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Abstract

We consider challenges that arise in the estimation of the mean outcome under an optimal 

individualized treatment strategy defined as the treatment rule that maximizes the population mean 

outcome, where the candidate treatment rules are restricted to depend on baseline covariates. We 

prove a necessary and sufficient condition for the pathwise differentiability of the optimal value, a 

key condition needed to develop a regular and asymptotically linear (RAL) estimator of the 

optimal value. The stated condition is slightly more general than the previous condition implied in 

the literature. We then describe an approach to obtain root-n rate confidence intervals for the 

optimal value even when the parameter is not pathwise differentiable. We provide conditions under 

which our estimator is RAL and asymptotically efficient when the mean outcome is pathwise 

differentiable. We also outline an extension of our approach to a multiple time point problem. All 

of our results are supported by simulations.
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1. Introduction

There has been much recent work in estimating optimal treatment regimes (TRs) from a 

random sample. A TR is an individualized treatment strategy in which treatment decisions 

for a patient can be based on their measured covariates. Doctors generally make decisions 
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this way, and thus it is natural to want to learn about the best strategy. The value of a TR is 

defined as the population counterfactual mean outcome if the TR were implemented in the 

population. The optimal TR is the TR with the maximal value, and the value at the optimal 

TR is the optimal value. In a single time point setting, the optimal TR can be defined as the 

sign of the “blip function,” defined as the additive effect of a blip in treatment on a 

counterfactual outcome, conditional on baseline covariates [Robins (2004)]. In a multiple 

time point setting, treatment strategies are called dynamic TRs (DTRs). For a general 

overview of recent work on optimal (D)TRs, see Chakraborty and Moodie (2013).

Suppose one wishes to know the impact of implementing an optimal TR in the population, 

that is, one wishes to know the optimal value. Before estimating the optimal value, one 

typically estimates the optimal rule. Recently, researchers have suggested applying machine 

learning algorithms to estimate the optimal rules from large classes which cannot be 

described by a finite dimensional parameter [see, e.g., Zhang et al. (2012b), Zhao et al. 

(2012), Luedtke and van der Laan (2014)].

Inference for the optimal value has been shown to be difficult at exceptional laws, that is, 

probability distributions where there exists a strata of the baseline covariates that occurs with 

positive probability and for which treatment is neither beneficial nor harmful [Robins 

(2004), Robins and Rotnitzky (2014)]. Zhang et al. (2012a) considered inference for the 

optimal value in restricted classes in which the TRs are indexed by a finite-dimensional 

vector. At non-exceptional laws, they outlined an argument showing that their estimator is 

(up to a negligible term) feequal to the estimator that estimates the value of the known 
optimal TR under regularity conditions. The implication is that one can estimate the optimal 

value and then use the usual sandwich technique to estimate the standard error and develop 

Wald-type confidence intervals (CIs). van der Laan and Luedtke (2014b) and van der Laan 

and Luedtke (2014a) developed inference for the optimal value when the DTR belongs to an 

unrestricted class. van der Laan and Luedtke (2014a) provide a proof that the efficient 

influence curve for the parameter which treats the optimal rule as known is equal to the 

efficient influence curve of the optimal value at non-exceptional laws. One of the 

contributions of the current paper is to present a slightly more precise statement of the 

condition for the pathwise differentiability of the mean outcome under the optimal rule. We 

will show that this condition is necessary and sufficient.

However, restricting inference to non-exceptional laws is limiting as there is often no 

treatment effect for people in some strata of baseline covariates. Chakraborty, Laber and 

Zhao (2014) propose using the m-out-of-n bootstrap to obtain inference for the value of an 

estimated DTR. With an inverse probability weighted (IPW) estimator this yields valid 

inference when the treatment mechanism is known or is estimated according to a correctly 

specified parametric model. They also discuss an extension to an double robust estimator. 

The m-out-of-n bootstrap draws samples of size m patients from the data set of size n. In 

non-regular problems, this method yields valid inference if m,n→∞ and m= o(n). The CIs 

for the value of an estimated regime shrink at a root-m (not root-n) rate. In addition to 

yielding wide CIs, this approach has the drawback of requiring a choice of the important 

tuning parameter m, which balances a trade-off between coverage and efficiency. 
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Chakraborty, Laber and Zhao propose using a double bootstrap to select this tuning 

parameter.

Goldberg et al. (2014) instead consider truncating the criteria to be optimized, that is, the 

value under a given rule, so that only individuals with a clinically meaningful treatment 

effect contribute to the objective function. These authors then propose proceeding with 

inference for the truncated value at the optimal DTR. For a fixed truncation level, the 

estimated truncated optimal value minus the true truncated optimal value, multiplied by root-

n, converges to a normal limiting distribution. Laber et al. (2014b) propose instead replacing 

the indicator used to define the value of a TR with a differentiable function. They discuss 

situations in which the estimator minus the smoothed value of the estimated TR, multiplied 

by root-n, would have a reasonable limit distribution.

In this work, we develop root-n rate inference for the optimal value under reasonable 

conditions. Our approach avoids any sort of truncation, and does not require that the 

estimate of the optimal rule converge to a fixed quantity as the sample size grows. We show 

that our estimator minus the truth, properly standardized, converges to a standard normal 

limiting distribution. This allows for the straightforward construction of asymptotically valid 

CIs for the optimal value. Neither the estimator nor the inference rely on a complicated 

tuning parameter. We give conditions under which our estimator is asymptotically efficient 

among all regular and asymptotically linear (RAL) estimators when the optimal value 

parameter is pathwise differentiable, similar to those we presented in van der Laan and 

Luedtke (2014b). However, they do not require that one knows that the optimal value 

parameter is pathwise differentiable from the outset. Implementing the procedure only 

requires a minor modification to a typical one-step estimator.

We believe the value of the unknown optimal rule is an interesting target of inference 

because the treatment strategy learned from the given data set is likely to be improved upon 

as clinicians gain more knowledge, with the treatment strategy given in the population 

eventually approximating the optimal rule. Additionally, the optimal rule represents an upper 

bound on what can be hoped for when a treatment is introduced. Nonetheless, as we and 

others have argued in the references above, the value of the estimated rule is also an 

interesting target of inference [Chakraborty, Laber and Zhao (2014), Laber et al. (2014b), 

van der Laan and Luedtke (2014a, 2014b)]. Thus, although our focus is on estimating the 

optimal value, we also give conditions under which our CI provides proper coverage for the 

data adaptive parameter which gives the value of the rule estimated from the entire data set.

Organization of article

Section 2 formulates the statistical problem of interest. Section 3 gives necessary and 

sufficient conditions for the pathwise differentiability of the optimal value. Section 4 

outlines the challenge of obtaining inference at exceptional laws and gives a thought 

experiment that motivates our procedure for estimating the optimal value. Section 5 presents 

an estimator for the optimal value. This estimator represents a slight modification to a 

recently presented online one-step estimator for pathwise differentiable parameters. Section 

6 discusses computationally efficient implementations of our proposed procedure. Section 7 

discusses each condition of the key result presented in Section 5. Section 8 describes our 
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simulations. Section 9 gives our simulation results. Section 10 closes with a summary and 

some directions for future work.

All proofs can be found in Supplementary Appendix A [Luedtke and van der Laan (2015)]. 

We outline an extension of our proposed procedure to the multiple time point setting in 

Supplementary Appendix B. Additional figures appear in Supplementary Appendix C.

