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Abstract

Obesity has been shown to increase risk for a number of different disorders, including cancer. In 

addition, obesity is also associated with immune dysfunction, which could contribute to its strong 

association with other comorbidities. Recently, the immune system has been found to be heavily 

regulated by changes in metabolism. In particular, T cells are able to respond to intrinsic metabolic 

regulatory mechanisms, as well as extrinsic factors such as the changes in metabolite availability. 

The dysfunctional metabolic environment created by obesity could therefore have a direct impact 

on T cell responses. In this review, we highlight recent findings in the fields of T cell biology and 

obesity, with a focus on mechanisms driving T cell dysfunction and potential implications for 

immunotherapeutic treatment of cancer.

Introduction

The incidence of obesity has risen drastically over the past few decades, and is reaching 

pandemic levels in the developed world [1,2]. Approximately 36% of the adult population in 

the U.S. is obese, and this number is expected to rise over the next decade [2]. Obesity is a 

major risk factor for a number of other comorbidities including diabetes, kidney disease, 

liver disease, cardiovascular disease, musculoskeletal disorders and cancer [3]. In addition, 

obesity has been associated with increased incidence of infectious disease [4]. It is not 

surprising, therefore, that the impact of obesity on healthcare spending is significant. Some 

estimates attribute up to $190 billion spent on obesity-related medical care in 2005 alone, or 

around 20 percent of the total annual U.S. healthcare expenditure that year [5]. Many of the 

comorbidities associated with obesity have been linked to dysfunction of the immune system 

[6].
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T cells represent a major component of the immune system, orchestrating and regulating 

major aspects of an immune response. Recently, they have begun to be appreciated for their 

dynamic metabolic tuning, that can change depending on activation or availability of 

different metabolites (i.e. glucose, fatty acids, etc.) [7,8]. In addition, checkpoint blockade 

therapies aimed at reinvigorating exhausted T cell responses are showing great promise in 

treating cancer patients in the clinic [9]. T cell exhaustion is characterized as a progressive 

and hierarchal loss of effector function following chronic antigen exposure and/or 

inflammation, and has been characterized in cases of viral infection, autoimmunity and 

cancer [10]. Obesity leads to a state of chronic inflammation, which can augment the T cell 

pool as well as lead to accelerated thymic aging [11,12]. Therefore, because of the large 

impact of obesity, and the promise of checkpoint blockade therapy in treating cancer, a 

better understanding of the effects of obesity on T cells and T cell exhaustion is needed to 

better utilize these therapies on the growing population of obese patients.

Effects of obesity on the immune system

Obesity is associated with a state of chronic inflammation, characterized by a number of 

different changes in the immune system, including increases in serum pro-inflammatory 

cytokines such as IL-6 and TNFα as well as shifts in the memory to naive ratio of T cells 

[12,13]. Importantly, a similar phenotype has been characterized not just in mice and 

humans, but also canines and non-human primates [14–17]. Increases in adipose tissue lead 

to this inflammatory state, by recruiting different immune cell populations into the adipose 

tissue, notably macrophages and T cells. The inflammatory state is amplified by M1 

macrophage polarization, as well as shifts to Th1/Th17 T cell populations [7,13,18]. An 

unknown question is the source of antigen(s) driving T cell activation in obesity, with some 

postulating there is an autoimmune component of obesity due to limited TCR repertoire 

diversity noted in T cell populations in adipose tissue [19,20].

In general, obesity leads to a state of accelerated immune senescence, similar to what is seen 

in aged individuals [11,21,22]. This accelerated immune aging phenotype has even been 

noted in obese children [23]. In line with this, obesity has been found to lead to poor 

vaccination responses [24,25]. A number of studies have examined the impact of obesity on 

immune challenge, with conflicting results. Most studies find obesity correlates with 

dysfunctional immunity. Notably, obesity has been found to lead to defects in memory 

maintenance following influenza infection, and was even found to be an independent risk 

factor for increased morbidity/mortality from the pandemic H1N1 infection [26–28]. 

