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Unmet medical need

Despite significant progress in pharmacological management of patients with primary 

hypertension, treatment-resistant hypertension (TRH) is still relatively prevalent among 

them (1). This condition is defined as blood pressure that remains above goal despite 

concurrent use of optimal doses of three anti-hypertensive drugs of different classes and 

exclusion of secondary causes of hypertension (2). Current evidence-based pharmacological 

approach to TRH targets 3 well-established pathophysiological mechanisms thought to 

underlie this condition simultaneously: increased sodium and fluid retention, enhanced 

activation of renin-angiotensin system, and over-reactive sympathetic nervous system (3, 4). 

Thus, patients with TRH are presently treated with combined daily oral diuretics, 

angiotensin converting enzyme (ACE) inhibitors/angiotensin receptor blockers and calcium 

channel blockers (5). If blood pressure remains persistently elevated, daily oral 

spironolactone, an antagonist of aldosterone receptors, is then added to the 3-drug regimen, 

which provides significant benefit to patients with hyperaldosteronism (2). However, this 

poly-pharmacopeia approach is not only insufficient to adequately control blood pressure in 

a significant population of TRH patients but may also expose patients with TRH to serious 

adverse events and drug interactions leading eventually to non-adherence and treatment 

failure. Hence, despite recent advances in hypertension research and therapeutics, TRH still 

represents a life-threatening medical problem.

Consequently, there is an urgent need to develop and test novel, safe and efficacious drugs 

for TRH to improve long-term clinical management and outcomes of patients. 

Unfortunately, accomplishing this goal is challenging because current drug development 
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programs in primary hypertension revolve around traditional oral administration of active 

pharmaceutical ingredients (API’s). An important drawback of this approach is that 

traditional oral formulations of promising drug candidates may still be limited by their low 

bioavailability, short half-life and unfavorable safety profile that disqualify them from 

further clinical development and marketing. To begin to address these constraints, 

harnessing the unique chemical, biophysical, safety and efficacy attributes of 

nanopharmaceuticals could represent an innovative therapeutic strategy for patients with 

TRH.

To date, approximately 50 nanodrugs have been approved by the FDA for various 

indications predominantly cancer, infections and bone substitute (6). However, while it is 

well established that marketed anti-hypertension medications, such as ACE inhibitors, 

angiotensin receptor blockers, and calcium channel blockers, have low oral bioavailability 

and potentially serious adverse effects, no nanodrugs are presently approved for 

cardiovascular disorders, including TRH. The purpose of this review is, therefore, to provide 

a snapshot of liposomal, polymeric and nanocrystal nanoparticles, the most-commonly used 

FDA-approved nanotechnology-based drug delivery platforms since the 1990’s (Figure 1), 

as potential novel modalities to deliver both marketed and new anti-hypertension API’s to 

treat patients with TRH. We discuss evidence that these modalities provide a targeted, safe 

and efficacious delivery approach for anti-hypertensive medications.

Currently, several animal models of hypertension have been developed to allow the in vivo 
investigation of treatment modalities and drug efficacy. In this review, we discuss studies 

reporting the beneficial effects of nanomedicine in reducing blood pressure and improving 

bioavailability of standard anti-hypertensives and poorly soluble biomolecules (e.g. 

superoxide dismutase). We discuss these findings in each respective NP section and have 

outlined those studies that include FDA-approved anti-hypertensives used in combination 

with specific NP formulations in Table 1. It is important to note, however, that an in vivo 
animal model exactly representing TRH is not yet available to directly test the benefits of 

nanomedicine in treating TRH. Despite this, the present literature details reductions in blood 

pressure with nanomedicine as compared to free drug through increased and long-lasting 

drug bioavailability and efficacy. Therefore, the in vivo studies highlight the potential for 

using previously FDA-approved anti-hypertensives with NP formulations to safely combat 

TRH independent of a detailed understanding of the underlying mechanisms mediating 

TRH.

Liposomes

Liposomes are small, self-assembled, spherical vesicles composed of biocompatible and 

biodegradable unilamellar or multilamellar phospholipid bilayers that surround an aqueous 

core (7, 8). They can be loaded with hydrophilic, hydrophobic or amphipathic API’s, 

including peptides, biomolecules and nucleotides, and once administered passively 

accumulate in target tissues and organs where their payloads are released by various local 

processes thereby achieving higher drug concentrations locally. For instance, liposomes can 

be designed to be pH- or temperature-sensitive thereby enabling controlled release of their 

payloads when exposed to specific environmental conditions in target tissues and organs. 
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Liposomes can also be loaded with several API’s each targeting distinct metabolic pathways 

that mitigate tissue injury and/or promote repair.