2. Problem formulation

Let O = (W,A, Y) ~ P0 ∈ ℳ, where W represents a vector of covariates, A a binary 

intervention, and Y a real-valued outcome. The model for P0 is nonparametric. We observe 

an independent and identically distributed (i.i.d.) sample O1, …, On from P0. Let  denote 

the range of W. For a distribution P, define the treatment mechanism g(P)(A|W) ≜ PrP (A|

W). We will refer to g(P0) as g0 and g(P) as g. For a function f, we will use EP [f(O)] to 

denote ∫ f(o)dP(o). We will also use E0[f(O)] to denote EP0[f(O)] and Pr0 to denote the P0 

probability of an event. Let Ψ : ℳ→ℝ be defined by

Ψ(P) ≜ EPEP[Y ∣ A = d(P)(W), W],

where d(P) ≜ argmaxdEPEP (Y |A = d(W),W) is an optimal treatment rule under P. We will 

resolve the ambiguity in the definition of d when the argmax is not unique later in this 

section. Throughout we assume that Pr0(0 < g0(1|W) < 1) so that Ψ(P0) is well defined. 

Under causal assumptions, Ψ(P) is equal to the counterfactual mean outcome if, possibly 

contrary to fact, the rule d(P) were implemented in the population. We can also identify d(P) 

with a causally optimal rule under those same assumptions. We refer the reader to van der 

Laan and Luedtke (2014b) for a more precise formulation of such a treatment strategy. As 

the focus of this work is statistical, all of the results will hold when estimating the parameter 

Ψ(P0) whether or not the causal assumptions needed for identifiability hold. Let

Q(P)(A, W) ≜ EP[Y ∣ A, W],
Qb(P)(W) ≜ Q(P)(1, W) − Q(P)(0, W) .

We will refer to Q̄
b(P) the blip function for the distribution P. We will denote to the above 

quantities applied to P0 as Q̄
0 and Q̄

b,0, respectively. We will often omit the reliance on P 
altogether when there is only one distribution P under consideration: Q̄(A,W) and Q̄

b(W). 

We also define Ψd(P) = EPQ̄(d(P)(W),W). Consider the efficient influence curve of Ψd at P:

D(d, P)(O) = I(A = d(W))
g(A ∣ W) (Y − Q(A, W)) + Q(d(W), W) − Ψd(P) .

Let B(P) ≜ {w : Q̄
b(w) = 0}. We will refer to B(P0) as B0. An exceptional law is defined as a 

distribution P for which PrP (W ∈ B(P)) > 0 [Robins (2004)]. We note that the ambiguity in 

the definition of d(P) occurs precisely on the set B(P). In particular, d(P) must almost surely 

agree with some rule in the class
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{w I(Qb(w) > 0)I(w ∉ B(P)) + b(w)I(w ∈ B(P)):b}, (1)

where b :  → {0, 1} is some function. Consider now the following uniquely defined 

optimal rule:

d∗(P)(W) ≜ I(Qb(W) > 0) .

We will let d0
∗ = d∗(P0). We have Ψ(P) = Ψd*(P)(P), but now d*(P) is uniquely defined for all 

W. More generally, d*(P) represents a uniquely defined optimal rule. Other formulations of 

the optimal rule can be obtained by changing the behavior of the rule B0. Our goal is to 

construct root-n rate CIs for Ψ(P0) that maintain nominal coverage, even at exceptional 

laws. At non-exceptional laws, we would like these CIs to belong to and be asymptotically 

efficient among the class of regular asymptotially linear (RAL) estimators.

3. Necessary and sufficient conditions for pathwise differentiability of Ψ

In this section, we give a necessary and sufficient condition for the pathwise differentiability 

of the optimal value parameter Ψ. When it exists, the pathwise derivative in a nonparametric 

model can be written as an inner product between an almost surely unique mean zero, square 

integrable function known as the canonical gradient and a score function. The canonical 

gradient is a key object in nonparametric statistics. We remind the reader that an estimator Φ̂ 

is asymptotically linear for a parameter mapping Φ at P0 with influence curve IC0 if

Φ(Pn) − Φ(P0) = 1
n ∑

i = 1

n
IC0(Oi) + oP0

(n−1/2),

where E0[IC0(O)] = 0. The pathwise derivative is important because, when Φ is pathwise 

differentiable in a nonparametric model, any regular estimator Φ̂ is asymptotically linear 

with influence curve IC0(Oi) if and only if IC0 is the canonical gradient [Bickel et al. 

(1993)]. We discuss negative results for non-pathwise differentiable parameters and formally 

define “regular estimator” later in this section.

The pathwise derivative of Ψ at P0 can be defined as follows. Define paths {Pε : ε ∈ ℝ} ⊂ 
ℳ that go through P0 at ε = 0, that is, Pε=0 = P0. In particular, these paths are given by

dQW , ε = (1 + εSW(W)) dQW , 0,
where E0[SW(W)] = 0 and sup

w
∣ SW(w) ∣ < ∞ ;

dQY , ε(Y ∣ A, W) = (1 + εSY(Y ∣ A, W)) dQY , 0(Y ∣ A, W),
where E0[SY ∣ A, W] = 0 and sup

w, a, y
∣ SY(y ∣ a, w) ∣ < ∞ .

(2)
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Above QW,0 and QY,0 are respectively the marginal distribution of W and the conditional 

distribution of Y given A,W under P0. The parameter Ψ is not sensitive to fluctuations of 

g0(a|w) = Pr0(a|w), and thus we do not need to fluctuate this portion of the likelihood. The 

parameter Ψ is called pathwise differentiable at P0 if

d
dεΨ(Pε)

ε = 0
= ∫ D∗(P0)(o)(SW(w) + SY ∣ A, W(y ∣ a, w)) dP0(o)

for some P0 mean zero, square integrable function D*(P0) with E0[D* × (P0)(O)|A,W] 

almost surely equal to E0[D*(P0)(O)|W]. We refer the reader to Bickel et al. (1993) for a 

more general exposition of pathwise differentiability.

In van der Laan and Luedtke (2014a), we showed that Ψ is pathwise differentiable at P0 with 

canonical gradient D(d0
∗, P0) if P0 is a non-exceptional law, that is, Pr0(W ∉ B0) = 1. 

Exceptional laws were shown to present problems for estimation of optimal rules indexed by 

a finite dimensional parameter by Robins (2004), and it was observed by Robins and 

Rotnitzky (2014) that these laws can also cause problems for unrestricted optimal rules. 

Here, we show that mean outcome under the optimal rule is pathwise differentiable under a 

slightly more general condition than requiring a non-exceptional law, namely that

Pr0 w ∈ 𝒲:w ∉ B0 or max
a ∈ {0, 1}

σ0
2(a, w) = 0 = 1, (3)

where σ0(a, w) ≜ VarP0
(Y ∣ A = a, W = w). The upcoming theorem also gives the converse 

result, that is, the mean outcome under the optimal rule is not pathwise differentiable if the 

above condition does not hold.

Theorem 1—Assume Pr0(0 < g0(1|W) < 1) = 1, Pr0(|Y |< M) = 1 for some M < ∞, and 

VarP0
(D(d0

∗, P0)(O)) < ∞. The parameter Ψ(P0) is pathwise differentiable if and only if (3) 

holds. If Ψ is pathwise differentiable at P0, then Ψ has canonical gradient D(d0
∗, P0) at P0.