However, a different study found that obesity did not impact the generation and maintenance 

of memory T cells following infection [29]. This highlights some of the caveats that come 

with studying obesity, the primary one being the variability in results due to the large 

number of variables inherent to obesity studies. Age is a large confounding factor in that it 

takes time to become obese, and we know that the immune system itself changes with time 

(age). Another factor is the type of diet or animal model used for obesity. Early studies on 

obesity relied on mutant mouse models, such as the leptin deficient ob/ob strain. More 

recently, diet-induced mouse models have become widely used, with both high fat diets and 

Western diets (i.e. NASH) being heavily reported. The age at which one starts inducing 

obesity can also have a profound effect on results, with one study reporting significant 
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changes in the immune phenotype of mice started on a high fat diet at 3 weeks of age that 

was lost if mice were instead started on the same diet at 12 weeks of age [30]. Intriguingly, 

caloric restriction has been found to reverse some of the effects of the accelerated immune 

aging seen in obesity, with reports of delays in T cell senescence compared to ad libitum fed 

control mice and non-human primates [14,15,31].

T cell metabolism and obesity

Obesity induces a state of chronic metabolic dysfunction, with altered serum levels of 

insulin/glucose, leptin/adiponectin, among other hormones and adipokines [32–35]. Many of 

these same molecules that are important in regulating the metabolic state of an organism, 

have been shown to have direct effects in regulating immune activation [7,18]. The insulin 

receptor is upregulated upon T cell activation to support glucose metabolism, and insulin has 

been shown to polarize toward a Th2 phenotype [36,37]. Adiponectin has been shown to 

have both pro- and anti-inflammatory properties, as well as direct negative effects on 

antigen-specific T cell activation [33,34]. The levels of adiponectin have been shown to 

decline in obesity, thus providing another source of immune dysfunction. Leptin is a 

hormone involved in regulating satiety, and has effects on many aspects of immune function, 

primarily stimulating pro-inflammatory responses [32]. It has been shown to promote Th17 

differentiation, as well as have a key role in regulating regulatory T cell proliferation 

[38,39]. More recently, it has been shown to support T cell activation through metabolically 

reprogramming the T cells [40]. Leptin levels are elevated in obese individuals and could 

therefore provide a mechanism behind the immune dysregulation found in obese individuals.

In addition, immune cells themselves have recently become more appreciated for the 

dynamic metabolic shifts that occur during development and activation [7,18]. Naïve T cells 

remain in a quiescent state, reliant on oxidative phosphorylation for their energy needs. 

Upon activation, the metabolic signature changes to support increased glycolysis to support 

the energy needs of the cell. Finally, memory T cell formation is accompanied by another 

shift to fatty-acid oxidation (FAO). Clearly T cells alter their metabolic profile and needs 

upon antigen recognition, but what remains unclear is how the metabolic dysfunction caused 

by obesity might alter the balance in T cell activation. Indeed, Mauro et al. recently showed 

that a high-fat diet can lead to development of inflammatory effector memory CD4+ T cells 

[12]. This effect was mediated by inducing metabolic stress using the saturated fatty-acid 

palmitate. Memory T cells have been shown to be reliant on FAO for development and 

survival [41]. More recently, the source of fatty acid supporting FAO in these memory T 

cells was shown to be both exogenously and intrinsically sourced [42,43]. Pan et al. showed 

that tissue resident memory T cells require exogenous lipid uptake through fatty-acid-

binding proteins 4 and 5 (FABP4 and FABP5), and FAO to persist in tissue and mediate 

protective immunity [43]. In addition, the type of fatty-acid can also have an impact on the 

type of immune response, with long chain fatty-acids promoting Th1 and Th17 

differentiation, and short chain fatty-acids leading to increased regulatory T cell 

differentiation [44]. Thus, the functional response of a T cell is linked to its metabolic state 

which can be directly impacted by overall metabolic states of the individual.
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Effects of obesity on cancer

