot be easily derived from HRV analysis due to the overlapping activity of both

autonomic branches in the low frequency band [72, 73]. Further studies will be necessary to

evaluate the possible correlations between resting state fMRI time series and others HRV

metrics.

In our study, we found a network of brain areas related to parasympathetic outflow by

using a correlation analysis between the BOLD signal and an external regressor in the resting

state. Further studies, specifically tailored to evaluate functional and structural connectivity,

will be necessary to exploit whether the CAN can be considered an intrinsic connectivity

network.

Furthermore, we did not perform a quantitative evaluation of ANS function by means of

specific autonomic function tests (such as the classic Ewing’s protocol [74]) that would have

allowed to detect a possible subclinical cardiovascular dysfunction in our cohort of de novo

PD patients. This would have been beyond the scope of the present study, whose primary aim

was to evidence CAN changes in the early stages of PD and in which autonomic symptoms

and signs were evaluated clinically mainly in order to exclude atypical Parkinsonisms. Further

studies will be therefore necessary to evaluate the possible correlations between HRV-related

fMRI changes and the degree of cardiovascular dysautonomia in de novo PD patients.

Conclusion

In conclusion, by combining a framework for dynamical HF-HRV assessment with fMRI we

have evidenced a complex network of cortical and subcortical regions modulating parasympa-

thetic outflow at rest. Or results support the hypothesis that signs of impairment of this central

network can be detectable since the early clinical stages of PD, and these changes are not due

to dopaminergic replacement therapy.
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