In the proof of the theorem, we construct fluctuations SW and SY such that

lim
ε 0

Ψ(Pε) − Ψ(P0)
ε ≠ lim

ε 0

Ψ(Pε) − Ψ(P0)
ε (4)

when (3) does not hold. It then follows that Ψ(P0) is not pathwise differentiable. The left- 

and right-hand sides above are referred to as one-sided directional derivatives by Hirano and 

Porter (2012).
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This condition for the mean outcome differs slightly from that implied for unrestricted rules 

in Robins and Rotnitzky (2014) in that we still have pathwise differentiability when the Q̄
b,0 

is zero in some strata but the conditional variance of the outcome given covariates and 

treatment is also zero in all of those strata. This makes sense, given that in this case the blip 

function could be estimated perfectly in those strata in any finite sample with treated and 

untreated individuals observed in that strata. Though we do not expect this difference to 

matter for most data generating distributions encountered in practice, there are cases where it 

may be relevant. For example, if no one in a certain strata is susceptible to a disease 

regardless of treatment status, and researchers are unaware of this a priori so that simply 

excluding this strata from the target population is not an option, then the treatment effect and 

conditional variance are both zero in this strata.

In general, however, we expect that the mean outcome under the optimal rule will not be 

pathwise differentiable under exceptional laws encountered in practice. For this reason, we 

often refer to “exceptional laws” rather than “laws which do not satisfy (3)” in this work. We 

do this because the term “exceptional law” is well established in the literature, and also 

because we believe that there is likely little distinction between “exceptional law” and “laws 

which do not satisfy (3)” for many problems of interest.

For the definitions of regularity and local unbiasedness, we let Pε be as in (2), with g0 also 

fluctuated. That is, we let dPε = dQY,ε × gε × dQW,ε, where gε(A|W) = (1+εSA(A|W))g0(A|

W) with E0[SA(A|W)|W] = 0 and supa,w |SA(a|w)| < ∞. The estimator Φ̂ of Φ(P0) is called 

regular if the asymptotic distribution of n(Φ(Pn) − Φ(P0)) is not sensitive to small 

fluctuations in P0. That is, the limiting distribution of n(Φ(Pn, ε = 1/ n) − Φ(Pε = 1/ n)) does 

not depend on SW, SA, or SY, where Pn, ε = 1/ n is the empirical distribution O1, …, On 

drawn i.i.d. from Pε = 1/ n. The estimator Φ̂ is called locally unbiased if the limiting 

distribution of n(Φ(Pn, ε = 1/ n) − Φ(Pε = 1/ n)) has mean zero for all fluctuations SW, SA 

and SY, and is called asymptotically unbiased (at P0) if the bias of Φ̂(Pn) for the parameter 

Φ(P0) is oP0(n−1/2) at P0.

The non-regularity of a statistical inference problem does not typically imply the 

nonexistence of asymptotically unbiased estimators [see Example 4 of Liu and Brown 

(1993) and the discussion thereof in Chen (2004)], but rather the non-existence of locally 
asymptotically unbiased estimators whenever (4) holds for some fluctuation [Hirano and 

Porter (2012)]. It is thus not surprising that we are able to find an estimator that is 

asymptotically unbiased at a fixed (possibly exceptional) law under mild assumptions. 

Hirano and Porter also show that there does not exist a regular estimator of the optimal value 

at any law for which (4) holds for some fluctuation. That is, no regular estimators of Ψ(P0) 

exist at laws which satisfy the conditions of Theorem 1 but do not satisfy (3), that is, one 

must accept the non-regularity of their estimator when the data is generated from such a law. 

Note that this does not rule out the development of locally consistent confidence bounds 

similar to those presented by Laber and Murphy (2011) and Laber et al. (2014a), though 

such approaches can be conservative when the estimation problem is non-regular.
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In this work, we present an estimator Ψ̂ for which Γn n(Ψ(Pn) − Ψ(P0)) converges in 

distribution to a standard normal distribution for a random standardization term Γn under 

reasonable conditions. Our estimator does not require any complicated tuning parameters, 

and thus allows one to easily develop root-n rate CIs for the optimal value. We show that our 

estimator is RAL and efficient at laws which satisfy (3) under conditions.

4. Inference at exceptional laws

4.1. The challenge

Before presenting our estimator, we discuss the challenge of estimating the optimal value at 

exceptional laws. Suppose dn is an estimate of d0
∗ and Ψd̂n (Pn) is an estimate of Ψ(P0) 

relying on the full data set. In van der Laan and Luedtke (2014b), we presented a targeted 

minimum loss-based estimator (TMLE) Ψ̂
dn (Pn) which satisfies

Ψdn
(Pn) = Ψ(P0) = (Pn − P0)D(dn, Pn

∗) + Ψdn
(P0) − Ψ(P0)

oP0
(n−1/2) under conditions

+ oP0
(n−1/2),

where we use the notation Pf = EP [f(O)] for any distribution P and the second oP0(n−1/2) 

term is a remainder from a first-order expansion of Ψ. The term Ψdn(P0)−Ψ(P0) being oP0(n
−1/2) relies on the optimal rule being estimated well in terms of value and will often prove to 

be a reasonable condition, even at exceptional laws (see Theorem 8 in Section 7.5). Here, Pn
∗

is an estimate of the components of P0 needed to estimate D(dn, P0). To show asymptotic 

linearity, one might try to replace D(dn, Pn
∗) with a term that does not rely on the sample:

(Pn − P0)D(dn, Pn
∗) = (Pn − P0)D(d0

∗, P0) + (Pn − P0)(D(dn, Pn
∗) − D(d0

∗, P0))
empirical process

.

If D(dn, Pn
∗) belongs to a Donsker class and converges to D(d0

∗, P0) in L2(P0), then the 

empirical process term is oP0(n−1/2) and n(Ψdn
(Pn) − Ψ(P0)) converges in distribution to a 

normal random variable with mean zero and variance VarP0
(D(d0

∗, P0)) [van der Vaart and 

Wellner (1996)]. Note that D(dn, Pn
∗) being consistent for D(d0

∗, P0) will typically rely on dn 

being consistent for the fixed d0
∗ in L2(P0), which we emphasize is not implied by Ψdn(P0) − 

Ψ(P0) = oP0(n−1/2). Zhang et al. (2012a) make this assumption in the regularity conditions in 

their Web Appendix A when they consider an analogous empirical process term in deriving 

the standard error of an estimate of the optimal value in a restricted class. More specifically, 

Zhang et al. assume a non-exceptional law and consistent estimation of a fixed optimal rule. 

van der Laan and Luedtke (2014b) also make such an assumption. If P0 is an exceptional 

law, then we likely do not expect dn to be consistent for any fixed (non-data dependent) 
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function. Rather, we expect dn to fluctuate randomly on the set B0, even as the sample size 

grows to infinity. In this case, the empirical process term considered above is not expected to 

behave as oP0(n−1/2).

Accepting that our estimates of the optimal rule may not stabilize as sample size grows, we 

consider an estimation strategy that allows dn to remain random even as n → ∞.

4.2. A thought experiment

First, we give an erroneous estimation strategy which contains the main idea of the approach 

but is not correct in its current form. A modification is given in the next section. For 

simplicity, we will assume that one knows vn ≜ VarP0(D(dn, P0)) given an estimate dn and, 

for simplicity, that vn is almost surely bounded away from zero. Under reasonable 

conditions,

vn
−1/2(Ψdn

(Pn) − Ψ(P0)) = (Pn − P0)vn
−1/2D(dn, Pn

∗) + oP0
(n−1/2) .

The empirical process on the right is difficult to handle because dn and vn are random 

quantities that likely will not stabilize to a fixed limit at exceptional laws.

As a thought experiment, suppose that we could treat { vn
−1/2D(dn, Pn

∗):n} as a deterministic 

sequence, where this sequence does not necessarily stabilize as sample size grows. In this 

case, the Lindeberg–Feller central limit theorem (CLT) for triangular arrays [see, e.g., 

Athreya and Lahiri (2006)] would allow us to show that the leading term on the right-hand 

side converges to a standard normal random variable. This result relies on inverse weighting 

by vn so the variance of the terms in the sequence stabilizes to one as sample size gets 

large.