Targeted delivery:

Early studies by Hodis and his colleagues (1990 &1991) (9, 10) demonstrated the potential 

efficiency of liposome delivery of drugs into the vascular wall in animal models of 

hypertension and atherosclerosis. Specifically, they showed that passive accumulation of 

liposomes in arterial wall of hypertensive rabbits is increased by almost 3-fold in 

comparison to that of normotensive rabbits and that this process may be mediated, in part, 

by monocyte/macrophage cells, providing the first direct evidence for liposomes escaping 

the circulation and entering the vascular wall. These data further suggest that circulating 

liposomes could preferentially target and accumulate in injured vascular beds, most likely 

due to the disruption of the endothelial barrier and accumulation of monocytes/

macrophages, thus providing a mechanism for the targeted delivery of liposomes loaded 

with anti-TRH drugs into the diseased areas of the vascular beds of patients with TRH. 

Another strategy for the targeted delivery is decorating liposome surface with ligands that 

are specific to receptors expressed on target cells (aka cellular zip codes), which may enable 

active targeting and selective delivery of high concentrations of liposome-loaded anti-TRH 

drugs to these cells. This, in turn, circumvents collateral damage to bystander cells and 

tissues and lessens adverse events.

Long circulation time:

Liposome delivery systems also allow prolonging circulation time of the drugs by evading 

their recognition, uptake and clearance by the human body’s reticuloendothelial system. 

This is accomplished by attaching pre-defined molecular weight and amount of 

biocompatible and biodegradable poly(ethylene glycol) chains to the surface of liposomes 

(11). With FDA approval of PEGylated liposomal doxorubicin in 1995, liposomes became 

since then the most commonly FDA-approved, lipid-based drug delivery platform for 

anticancer, antifungal and anti-pain drugs (6).

Antihypertensive liposomal drug formulations tested in animal models:

Several liposomal drug products have already been developed and tested successfully in 

animal models of hypertension. The most prominent example is liposomal preparation of 

Vasoactive intestinal peptide (VIP), a 28-amino acid pleiotropic, amphipathic, endogenous 

human peptide with pronounced vasodilatory, immunomodulating and anti-proliferative 

properties (12, 13). A single intravenous injection of VIP, self-associated with sterically-

stabilized liposomes, but not free VIP nor empty liposomes, has been shown to normalize 

systemic arterial pressure in spontaneously hypertensive hamsters for the entire duration of 

the observation period (6 hours) (14, 15). Injection of free VIP was ineffective because of 

rapid degradation and inactivation within minutes in vivo (16). Importantly, anti-

hypertensive effects of liposomal VIP are also observed after both subcutaneous and 

intratracheal administration to spontaneously hypertensive hamsters (17). The salutary 

effects of liposomal VIP were attributed to its potent vasodilatory properties (14).
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Another promising candidate for liposome delivery for TRH is Superoxide dismutase 
(SOD), an enzyme that converts the superoxide radical, known to have numerous adverse 

effects on vascular function, into non-toxic molecular oxygen or water (18, 19). As such, 

SOD is considered a major defense mechanism against oxidative stress (18, 20). Current 

concepts suggest that reactive oxygen species and oxidative stress play a key role in the 

development and maintenance of primary hypertension in humans (21). Unfortunately, this 

metabolic pathway is not targeted directly by currently-approved anti-hypertensive drugs. A 

major limitation of SOD as a therapeutic drug is its short life time in circulation, as 

recombinant human superoxide dismutase (rhSOD) was reported to have a half-life of 20 

minutes in healthy volunteers (22). It also has low membrane permeability (20). To 

overcome both problems, several studies developed liposomes with encapsulated 

recombinant human rh-Cu/Zn-SOD (23–25) and at least one study, Laursen et al (23) 

showed that liposome-loaded SOD reduced blood pressure significantly in rats with 

angiotensin II-induced hypertension while having no effects in rats with norepinephrine-

induced hypertension or controls. Patel et al (25), however, did not see a beneficial effect of 

liposomal SOD delivery in spontaneously hypertensive rats, which could be related to 

different hypertension rat models used in both studies or different biophysical properties of 

