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A new computational approach gives us the best chance at understanding 

how genomes are arranged in three-dimensional space and what that may 

mean for their function.

It is remarkable to realize that despite all the talk—and work—on genomes and their 

sequences, nobody knows how they are actually organized inside the cell1. The recent 

development of biochemical methods to probe global genome organization has given a 

glimmer of hope that systematic mapping of genomes in space will soon be possible. In this 

issue, Kalhor et al.2 report an improved experimental protocol and a breakthrough in how to 

analyze data from these approaches. The computational strategy provides a more realistic 

picture of the genome landscape and will help elucidate the links between genome 

organization and function.

The method of choice for mapping the topology of genomes in cells is a group of techniques 

referred to as chromosome conformation capture3. In these approaches, chromatin in intact 

cells is chemically crosslinked to capture the physical associations between genome regions. 

The DNA is then chopped up with a frequently cutting restriction enzyme, and the resulting 

fragments are re-ligated at very high dilution such that the joining of crosslinked fragments 

is favored over the joining of noncrosslinked DNA. Finally, the identity of the crosslinked 

regions, which reflect the original spatial genome associations, is determined by PCR or by 

sequencing, depending on the specific variation of the chromosome conformation capture 

method. The development of these methods recently culminated in an approach called Hi-C, 

which allows unbiased probing of all genome interactions in a cell population using high-

throughput sequencing, providing a tool to comprehensively map genome interactions4.

Kalhor et al.2 have now refined chromosome conformation capture methods in two ways. 

The first advance improves the quality of the primary data. Rather than doing the ligation 

step in solution, they tether the DNA fragments to beads for ligation. This simple step 

substantially improves the signal-to-noise ratio, resulting in a cleaner, more reliable list of 

genome interactions. This is a nice refinement of Hi-C, but the true value of Kalhor et al.’s2 

work lies in the second improvement, which relates to data analysis.
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Chromosome conformation capture methods generate long lists of inter action frequencies 

between genome regions. Using computational approaches, one can then derive a three-

dimensional map of the genome by determining the neighbors of any given point (Fig. 1). A 

fundamental problem with this approach is that the data used in generating the spatial maps 

represent the inter actions that occur in the entire population of the millions of cells used in 

the experiment. Therefore, the resulting genome landscape depicts the average pattern of 

organization, assuming that all cells in the population are the same or at least similar, which 

we know is generally not true. Which genome associations occur in which individual cells or 

subpopulations of cells cannot be determined from this approach. For example, chromosome 

conformation capture may detect a high frequency of interaction between a chromosome 

region and two other chromosomes, but it cannot determine whether these two associations 

occur simultaneously in the same cell or separately in two populations of cells.

Kalhor et al.2 now begin to address this very important but thorny issue. To computationally 

analyze their data, they create a large collection of models representing a spectrum of 

possible configurations of the chromosomes in space, rather than searching for one model 

that can accommodate all interaction data as has been done previously (Fig. 1). This 

population-based modeling approach does not attempt to squeeze all of the experimental 

data into a single best-fit model, but instead searches for an ensemble of models to 

accurately represent the primary data. This set of models is selected computationally by 

using a scoring function and an optimization algorithm that matches the variability of 

genome configurations in the various models with the statistical variability present in the 

primary interaction data.

The results from this population-based analysis suggest that the approach works. First of all, 

the authors find remarkable diversity among models that can account for the experimental 

data. Few genome interactions are found in all models, and as little as ~20% of genome 

contacts are shared between any two models. This observation is in line with what is seen 

when chromosome conformation capture methods are validated by single-cell techniques 

such as fluorescence in situ hybridization, which allows mapping of genome interactions in 

individual cells using microscopy. When comparing data from chromosome conformation 

capture methods with fluorescence in situ hybridization data, one typically finds that a 

positive interaction often occurs in as little as 5% of cells in a population, clearly suggesting 

heterogeneity in the population5.

Nevertheless, this does not mean that there are no patterns in spatial genome organization— 

quite the opposite. Kalhor et al.2 identify two of the best-characterized cell biological 

properties of genomes as common features in their models. They find nonrandom 

positioning of chromosomes in a radial pattern—that is, some chromosomes preferentially 

localize to the center of the nucleus, others to the periphery. And they find clustering of 

specific chromosomes, with chromosomes containing an abundance of transcribed regions 

clustering in the nuclear interior6. The identification of these well- established properties is a 

reassuring validation of the approach.

Kalhor et al.’s ‘parallel universe’ approach has several advantages. It clearly provides a 

more-nuanced representation of the primary data. The method also yields more realistic 
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models of the heterogeneity of a population of cells. It is increasingly clear that individual 

cells in a population, even those grown in the laboratory, do not all behave in the same way. 

For example, a set of genes may appear to be constitutively active when a cell population is 

analyzed en masse by PCR, but when single cells are probed, one may find that the genes 

cycle between on and off states7.

The most important consequence of population-based data analysis, however, is that it is a 

first step toward testing new questions. How many distinct biological subpopulations exist in 

a cell population? Does the organization of the genome shift in these populations? And are 

the population’s overall biological changes driven by the ensemble behavior of the 

population or by a small subpopulation (e.g., stem cells)? Answering these questions will go 

a long way toward understanding the central question in the field, which is how genome 

organization is linked to biological function.

It is natural that we seek simplicity when we explore biological processes. But at times, it is 

important to acknowledge their complexity.We are at such a point in the study of genome 

organization. Most experimental data point to a high degree of heterogeneity and an element 

of stochastic organization. The methods we use to analyze genomes must take these realities 

into account
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Figure 1. 
Population-based modeling of genome organization. Chromosome conformation capture 

techniques generate information about the frequencies of interactions (dashed arcs; darker 

indicates greater frequency) between genome locations on various chromosomes (orange, 

blue, purple and green). Modeling approaches can use this frequency information to 

determine the spatial arrangement of chromosomes. Conventionally, all interaction data are 

pooled to generate a single average-based model of genome organization (top). Kalhor et al.2 

use an alternative approach, population-based modeling, in which the interaction data are 

represented in a collection of models whose composition is based on the frequencies of 

interactions (bottom). For instance, the most frequent interaction, which is between the 

orange and blue chromosomes, occurs in the most models. This method more accurately 

represents the heterogeneity of genome organization seen in a cell population.
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