Of course, we cannot treat these random quantities as deterministic. In the next section, we 

will use the general trick of inverse weighting by the standard deviation of the terms over 

which we are taking an empirical mean, but we will account for the dependence of the 

estimated rule dn on the data by inducing a martingale structure that allows us to treat a 

sequence of estimates of the optimal rule as known (conditional on the past). We can then 

apply a martingale CLT for triangular arrays to obtain a limiting distribution for our 

estimator.

5. Estimation of and inference for the optimal value

In this section, we present a modified one-step estimator Ψ̂ of the optimal value. This 

estimator relies on estimates of the treatment mechanism g0, the strata-specific outcome Q̄
0, 

and the optimal rule d0
∗. We first present our estimator, and then present an asymptotically 

valid two-sided CI for the optimal value under conditions. Next, we give conditions under 

which our estimator is RAL and efficient, and finally we present a (potentially conservative) 

asymptotically valid one-sided CI which lower bounds the mean outcome under the 
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unknown optimal treatment rule. The one-sided CI uses the same lower bound from the two-

sided CI, but does not require a condition about the rate at which the value of the optimal 

rule converges to the optimal value, or even that the value of the estimated rule is consistent 

for the optimal value.

The estimators in this section can be extended to a martingale-based TMLE for Ψ(P0). 

Because the primary purpose of this paper is to deal with inference at exceptional laws, we 

will only present an online one-step estimator and leave the presentation of such a TMLE to 

future work.

5.1. Estimator of the optimal value

In this section, we present our estimator of the optimal value. Our procedure first estimates 

the needed features g0, Q̄
0, and d0

∗ of the likelihood based on a small chunk of data, and then 

evaluates a one-step estimator with these nuisance function values on the next chunk of the 

data. It then estimates the features on the first two chunks of data, and evaluates the one-step 

estimator on the next chunk of data. This procedure iterates until we have a sequence of 

estimates of the optimal value. We then output a weighted average of these chunk-specific 

estimates as our final estimate of the optimal value. While the first chunk needs to be large 

enough to estimate the desired nuisance parameters, that is, large enough to estimate the 

features, all subsequent chunks can be of arbitrary size (as small as a single observation).

We now formally describe our procedure. Define

D∼(d, Q, g)(o) ≜ I(a = d(w))
g(a ∣ w) (Y − Q(a, w)) + Q(d(w), w) .

Let {ℓn} be some sequence of non-negative integers representing the smallest sample on 

which the optimal rule is learned. For each j = 1, …, n, let Pn,j represent the empirical 

distribution of the observations (O1, O2, …, Oj). Let gn,j, Q̄
n,j, and dn,j respectively represent 

estimates of the g0, Q̄
0, and d0

∗ based on (some subset of) the observations (O1, …, Oj−1) for 

all j > ℓn. We subscript each of these estimates by both n and j because the subsets on which 

these estimates are obtained may depend on sample size. We give an example of a situation 

where this would be desirable in Section 6.1.

Define

σ∼0, n, j
2 ≜ VarP0

(D∼(dn, j, Qn, j, gn, j)(O) ∣ O1, …, O j − 1) .

Let σ∼n, j
2  represent an estimate of σ∼0, n, j

2  based on (some subset of) the observations (O1, …, 

Oj−1). Note that we omit the dependence of σ̃
n,j and σ̃0,n,j on dn,j, Q̄

n,j, and gn,j in the 

notation. Our results apply to any sequence of estimates σ∼n, j
2  which satisfies conditions (C1) 

through (C5), which are stated later in this section. Also define
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Γn ≜ 1
n − ℓn

∑
j = ℓn + 1

n
σ∼n, j

−1 .

Our estimate Ψ̂(Pn) of Ψ(P0) is given by

Ψ(Pn) ≜ Γn
−1 1

n − ℓn
∑

j = ℓn + 1

n
σ∼n, j

−1D∼n, j(O j) =
∑ j = ℓn + 1

n σ∼n, j
−1D∼n, j(O j)

∑ j = ℓn + 1
n σ∼n, j

−1 , (5)

where D̃
n,j ≜ D̃(dn,j, Q̄

n,j, gn,j). We note that the Γn
−1 standardization is used to account for 

the term-wise inverse weighting so that Ψ̂(Pn) estimates Ψ(P0) = E0[D∼(d0
∗, Q0, g0)]. The above 

looks a lot like a standard augmented inverse probability weighted (AIPW) estimator, but 

with d0
∗ estimated on chunks of data increasing in size and with each term in the sum given 

weight proportional to an estimate of the conditional variance of that term. Our estimator 

constitutes a minor modification of the online one-step estimator presented in van der Laan 

and Lendle (2014). In particular, each term in the sum is inverse weighted by an estimate of 

the standard deviation of D̃
n,j. For ease of reference, we will refer to the estimator above as 

an online one-step estimator.

This estimation scheme differs from sample split estimation, where features are estimated on 

half of the data and then a one-step estimator is evaluated on the remaining half of the data. 

While one can show that such estimators achieve valid coverage using Wald-type CIs, these 

CIs will generally be approximately 2 times larger than the CIs of our proposed procedure 

(see the next section) because the one-step estimator is only applied to half of the data. 

Alternatively, one could try averaging two such estimators, where the training and the one-

step sample are swapped between the two estimators. Such a procedure will fail to yield 

valid Wald-type CIs due to the non-regularity of the inference problem: one cannot replace 

the optimal rule estimates with their limits because such limits will not generally exist, and 

thus the estimator averages over terms with a complicated dependence structure.

5.2. Two-sided confidence interval for the optimal value

Define the remainder terms

R1n ≜ 1
n − ℓn

∑
j = ℓn + 1

n
σ∼n, j

−1E0 1 −
g0(dn, j(W) ∣ W)

gn, j(dn, j(W) ∣ W) × (Qn, j(dn, j(W), W) − Q0(dn, j(W), W)) ,

R2n ≜ 1
n − ℓn

∑
j = ℓn + 1

n Ψdn, j
(P0) − Ψ(P0)

σ∼n, j
.

Luedtke and van der Laan Page 11

Ann Stat. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The upcoming theorem relies on the following assumptions:

(C1) n − ℓn diverges to infinity as n diverges to infinity.

(C2) Lindeberg-like condition: for all ε > 0,

1
n − ℓn

∑
j = ℓn + 1

n
E0

D∼n, j(O)
σ∼n, j

2
Tn, j(O) O1, …, O j − 1 = oP0

(1),

Where Tn, j(O) ≜ I(
∣ D∼n, j(O) ∣

σ∼n, j
> ε n − ℓn).

(C3) 1
n − ℓn

∑ j = ℓn + 1
n σ∼0, n, j

2

σ∼n, j
2  converges to 1 in probability.

(C4) R1n = oP0(n−1/2).

(C5) R2n = oP0(n−1/2).

The assumptions are discussed in Section 7. We note that all of our results also hold with 

R1n and R2n behaving as oP0
(1/ n − ℓn), though we do not expect this observation to be of 

use in practice as we recommend choosing ℓn so that n − ℓn increases at the same rate as n.

Theorem 2—Under conditions (C1) through (C5), we have that

Γn n − ℓn(Ψ(Pn) − Ψ(P0)) N(0, 1),

where we use “↝” to denote convergence in distribution as the sample size converges to 
infinity. It follows that an asymptotically valid 1 − α CI for Ψ(P0) is given by

Ψ(Pn) ± z1 − α/2
Γn

−1

n − ℓn
,

where z1−α/2 denotes the 1 − α/2 quantile of a standard normal random variable.