the liposomes, which were not well described. Administration of SOD encapsulated into 

poly(ethyleneglycol) (PEG)-grafted liposomes was also shown to have significant advantage, 

as compared to free SOD in a rat model of adjuvant arthritis (26). Notably, the stability of 

liposomal delivery of rhSOD was also tested in a large animal model. Kaipel et al showed 

that (27) intravenous delivery of rhSOD loaded liposomes resulted in a pronounced but 

transient increase in rhSOD in the plasma, which dissipated within 5 hours, which was still 

significantly longer than earlier studies of free SOD in humans (22), however, free SOD was 

not tested in the pig study. Most interestingly, aerosolization of the liposomal rhSOD and 

application via a breathing device led to further significant increase in plasma rhSOD life 

time (27). The latter observation not only shows promising results in terms of improving 

SOD delivery for therapeutic use but also indicates that it can be delivered in a non-invasive 

“needle free” way with improved efficacy. Moreover, topical liposomal recombinant human 

SOD (rhSOD) manufactured under GMP conditions (Lipoxysan™ Polymun Scientific 

Immunobiologische Forschung GmbH, Vienna, Austria), was safe and efficacious in a 

randomized, placebo-controlled, double-blind prospective clinical trial conducted in patients 

with painful Peyronie’s disease (28).

Recently, a new liposomal preparation was developed for lercanidipine (29), a calcium 

channel blocker currently used to treat hypertension but is also known to have poor aqueous 

solubility and low bioavailability (30). Deshpande et al show that liposomal encapsulation 

and delivery of lercanidipine result in a significant increase in absorption rate, increase in 

bioavailability and increased efficiency in reducing blood pressure in DOCA-salt induced 

hypertensive rats as compared to pure lercanidipine (29).

Routes of delivery:

At present, intravenous administration of anti-hypertensive drug-loaded liposomes is the 

traditional delivery system to use in humans and animal models and this delivery route was 

used in the studies described above. However, an emerging non-invasive, simple, and more 
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practical administration route is by inhalation where dried anti-hypertensive drug-loaded 

liposomes of appropriate particle size are deposited in the alveoli, translocate into the 

bloodstream and/or lymphatics and are then distributed to target tissues (31, 32). In addition, 

nasal delivery of liposome powders for non-invasive, direct brain targeting of anti-

hypertensive drugs through fenestrated capillaries in the olfactory bulbs may be attractive 

because it enhances efficacy while reducing systemic adverse events (33). Lastly, 

transdermal and subcutaneous delivery of liposome-encapsulated valsartan and VIP, 

respectively, have been reported in rats (34, 35). However, efficacy and safety of these 

liposome delivery routes must first be established in animal models of hypertension before 

translation to clinical trials.

Clearly, liposomal delivery platforms are an attractive alternative to traditional formulations 

of anti-hypertensive drugs, as well as possible route to introduce new therapeutic drugs that 

cannot be used in their pure form because of bio-availability limitations. The advantages of 

liposomal formulations described above, coupled with recently issued FDA guidance to the 

pharmaceutical industry for liposome drug products that standardizes drug development and 

registration (www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation.htm) should 

promote use of this nanotechnology platform to deliver API’s to patients with TRH by 

several administration routes outlined above.

Polymeric Nanoparticles

Polymeric NPs (PNPs) represent a broad class of NPs and refer to those composed of any 

polymer type, from single chain polymers to nanospheres and nanocapsules. Polymeric 

nanospheres typically refer to a solid nanoparticle which incorporates an active drug and 

polymeric nanocapsules refer to a particle that contains a liquid, typically oily core that 

contains the drug encapsulated by a polymeric shell (36). Many of the FDA-approved 

nanomedicines today are PNPs attached to standard medications to improve circulation 

through solubility and/or bioavailability (6). The most common “attachment” is the 

hydrophilic poly-ethylene glycol (PEG) which has been used with a number of FDA 

approved drugs to increase drug half-life in the circulation (37). PEGylation has a shielding 

effect on the incorporated drugs which inhibits non-specific interactions and reduces the 

immune response, known as “stealth behavior” resulting in a slower blood clearance and 

increased circulation time (38). Indeed, multiple PEGylated NPs were shown to improve the 

stability of the incorporated protein drugs indicating that this technology is particularly 

important for the protein-based APIs (37).