The significance of obesity as a risk factor for cancer incidence has become clear over the 

last few decades, with some epidemiological studies estimating obesity to surpass smoking 

as the number one causative agent of cancer [45–47]. Most cancer types have been linked to 

obesity, but the most significant trends concern cancers of the colon, esophagus, kidney, 

breast and corpus uteri. In addition, obese patients face a multitude of added complications 

from diagnosis, to treatment and management [48]. Multiple mechanisms have been 

proposed for how obesity impacts cancer progression, and it is likely not a solitary factor 

that drives these effects, but rather a combination of metabolic and inflammatory effects on 

both the tumor and the immune system [49,50]. Indeed, fasting has been linked to effects on 

tumor sensitization and subsequent enhancement of chemotherapy as well as direct effects 

on immune subsets leading to enhanced immunosurveillance [31,51,52]. Brandhorst et al. 

provide a comprehensive examination of the effects of periodic fasting on multiple aspects 

of health including metabolism, cognitive function, immune function and bone loss, in yeast, 

mouse and human [31]. Importantly, they found that period fasting decreased spontaneous 

tumor incidence in C57BL/6 mice. In addition, diet-induced obese mice were shown to have 

increased tumor growth and metastasis using multiple strains and tumor models [53–58]. A 

number of difficulties exist when it comes to treating obese cancer patients, including 

challenges caused by other comorbidities, difficulty with diagnosis or differences in 

physiology and pharmacokinetics [48]. Immunotherapies aimed at stimulating the immune 

system have revolutionized the field of cancer treatment [9]. Being that the immunotherapy 

field is relatively young, a number of toxicities independent of obesity still persist in patients 

undergoing treatment and limit efficacy [59,60]. However, Mirsoian et al. showed obese 

mice undergoing strong immunostimulatory therapy (high dose IL-2 and agonistic anti-

CD40) experience rapid and lethal cytokine storm, dependent on macrophage produced 

TNFα [61]. Interestingly, this phenotype could be reversed with caloric restriction. Based 

on this and the rising incidence of obesity, more research is needed on the effects of obesity 

on cancer therapy.

Obesity and T cell exhaustion

Obesity’s effect on the immune system can generally be described as accelerated immune 

aging, and one of the hallmarks of the immune aging is thymic involution and T cell 

senescence [62]. Consistent with this, obesity has previously been shown to accelerate 

thymic aging [11]. This is in contradiction to another report that found obesity lead to 

increases in thymic weight and cellularity, but this did not translate to significant differences 

in T cell numbers between lean and obese mice [63]. Therefore, one could argue that obesity 

lead to defects in thymic output on a per gram basis. Nonetheless, defects in thymic function 

could account for many of the complications with infection and cancer in obese patients. 

Most studies examining the functional potential of T cells in obesity find defects in their 

ability to mount effective immune responses in multiple species and models [14–

17,23,26,27,64–66]. On the other hand, some have found enhanced T cell function, leading 

to exacerbated pathology and disease [67,68]. Differences in the model and experimental 

design could account for these discrepancies. As mentioned before, the length of time on the 
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diet and when the diet was started could have a profound impact on the extent of obesity’s 

effect on T cells [30].

Chronic stimulation has been shown to lead to an exhausted phenotype in T cells, 

characterized by decreased proliferation and production of effector molecules, and increased 

expression of inhibitory receptors [10]. It is likely the chronic inflammatory environment, 

combined with the added changes in immune-active metabolites (leptin, adiponectin, 

glucose) could lead to an exhausted phenotype amongst T cells in obese individuals. TNFα 
was recently shown to be a critical inducer of T cell exhaustion in chronic viral infection, 

and obesity leads to increased levels of TNFα [69,70]. In addition, fatty acid mediated 

activation of T cells adds to this cascade of potential mediators of T cell exhaustion in 

obesity (Figure 1) [12]. PD-1 expression was even found to be linked to the metabolic status 

of T cells, dependent on changes in glucose availability in vitro [71]. More recently, PD-1 

was shown to augment energy metabolism and mitochondrial biogenesis of exhausted T 

cells by regulating expression of the key metabolic transcriptional regulator PGC-1α [72]. 