We have shown that, under very general conditions, the above CI yields an asymptotically 

valid 1 − α CI for Ψ(P0). We refer the reader to Section 7 for a detailed discussion of the 

conditions of the theorem. We note that our estimator is asymptotically unbiased, that is, has 

bias of the order oP0(n−1/2), provided that Γn = OP0(1) and n − ℓn grows at the same rate as n.

Interested readers can consult the proof of Theorem 2 in the Appendix for a better 

understanding of why we proposed the particular estimator given in Section 5.1.
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5.3. Conditions for asymptotic efficiency

We will now show that, if P0 is a non-exceptional law and dn,j has a fixed optimal rule limit 

d0, then our online estimator is RAL for Ψ(P0). The upcoming corollary makes use of the 

following consistency conditions for some fixed rule d0 which falls in the class of optimal 

rules given in (1):

1
n − ℓn

∑
j = ℓn + 1

n
E0[(dn, j(W) − d0(W))2 ∣ O1, …, O j − 1] = oP0

(1), (6)

1
n − ℓn

∑
j = ℓn + 1

n
E0[(Qn, j(d0(W), W) − Q0(d0(W), W))2 ∣ O1, …, O j − 1] = oP0

(1), (7)

1
n − ℓn

∑
j = ℓn + 1

n
E0[(gn, j(d0(W) ∣ W) − g0(d0(W) ∣ W))2 ∣ O1, …, O j − 1] = oP0

(1) . (8)

It also makes use of the following conditions, which are, respectively, slightly stronger than 

conditions (C1) and (C3):

(C1′) ℓn = o(n).

(C3′) 1
n − ℓn

∑ j = ℓn + 1
n ∣

σ∼0, n, j
2

σ∼n, j
2 − 1 ∣ 0 in probability.

Corollary 3—Suppose that conditions (C1′), (C2), (C3′), (C4) and (C5) hold. Also 
suppose that Pr0(δ < g0(1|W) < 1 − δ) = 1 for some δ > 0, the estimates gn,j are bounded 
away from zero with probability 1, Y is bounded, the estimates Q̄n,j are uniformly bounded, 
ℓn = o(n), and that, for some fixed optimal rule d0, (6), (7) and (8) hold. Finally, assume that 
VarP0(D̃(d0, Q̄

0, g0)) > 0 and that, for some δ0 > 0, we have that

Pr0 inf
j, n

σ∼n, j
2 > δ0 = 1,

where the infimum is over natural number pairs (j, n) for which ℓn < j ≤ n. Then we have that

Γn
−1 VarP0

(D∼(d0, Q0, g0)) in probability as n ∞ . (9)

Additionally,

Luedtke and van der Laan Page 13

Ann Stat. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ψ(Pn) − Ψ(P0) = 1
n ∑

i = 1

n
D(d0, P0) + oP0

(1/ n) . (10)

That is, Ψ̂(Pn) is asymptotically linear with influence curve D(d0, P0). Under the conditions 
of this corollary, it follows that P0 satisfies (3) if and only if Ψ̂(Pn) is RAL and 
asymptotically efficient among all such RAL estimators.

We note that (9) combined with (C1′) implies that the CI given in Theorem 2 asymptotically 

has the same width [up to an oP0(n−1/2) term] as the CI which treats (10) and D(d0, P0) as 

known and establishes a typical Wald-type CI about Ψ̂(Pn).

The empirical averages over j in (6), (7) and (8) can easily be dealt with using Lemma 6, 

presented in Section 7.3. Essentially, we have required that dn,j, Q̄
n,j and gn,j are consistent 

for d0, Q̄
0 and g0 as n and j get large, where d0 is some fixed optimal rule. One would expect 

such a fixed limiting rule d0 to exist at a non-exceptional law for which the optimal rule is 

(almost surely) unique. If g0 is known, then we do not need Q̄
n,j to be consistent for Q̄

0 to 

get asymptotic linearity, but rather that Q̄
n,j converges to some possibly misspecified fixed 

limit Q̄.

5.4. Lower bound for the optimal value

It would likely be useful to have a conservative lower bound on the optimal value in practice. 

If policymakers were to implement an optimal individualized treatment rule whenever the 

overall benefit is greater than some fixed threshold, that is, Ψ(P0) > v for some fixed v, then 

a one-sided CI for Ψ(P0) would help facilitate the decision to implement an individualized 

treatment strategy in the population.

The upcoming theorem shows that the lower bound from the 1 − 2α CI yields a (potentially 

conservative) asymptotic 1 − α CI for the optimal value. If d0
∗ is estimated well in the sense 

of condition (C5), then the asymptotic coverage is exact. Define

LBn(α) ≜ Ψ(Pn) − z1 − α
Γn

−1

n − ℓn
.

Theorem 4—Under conditions (C1) through (C4), we have that

lim inf
n ∞

Pr0 (Ψ(P0) > LBn(α)) ≥ 1 − α .

If condition (C5) also holds, then
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lim
n ∞ Pr0 (Ψ(P0) > LBn(α)) = 1 − α .

The above condition should not be surprising, as we base our CI for Ψ(P0) on a weighted 

combination of estimates of Ψdn,j(P0) for j < n. Because Ψ(P0) ≥ Ψdn,j(P0) for all such j, we 

would expect that the lower bound of the 1 − α CI given in the previous section provides a 

valid 1 − α/2 one-sided CI for Ψ(P0). Indeed this is precisely what we see in the proof of the 

above theorem.

5.5. Coverage for the value of the rule estimated on the entire data set

Suppose one wishes to evaluate the coverage of our CI for the data dependent parameter 

Ψdn(P0), where dn is an estimate of the optimal rule based on the entire data set of size n. 

We make two key assumptions in this section, namely that there exists some real number ψ1 

such that:

(C6) Γn(Ψdn (P0) − ψ1) = oP0(n−1/2).

(C7) 1
n − ℓn

∑ j = ℓn + 1
n

Ψdn, j
(P0) − ψ1

σ∼n, j
= oP0

(n−1/2).

Typically, Γn = OP0(1) so that condition (C6) is the same as Ψdn
(P0) = ψ1 + oP0

(1/ n). As 

will become apparent after reading Section 7, condition (C6) will typically imply (C7) (see 

Lemma 6). Theorem 8 shows that condition (C6) is often reasonable with ψ1 =Ψ(P0), 

though we do not require that ψ1 =Ψ(P0).

Theorem 5—Suppose conditions (C1) through (C4) and conditions (C6) and (C7) hold. 
Then

Γn n − ℓn(Ψ(Pn) − Ψdn
(P0)) N(0, 1) .

Thus, the same CI given in Theorem 2 is an asymptotically valid 1 − α CI for Ψdn(P0).

6. Computationally efficient estimation schemes

Computing Ψ̂(Pn) may initially seem computationally demanding. In this section, we 

discuss two estimation schemes which yield computationally simple routines.

6.1. Computing the features on large chunks of the data

One can compute the estimates of Q0̄, g0 and d0
∗ far fewer than n − ℓn times. For each j, the 

estimates Q̄
n,j, gn,j, and dn,j may rely on any subset of the observations O1, …, Oj−1. Thus, 

one can compute these estimators on S increasing subsets of the data, where the first subset 

consists of observations O1, …, Oℓn and each of the S − 1 remaining samples adds a 1/S 
proportion of the remaining n − ℓn observations. Note that this scheme makes use of the fact 
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that, for fixed j, the feature estimates, indexed by n and j, for example, dn,j, may rely on 

different subsets of observations O1, …, Oj−1 for different sample sizes n.