The major drawback of PEG polymers, however, is their non-biodegradability and while low 

molar mass PEG oligomers are easily secreted by renal clearance, they are also found to 

form toxic oxidative products and not recommended for use in drug delivery (38). Increasing 

the molar mass on the other hand reduces oxidative degradation but may result in liver 

accumulation and it is still not clear whether it is completely excreted (38). Growing 

attention, therefore, is geared to developing bio-degradable polymeric NPs (39), as discussed 

in more detail below. Nevertheless, as of 2017, 17 PNPs were FDA approved and of these, 

13 were drugs that had a PEG-PNP addition alone or in combination with other polymers 

(6). These PEGylated NPs are currently used to treat cancer, multiple sclerosis and hepatitis 
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C (37) but as with most of the FDA approved NPs, no PNPs currently exist to treat 

hypertension.

Antihypertensive PNP drug formulations tested in animal models:

Several studies suggested beneficial effects of PNP drug delivery on various cardiovascular 

diseases. The PNPs that have been studied for treatment of hypertension in animal models 

focused on a biodegradable polymer polylactide-co-glycolide (PLGA) (40). PLGA is a 

polymer of lactic and glycolic acids that is easily biodegradable and considered to be non-

toxic (41). It has been approved by FDA for drug delivery (42). Moreover, PLGA particles 

were shown to enhance the bioavailability and improve safety of hydrophobic and 

enzymatically unstable drugs. Using estradiol as a model drug, it was shown that PLGA 

particles delivered using oral gavage promote sustained release in plasma (up to 11 days) in 

Sprague Dawley rats with no observable inflammatory response (43, 44). PLGA PNPs were 

also shown to enhance the efficacy of atorvastatin, also delivered using oral gavage, in 

reducing the lipid load in diet-induced dyslipidemic in rats (45). Most importantly, PLGA 

PNPs were shown recently to improve anti-hypertensive effects of several types of 

commonly-used anti-hypertensive drugs. Shah et al (2014) (46) showed that encapsulating 

Felodipine, a dihydropyridine calcium-channel blocker, used alone or in combination with 

other antihypertensives to treat hypertension, into PLGA PNPs significantly improve its 

ability to control systolic blood pressure in salt-induced hypertension in rats. The drugs were 

delivered orally. This was attributed to increased bio-availability of Felodipine, which by 

itself has low water solubility resulting in poor bioavailability in standard formulations (47).

Consistent with the increased efficacy, Arora et al 2015 (48) showed that encapsulating three 

commonly-used anti-hypertensive drugs (hydrochlorothiazide, amlodipine, and candesartan) 

into PLGA PNPs resulted in an increase almost 10-times the free drug circulating time. The 

study was performed in rats and the drugs were administered by an oral feeding tube. In 

addition, magnetic poly(D,L-lactide) nanoparticles, were also shown to improve control of 

blood pressure in spontaneously hypertensive rats by another anti-hypertensive drug, 

aliskiren, a renin inhibitor (49). The drugs were delivered by oral gavage. Using magnetic 

particles that consist of a magnetic material and an active chemical component is an 

interesting technology that allows controlling particle aggregation but this aspect was not 

explored in the study described above.

Another bio-degradable polymer used on PNPs in experimental studies of hypertension is 

chitosan. Chitosan, a linear polysaccharide made from the shells of crustaceans, can be 

formed into spherical biopolymers for the encapsulation of water insoluble drugs, including 

those to treat hypertension (50–53). As with the other PNPs, chitosan based polymers are 

suggested to improve oral administration by increasing solubility of the drug. Also like other 

PNPs, chitosan based polymers exhibit extended-release functionality to improve drug 

efficacy without increases in drug dosage thereby preventing detrimental side effects (52). In 

a recent study, Chadha et al demonstrated the therapeutic potential for chitosan PNPs in an 

in vivo rat model of deoxycorticosterone acetate salt-induced hypertension (53). Chitosan 

polymers generated to include lecithin, an amphiphilic lipid which renders the PNP both 

water and lipid soluble, and carrying the water insoluble antihypertensive, Ramipril, 
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decreased systolic blood pressure in hypertensive rats. The emerging interest and relevance 

for chitosan based PNPs is evidenced by two studies published earlier this year detailing the 

beneficial effects of using chitosan based PNPs: Auwal et al. showed that chitosan PNPs 

encapsulating food based antihypertensive biopeptides, a safe and thus potentially attractive 

source of non-pharmaceutical treatment of TRH, protect the biopeptide from 

gastrointenstinal degradation (50). In addition, Chinh et al. showed that polylactic acid/

chitosan NPs carrying the Ca2+ channel blocker nifedipine reduced blood pressure in mice 

(51).