The authors also showed that early exhausted T cells upregulated expression of Cpt1a, a key 

regulator of FAO. PGC-1α levels have been previously shown to be decreased in the adipose 

tissue of obese individuals [73]. Therefore, the constant changes in the metabolic and 

activation status of T cells that occurs in obesity could lead to a terminally differentiated 

exhausted T cell phenotype.

The extent of T cell exhaustion or dysfunction could be dependent on the tissue examined as 

well, as recent work has identified a population of T cells in visceral adipose tissue 

displaying a senescent phenotype [74]. Shirakawa et al. show that a high fat diet caused an 

accumulation of CD4+ T cells with an effector memory phenotype, which expressed PD-1 

and CD153 in adipose tissue. Other tissue resident T cell populations in the setting of 

obesity remain to be examined. Organs such as the liver, where large fat deposits are known 

to occur, or organs known to be adversely affected by obesity would be of interest as 

potential niches for exhausted T cells. The increased levels of PD-1 expression in adipose 

tissue, as well as the increased adiposity associated with obesity leads to the question of 

what effects this could have on immunotherapy treatment of cancer. Checkpoint blockade is 

an emerging immunotherapy aimed at reinvigorating anti-cancer T cell responses through 

monoclonal antibody blocking of inhibitory receptors such as PD-1 on T cells [75]. Obese 

patients who are found to have T cells that express high levels of PD-1 might have a better 

response to anti-PD-1 treatment. Conversely, due to all of the known toxicities associated 

with emerging immunotherapies, as well as the known issues with immunotherapy in obese 

mice, obese patients might be at increased risk for toxicities or complications. More research 

is needed on the effects of obesity on T cell exhaustion, and the implications for checkpoint 

blockade therapy.

Conclusion

It is clear that obesity and the metabolic dysfunctions associated with it can have a profound 

effect on the status of the immune system. Here, we have highlighted some of the more 

current findings on this front, with a focus on T cells and implications in cancer 

immunotherapy. A combination of mechanisms are likely responsible for the T cell 
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dysfunction noted in obesity (Figure 1). The chronic stimulation T cells experience can lead 

to an exhausted-like phenotype. It is important to distinguish this from other exhaustion 

phenotypes as there is no known antigen driving this in obesity, and therefore it is unclear if 

this is exhaustion or senescence or tolerance. The impact of obesity on human health is 

massive, with no clear end in sight due to its continued rise. With this in mind, better pre-

clinical modeling is needed to more closely represent who is being treated in the clinic, and 

lead to better outcomes when moving treatments into the clinic.
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Highlights

• Obesity leads to a state of metabolic and immune dysfunction

• T cells are highly tuned by multiple intrinsic and extrinsic metabolic 

mechanisms

• Obesity can alter the efficacy of emerging cancer immunotherapies
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Figure 1: Mechanisms driving T cell dusfunction in the setting of obesity.
Increased adipose tissue appears to be the primary driver, producing adipokines such as 

leptin and adiponectin that have immune regulatory functions, and result in the recruitment 

of immune cells with altered levels of different metabolites such as fatty-acids, leptin or 

adiponectin. The local inflammatory environment drives M1 macrophage polarization as 

well as increased expression of co-stimulatory molecules resulting in T cell activation as 

well as elevated levels of proinflammatory cytokines. In addition, the altered metabolites 

(leptin, adiponectin and fatty-acids) can have direct effects on T cell activation. Collectively, 

they result in a dysfunctional T cell characterized by decreases in proliferation and effector 

function (i.e. cytokine production), as well as a decrease in the naive to memory T cell ratio. 

In addition, these changes will be accompanied by an increase in inhibitory receptor 

expression (i.e.PD-1) as well as imbalances of Th1 and Th17 responses over Th2 and Tregs.
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