6.2. Online learning of the optimal value

Our estimator was inspired by online estimators which can operate on large data sets that 

will not fit into memory. These estimators use online prediction and regression algorithms 

which update the initial fit based on previously observed estimates using new observations 

as they are read into memory. Online estimators of pathwise differentiable parameters were 

introduced in van der Laan and Lendle (2014). Such estimation procedures often require 

estimates of features of the likelihood, which can be obtained using modern online 

regression and classification approaches [see, e.g., Zhang (2004), Langford, Li and Zhang 

(2009), Luts, Broderick and Wand (2014)]. Our estimator constitutes a slight modification of 

the one-step online estimator presented by van der Laan and Lendle (2014), and thus all 

discussion of computational efficiency given in that paper applies to our case.

For our estimator, one could use online estimators of Q̄
0, g0 and d0

∗, and then update these 

estimators as the index j in the sum in (5) increases. Calculating the standard error estimate 

σ̃
n,j will typically require access to an increasing subset of the past observations, that is, as 

sample size grows one may need to hold a growing number of observations in memory. If 

one uses a sample standard deviation to estimate σ̃0,n,j based on subset of observations O1, 
…,Oj−1, the results we present in Section 7.3 will indicate that one really only needs that the 

number of points on which σ̃0,n,j is estimated grows with j rather than at the same rate as j. 
This suggest that, if computation time or system memory is a concern for calculating σ̃

n,j, 

then one could calculate σñ,j based on some o(j) subset of observations O1, …, Oj−1.

7. Discussion of the conditions of Theorem 2

For ease of notation, we will assume that, for all j >ℓn, we do not modify our feature 

estimates based on the first j−1 data points as the sample size grows. That is, for all sample 

sizes m,n and all j ≤ min{m,n}, dn,j = dm,j, Q̄
n,j = Q̄

m,j, gn,j = gm,j, and σ̃
n,j = σ̃m,j. One can 

easily extend all of the discussion in this section to a more general case where, for example, 

dn,j ≠ dm,j for n ≠ m. This may be useful if the optimal rule is estimated in chunks of 

increasing size as was discussed in Section 6.1. To make these object’s lack of dependence 

on n clear, in this section we will denote dn,j, Q̄
n,j, gn,j, σ̃

n,j, and σ̃
0,n,j as dj, Q̄

j, gj, σ̃j and σ̃0,j. 

This will also help make it clear when oP0 notation refers to behavior as j, rather than n, goes 

to infinity.

For our discussion, we assume there exists a (possibly unknown) δ0 > 0 such that

Pr0 inf
j > ℓn

σ∼0, j
2 > δ0 = 1, (11)

where the probability statement is over the i.i.d. draws O1,O2, …. The above condition is not 

necessary, but will make our discussion of the conditions more straightforward.
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7.1. Discussion of condition (C1)

We cannot apply the martingale CLT in the proof of Theorem 2 if n − ℓn does not grow with 

sample size. Essentially, this condition requires that a non-negligible proportion of the data 

is used to actually estimate the mean outcome under the optimal rule. One option is to have 

n − ℓn grow at the same rate as n grows, which holds if, for example, ℓn = pn for some fixed 

proportion p of the data. This allows our CIs to shrink at a root-n rate. One might prefer to 

have ℓn = o(n) so that 
n − ℓn

n  converges to 1 as sample size grows. In this case, we can show 

that our estimator is asymptotically linear and efficient at non-exceptional laws under 

conditions, as we did in Corollary 3.

7.2. Discussion of condition (C2)

This is a standard condition that yields a martingale CLT for triangular arrays [Gaenssler, 

Strobel and Stute (1978)]. The condition ensures that the variables which are being averaged 

have sufficiently thin tails. While it is worth stating the condition in general, it is easy to 

verify that the condition is implied by the following three more straightforward conditions:

• (11) holds.

• Y is a bounded random variable.

• There exists some δ > 0 such that Pr0(δ < gj (1|W) < 1 − δ) = 1 with probability 

1 for all j.

Indeed, under the latter two conditions |D̃
n,j(O)|<C is almost surely bounded for some C >0, 

and thus (11) yields that ∣ D∼n, j(O)σ∼n, j
−1 ∣ < Cδ0

−1 < ∞ with probability 1. For all ε > 0, 

ε n − ℓn > Cδ0
−1 for all n large enough under condition (C1). Thus, Tn,j from condition (C2) 

is equal to zero with probability 1 for all n large enough.

7.3. Discussion of condition (C3)

This is a rather weak condition given that σ̃0,j still treats dj as random. Thus, this condition 

does not require that dj stabilizes as j gets large. Suppose that

σ∼ j
2 − σ∼0, j

2 = oP0
(1) . (12)

By (11) and the continuous mapping theorem, it follows that

σ∼0, j
2

σ∼ j
2 − 1 = oP0

(1) . (13)

The following general lemma will be useful in establishing conditions (C3), (C4) and (C5).
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Lemma 6—Suppose that Rj is some sequence of (finite) real-valued random variables such 
that Rj = oP0(j−β) for some β ∈ [0, 1), where we assume that each Rj is measurable with 
respect to the sigma-algebra generated by (O1, …, Oj). Then

1
n ∑

j = 1

n
R j = oP0

(n−β) .

Applying the above lemma with β =0 to (13) shows that condition (C3) holds provided that 

(11) and (12) hold. We will use the above lemma with β = 1/2 when discussing conditions 

(C4) and (C5).

It remains to show that we can construct a sequence of estimators such that (12) holds. 

Suppose we estimate σ∼0, j
2  with

σ∼ j
2 ≜ max δ j,

1
j − 1 ∑

i = 1

j − 1
D∼ j

2(Oi) − 1
j − 1 ∑

i = 1

j − 1
D∼ j(Oi)

2
, (14)

where {δj} is a sequence that may rely on j and each D̃
n,j = D̃

j for all n ≥ j. We use δj to 

ensure that σ∼ j
−2 is well defined (and finite) for all j. If a lower bound δ0 on σ∼0, j

2  is known 

then one can take δj = δ0 for all j. Otherwise, one can let {δj} be some sequence such that δj 

↓0 as j→∞.

Note that σ∼ j
2 is an empirical process because it involves sums over observations O1, …,Oj−1, 

and functions Dj̃ which were estimated on those same observations. The following theorem 

gives sufficient conditions for (12), and thus condition (C3), to hold.

Theorem 7—Suppose (11) holds and that {D̃ (d, Q̄, g) : d, Q̄, g} is a P0 Glivenko–Cantelli 
(GC) class with an integrable envelope function, where d, Q̄ and g are allowed to vary over 

the range of the estimators of d0
∗, Q̄

0, and g0. Let σ∼ j
2 be defined as in (14). Then we have that 

σ∼ j
2 − σ∼0, j

2 = oP0
(1). It follows that (13) and condition (C3) are satisfied.

We thus only make the very mild assumption that our estimators of d0
∗, Q̄

0 and g0 belong to 

GC classes. Note that this assumption is much milder than the typical Donsker condition 

needed when attempting to establish the asymptotic normality of a (non-online) one-step 

estimator. An easy sufficient condition for a class to have a finite envelope function is that it 

is uniformly bounded, which occurs if the conditions discussed in Section 7.2 hold.