Taken together, these studies show that the use of PNPs in essential hypertension could 

circumvent issues of bioavailability and potentially even prevent off-target effects through 

active targeting. Furthermore, combining standard antihypertensives with PNP 

nanomedicines may also be useful in combatting TRH where multiple drugs fail to reduce 

blood pressure.

Cyclodextrin Nanoparticles

Cyclodextrins (CDs) are cyclic oligosaccharides, which are known to be potent carriers of 

hydrophobic drugs and are increasingly developed as drug delivery platforms. The key 

feature of cyclodextrins is that while they are water soluble, they contain a cone-shaped 

hydrophobic cavity that can encapsulate various hydrophobic compounds (54). Notably, 

CDs can be crosslinked by polymers and have the ability to form nanoparticles by 

precipitation (55). Similarly to other nanoparticle technologies, inclusion of a drug in the 

hydrophobic cavity of CDs protects the drugs from absorption and degradation improving 

the bioavailability and increasing the circulation time. Furthermore, several types of CD 

particles received US FDA approval or achieved the status of “Generally Regarded as Safe” 

(GRAS).

Several studies explored the efficacy of CD nanoparticles in delivery of anti-hypertensive 

drugs. De Azevedo et al (2011) (56) showed that encapsulation of captopril (CAP), an 

angiotensin I-converting enzyme inhibitor, into CD nanoparticles had a significant beneficial 

effect on blood pressure in rats infused with angiotensin-I. The beneficial effects of CD/CAP 

complexes as compared with CAP alone were more significant at the lower dose. 

Angiotensin I was delivered by intravenous infusion and the CAP or CD/CAP complexes 

were delivered by gavage. The CD/CAP complexes (nanoparticles) showed a long-lasting 

inhibitory activity (up to 22 hours) on the angiotensin I pressor effect. Similarly, valsartan 

(VAL), an antagonist of angiotensin II, incorporated into β-CD complexes, also resulted in a 

more efficient decrease in blood pressure in rats (57). More recently, β-CD complexes were 

also shown to facilitate the effect of hydrochlorothiazide, a diuretic used in clinics to treat 

arterial hypertension, by improving the biopharmaceutical properties of the drug and 

protecting the drug from hydrolysis in vivo in rats (58). Thus, cyclodextrin nanoparticles 

appear to be one of the promising potential delivery systems for anti-hypertensives.
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Nanocrystals

Drug nanocrystals are nanoparticles with crystalline structure that are composed solely of 

the drug molecules with no carrier materials (59). The major advancement of these 

formulations is their ability to address poor solubility in aqueous solution, which becomes a 

significant issue for multiple new drugs. It was estimated that 40% or more of new drugs 

identified by screening approaches are poorly soluble in water, which limits their absorption 

and decreases bioavailability (60). A conventional method of adding co-solvents or 

surfactants that is used to increase drug solubility is limited by the toxicity of the additives. 

Nanocrystals offer an alternative approach to improve solubility by increasing the surface 

area that is in contact with the aqueous solution and by such to increase the velocity of the 

dissolution and saturation solubility, which improve bioavailability (59, 60). Typically, 

optimal effects are achieved with particle sizes of 20–50 nm and the drugs can be 

administered either orally or suspended in a solution (nanosuspensions) for intravenous or 

pulmonary delivery route (59). An increase in the bioavailability is associated with 

significantly improved PK/PD properties of the poorly soluble materials (6, 61, 62). 

Currently, the nanocrystal technology is used in ~30% of all FDA approved nanoparticle 

drugs with 15 approved drugs and 2 more in the investigational stages (6). Future studies are 

needed to explore the potential of this technology in TRH.

Interestingly, the first nanocrystal drug formulation, Rapamune (active component: 

rapamycin, an inhibitor of mTOR signaling pathway) that is currently used as an 

immunosuppressant to avoid organ rejection (63) may also be beneficial in different types of 

hypertension because of its anti-proliferation effects. Specifically, rapamycin was shown to 

reduce neo-angiogenesis and ameliorate inflammation and fibrosis in mouse and rat models 

of portal hypertension when delivered both by gavage (64) and intraperitoneally (65). It is 

also being tested for the treatment of Pulmonary Hypertension using intravenous delivery 

(66). Emerging evidence that Resistant Hypertension involves vascular remodeling (4) opens 

an intriguing possibility that Rapamune might be also beneficial for TRH.