7.4. Discussion of condition (C4)

This condition is a weighted version of the typical double robust remainder appearing in the 

analysis of the AIPW estimator. Suppose that
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E0 1 −
g0(d j(W) ∣ W)
g j(d j(W) ∣ W) (Q j(d j(W), W) − Q0(d j(W), W)) = oP0

( j−1/2) . (15)

If g0 is known (as in an RCT without missingness) and one takes each gj = g0, then the 

above ceases to be a condition as the left-hand side is always zero. We note that the only 

condition on Qj̄ appears in condition (C4), so that if R1n = 0 as in an RCT without 

missingness then we do not require that Q̄
j stabilizes as j grows. A typical AIPW estimator 

require the estimate of Q0̄ to stabilize as sample size grows to get valid inference, but here 

we have avoided this condition in the case where g0 is known by using the martingale 

structure and inverse weighting by the standard error of each term in the definition of Ψ̂(Pn).

More generally, Lemma 6 shows that condition (C4) holds if (13) and (15) hold and Pr0(0 < 
gj(1|W) < 1) = 1 with probability 1 for all j. One can apply the Cauchy–Schwarz inequality 

and take the maximum over treatment assignments to see that (15) holds if

max
‖g j(a ∣ W) − g0(a ∣ W)‖2, P0

‖Q j(a, W) − Q0(a, W)‖2, P0
g j(a ∣ W) :a = 0, 1

is oP0 (j−1/2). If g0 is not known, the above shows that then (15) holds if g0 and Q̄
0 are 

estimated well.

7.5. Discussion of condition (C5)

This condition requires that we can estimate d0
∗ well as sample size gets large. We now give 

a theorem which will help us to establish condition (C5) under reasonable conditions. The 

theorem assumes the following margin assumption: for some α>0,

Pr0 (0 < ∣ Qb, 0(W) ∣ ≤ t) ≲ tα ∀t > 0, (16)

where “≲” denotes less than or equal to up to a nonnegative constant. This assumption is a 

direct restatement of Assumption (MA) from Audibert and Tsybakov (2007) and was 

considered earlier by Tsybakov (2004). Note that this theorem is similar in spirit to Lemma 

1 in van der Laan and Luedtke (2014b), but relies on weaker, and we believe more 

interpretable, assumptions.

Theorem 8—Suppose (16) holds for some α > 0 and that we have an estimate Q̄b,n of Q̄
b,0 

based on a sample of size n. If||Q̄
b,n − Q̄

b,0||2,P0 = oP0 (1), then
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∣ Ψdn
(P0) − Ψ

d0
∗(P0) ∣ ≲ ‖Qb, n − Qb, 0‖2, P0

2(1 + α)/(2 + α),

where dn is the function w ↦ I(Q̄
b,n(w) > 0). If||Q̄

b,n − Q̄
b,0||∞,P0 = oP0 (1), then

∣ Ψdn
(P0) − Ψ

d0
∗(P0) ∣

≤ ‖Qb, n − Qb, 0‖∞, P0
Pr0 (0 < ∣ Qb, 0(W) ∣ ≤ ‖Qb, n − Qb, 0‖∞, P0

)

≲ ‖Qb, n − Qb, 0‖∞, P0
1 + α .

The above theorem thus shows that Ψd j
(P0) − Ψ

d0
∗(P0) = oP0

( j−1/2) the distribution of |Q̄
b,

0(W)| and our estimates of Q̄
b,0 satisfy reasonable conditions. If additionally σ̃0,j is estimated 

well in the sense of (13), then an application of Lemma 6 shows that condition (C5) is 

satisfied.

The first part of the proof of Theorem 8 is essentially a restatement of Lemma 5.2 in 

Audibert and Tsybakov (2007). Figure A.1 in Supplementary Appendix C shows various 

densities which satisfy (16) at different values of α, and also the slowest rate of convergence 

for the blip function estimates for which Theorem 8 implies condition (C5). As illustrated in 

the figure, α>1 implies that pb,0(t)→0 as t→0. Given that we are interested in laws where 

Pr0(Q̄
b,0(W) = 0) > 0, it is unclear how likely we are to have that α > 1 when W contains 

only continuous covariates. One might, however, believe that the density is bounded near 

zero so that (16) is satisfied at α= 1.

If ||Q̄
b,n − Q̄

b,0||∞,P0 = oP0 (1), then the above theorem indicates an arbitrarily fast rate for 

Ψdn
(P0) − Ψ

d0
∗(P0) when there is a margin around zero, that is, Pr0(0 < |Q̄

b,0(W)| ≤ t) = 0 for 

some t > 0. In fact, Ψdn
(P0) − Ψ

d0
∗(P0) = 0 with probability approaching 1 in this case. Such a 

margin will exist when W is discrete.

One does not have to use a plug-in estimator for the blip function to estimate the mean 

outcome under the optimal rule. One could also use one of the weighted classification 

approaches, often known as outcome weighted learning (OWL), recently discussed in the 

literature to estimate the optimal rule [Qian and Murphy (2011), Zhao et al. (2012), Zhang et 

al. (2012b), Rubin and van der Laan (2012)]. In some cases, we expect these approaches to 

give better estimates of the optimal rule than methods which estimate the conditional 

outcomes, so using them may make condition (C5) more plausible. In Luedtke and van der 

Laan (2014), we describe an ensemble learner that can combine estimators from both the Q-

learning and weighted classification frameworks.
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8. Simulation methods

We ran four simulations. Simulation D-E is a point treatment case, where the treatment may 

rely on a single categorical covariate W. Simulations C-NE and C-E are two different point 

treatment simulations where the treatment may rely on a single continuous covariate W. 

Simulation C-NE uses a non-exceptional law, while simulation C-E uses an exceptional law. 

Simulation TTP-E gives simulation results for a modification of the two time point treatment 

simulation presented by van der Laan and Luedtke (2014b), where the data generating 

distribution has been modified so the second time point treatment has no effect on the 

outcome. This simulation uses the extension to multiple time point treatments given in 

Supplementary Appendix B [Luedtke and van der Laan (2015)].

Each simulation setting was run over 2000 Monte Carlo draws to evaluate the performance 

of our new martingale-based method and a classical (and for exceptional laws incorrect) 

one-step estimator with Wald-type CIs. Table 1 shows the combinations of sample size (n) 

and initial chunk size (ℓn) considered for each estimator. All simulations were run in R [R 

Core Team (2014)].

8.1. Simulation D-E: Discrete W

Data—This simulation uses a discrete baseline covariate W with four levels, a dichotomous 

treatment A, and a binary outcome Y. The data is generated by drawing i.i.d. samples as 

follows:

W Uniform{0, 1, 2, 3},
A ∣ W Binomial(0.5 + 0.1W),
Y ∣ A, W Binomial(0.4 + 0.2I(A = 1, W = 0)),

where Uniform {0, 1, 2, 3} is the discrete distribution which returns each of 0, 1, 2 and 3 

with probability 1/4. The above is an exceptional law because Q̄
b,0(w) = 0 for w ≠ 0. The 

optimal value is 0.45.

Estimation methods—For each j = ℓn + 1, …, n, we used the nonparametric maximum 

likelihood estimator generated by the first j – 1 samples to estimate P0 and the corresponding 

plug-in estimators to estimate all of the needed features of the likelihood, including the 

optimal rule. We used the sample standard deviation of D̃
n,j(O1), …, D̃

n,j(Oj–1) to estimate 

σ0̃,j.

8.2. Simulations C-NE and C-E: Continuous univariate W

Data—This simulation uses a single continuous baseline covariate W and dichotomous 

treatment A which are sampled as follows:

W Uniform( − 1, 1),
A ∣ W Binomial(0.5 + 0.1W) .