Cerium oxide (CeO2) nanoparticles.

These constructs have emerged in the last decade as powerful anti-oxidant materials. CeO2 

NPs function as mimetics of superoxide dismutase (SOD) and catalase and as scavengers for 

free radicals (67). The anti-oxidant property of cerium oxide is based on the ability of 

cerium to cycle between reduced and oxidized states. They have been proposed, therefore, to 

provide a therapeutic approach to reduce oxidative stress and inflammation. CeO2 NPs were 

also shown to have anti-apoptotic activity. Multiple studies explored the beneficial effects of 

CeO2 NPs in a variety of pathological conditions including radiation damage, cancer, and 

neurodegenerative diseases (67). A recent study by Oro et al (2016) (68) showed that CeO2 

NPs delivered intravenously have a significant protective effect against liver injury and 

portal hypertension in a rat model of CCl4-induced liver fibrosis.

Clearly, further pre-clinical studies are warranted to determine safety and biocompatibility of 

these emerging technologies before translating them into clinical practice.
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Summary and Perspectives

Collectively, studies presented in our review suggest that nanodrugs could be considered for 

further development as novel anti-TRH drugs (Table 1 summarizes FDA-approved drugs 

loaded onto nanoparticles and tested successfully in animal models of hypertension). These 

nanodrugs may comprise both marketed and investigational API’s loaded onto US Food and 

Drug Administration (FDA)-approved biocompatible, biodegradable, nontoxic drug delivery 

platforms. This approach improves formulations of poorly water-soluble, low bioavailability 

and unstable API’s, promote controlled drug release over an extended period of time, and 

enable targeted delivery of anti-hypertensive drugs to injured tissues thereby improving both 

safety and efficacy. Importantly, active targeting of drug-loaded, long-circulating liposomes 

is accomplished by grafting cell-specific ligands, such as a peptide sequence to the 

angiotensin II type I receptor (69), onto their PEG moieties resulting in specific binding of 

these liposomes to complementary cell receptors in target tissues and selective delivery of 

payloads. Hence, recommended doses of these nanodrugs would be lower than those of bulk 

drugs resulting in lower pill burden and improved safety, tolerability, and patient adherence. 

Conceivably, loading FDA-approved drug products could simplify and shorten the duration 

of liposome-based drug development programs for TRH.

The reasons underlying the lack of FDA-approved nanodrugs formulations for the treatment 

of hypertension is uncertain but may be multi-factorial (70). Conceivably, they could be 

related to product instability, polydispersity and toxicity along with technical difficulties in 

scaling up and maintaining the manufacturing process which then lead to higher production 

costs (71). An important contributing factor is the lack of standardized FDA-issued written 

guidance to the pharmaceutical industry for developing and registering nanodrug products, 

except for liposomes (https://www.fda.gov/downloads/drugs/guidances/ucm070570.pdf). 

Consequently, each non-liposomal, nanodrug product application is presently reviewed by 

FDA on a case-by-case basis which then amplifies the sponsor’s assumed financial risk and 

liability (72).

Furthermore, unlike currently marketed oral medications for primary hypertension, 

nanodrugs can also be administered by inhalation, nasal, transdermal/dermal and 

subcutaneous injection routes. Similar to the FDA-approved subcutaneous and inhaled 

insulin (73), both patient-friendly drug delivery routes of liposomal VIP could be pursued in 

clinical trials of patients with TRH. Whether pulmonary delivery to the systemic circulation 

of these nanodrugs is also efficacious in TRH remains to be determined.

It is also possible that because the etiology of TRH is unknown, improving the delivery and 

efficacy of the existing antihypertensives by nanomedicines will still fail as a treatment. At 

the very least, however, it will rule out pharmacodynamics/pharmacokinetics as an 

underlying cause of resistance in this population. If this is the case, then obviously new 

classes of drugs will have to be developed targeting alternative mechanisms. Based on the 

current review, it appears that some of the potential alternative mechanisms of TRH can be 

affected utilizing existing or developing nano-drugs, such as liposomal SOD formulations, 

rapamycin PNPs, and nanocrystals.
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Figure 1: 
Schematic representation of three most commonly used, FDA-approved nanocarriers for 

novel anti-TRH nanodrugs.
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