We consider two distributions for the binary outcome Y. The first distribution (C-NE) is a 

non-exceptional law with Y |A,W drawn from to a Binomial(Q0
n‐e(A, W)), where
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Q0
n‐e(A, W) − 3

10 ≜

−W3 + W2 − 1
3W + 1

27, if A = 1 and W ≥ 0,

3
4W3 + W2 − 1

3W + 1
27, if A = 1 and W < 0,

0, if A = 0.

The optimal value of approximately 0.388 was estimated using 108 Monte Carlo draws. The 

second distribution (C-E) is an exceptional law with Y |A,W drawn from to a 

Binomial(Q0
e(A, W)), where for W ̃ ≜W +5/6 we define

Q0
e(A, W) − 3

10 ≜

−W∼3 + W∼2 − 1
3W∼ + 1

27, if A = 1 and W < − 1/2,

−W3 + W2 − 1
3W + 1

27, if A = 1 and W > 1/3,

0, otherwise.

The above distribution is an exceptional law because Q0
e(1, w) − Q0

e(0, w) = 0 whenever 

w ∈ [ − 1
2 , 1

3]. The optimal value of approximately 0.308 was estimated using 108 Monte 

Carlo draws.

Estimation methods—To show the flexibility of our estimation procedure with respect to 

estimators of the optimal rule, we estimated the blip functions using a Nadaraya–Watson 

estimator, where we behave as though g0 is unknown when computing the kernel estimate. 

For the next simulation setting, we use the ensemble learner from Luedtke and van der Laan 

(2014) that we suggest using in practice. Here, we estimated

Qb, n
h (w) ≜

∑i = 1
n yiaiK((w − wi)/h)

∑i = 1
n aiK((w − wi)/h)

−
∑i = 1

n yi(1 − ai)K((w − wi)/h)

∑i = 1
n (1 − ai)K((w − wi)/h)

,

where K(u) ≜ 3
4(1 − u2)I( ∣ u ∣ ≤ 1) is the Epanechnikov kernel and h is the bandwidth. 

Computing Qb, n
h  for a given bandwidth is the only point in our simulations where we do not 

treat g0 as known. For a candidate blip function estimate Q̄
b, define the loss

LQ0, g0
(Qb)(o) ≜ 2a − 1

y0(a ∣ w) (y − Q0(a, w)) + Q0(1, w) − Q0(0, w) − Qb(w)
2

.

To save computation time, we behave as though Q̄
0 and g0 are known when using the above 

loss. We selected the bandwidth Hn using 10-fold cross-validation with the above loss 

function to select from the candidates h = (0.01, 0.02, …, 0.20). We also behave as though 

Q̄
0 and g0 are known when estimating each D̃

n,j, so that the function D̃
n,j only depends on 

O1, …, Oj–1 through the estimate of the optimal rule. This is mostly for convenience, as it 
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saves on computation time and our estimate of the optimal rule d0
∗ will still not stabilize, that 

is, our optimal value estimators will still encounter the irregularity at exceptional laws. Note 

that g0 is known in an RCT, and subtracting and adding Q̄
0 in the definition of the loss 

function will only serve to stabilize the variance of our cross-validated risk estimate. In 

practice, one could substitute an estimate of Q̄
0 and expect similar results. We update our 

estimates dn,j and σ̃
0,n,j using the method discussed in Section 6.1 with S =

n − ℓn
ℓn

.

To explore the sensitivity to the choice of ℓn, we also considered (n, ℓn) pairs (1000, 100) and 

(4000, 400), where these pairs are only considered where explicitly noted. To explore the 

sensitivity of our estimators to permutations of our data, we ran our estimator twice on each 

Monte Carlo draw, with the indices of the observations permuted so that the online estimator 

sees the data in a different order.

8.3. Simulation TTP-E: Two time point simulation

The simulation used in this section was described in Section 8.1.2 of van der Laan and 

Luedtke (2014b), though here we modify the distribution slightly so that the second time 

point treatment has no effect on the outcome.

Data—The data is generated as follows:

L1(0), L2(0) ∼i.i.d. Uniform( − 1, 1),

A(0) ∣ L(0) Bernoulli(1/2),

U1, U2 ∣ A(0), L(0) ∼i.i.d. Uniform( − 1, 1),

L1(1) ∣ A(0), L(0), U1, U2 U1 × (1.25A(0) + 0.25),

L2(1) ∣ A(0), L(0), L1(1), U1, U2 U2 × (1.25A(0) + 0.25),

A(1) ∣ A(0), L(1) Bernoulli(1/2),

Y ∣ A(1), L(1) Bernoulli(0.4 + 0.0345A(0)b(L(0))),

where b(L(0)) ≜ −0.8 – 3(sgn(L1(0)) + L1(0)) − L2(0)2. The treatment decision at time point 

0 may rely on L(0), and the treatment at time point 1 may rely on L(0), A(0) and L(1).

Estimation methods—As in the previous simulation, we assume that the treatment 

mechanism is known and supply the online estimator with correct estimates of the 

conditional mean outcome so that D̃
n,j is random only through the estimate of d0

∗ (see 

Supplementary Appendix B for a definition of D̃
n,j in the two time point case). Given a 

training sample O1, …, Oj, our estimator of d0
∗ corresponds to using the full candidate library 

of weighted classification and blip-function based estimators listed in Table 2 of Luedtke 

and van der Laan (2014), with the weighted log loss used to determine the convex 

combination of candidates. We update our estimate dn,j and σ̃
0,n,j using the method described 

in Section 6.1 with S =
n − ℓn

ℓn
.
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8.4. Comparison with the m-out-of-n bootstrap

We compared our approach to the m-out-of-n bootstrap for the value of an estimated rule as 

presented by Chakraborty, Laber and Zhao (2014). By the theoretical results in Section 7.5, 

it is reasonable to expect that the optimal rule estimate will perform well and that one can 

obtain inference for the optimal value using these same CIs. We ran the m-out-of-n bootstrap 

on D-E, C-NE, and C-E, with the same sample sizes given in Table 1. We drew 500 

bootstrap samples per Monte Carlo simulation, where we did 500 Monte Carlo simulations 

per setting due to the burdensome computation time.

The m-out-of-n bootstrap requires a choice of m, the size of each nonparametric bootstrap 

sample. Chakraborty, Laber and Zhao present a double bootstrap procedure for the two-time 

point case when the optimal value is restricted to belong to a class of linear decision 

functions. Because we do not restrict the set of possible regimes to have linear decision 

functions, we instead set m equal to 0.1n, 0.2n, …, n. When n = 1000 and m = 100, the 

NPMLE for D-E is occasionally ill-defined due to empty strata. For these bootstrap draws, 

we return the true optimal value, thereby (very slightly) improving the coverage of the m-

out-of-n confidence intervals. We will compare our procedure to the oracle regime, that is, 

the m which yields the shortest average CI length which achieves valid type I error control. 

That is, we assume that one already knows the (on average) optimal choice of m from the 

outset.

9. Simulation results

9.1. Online one-step compared to classical one-step

Figure 1 shows the coverage attained by the online and classical (non-online) one-step 

estimates of the optimal value. The two-sided CIs resulting from the online estimator 

(nearly) attains nominal coverage for all simulations considered, whereas the non-online 

estimator only (nearly) attains nominal coverage for the nonexceptional law in C-NE. The 

one-sided CIs from the online one-step estimator attain proper coverage for all simulation 

settings. The one-sided CIs from the non-online one-step estimates do not (nearly) achieve 

nominal coverage in any of the simulations considered because the rule is estimated on the 

same data as the optimal value. Thus, we expect to need a large sample size for the positive 

bias of the non-online one-step to be negligible. In van der Laan and Luedtke (2014b), we 

avoided this finite sample positive bias at non-exceptional laws by using a cross-validated 

TMLE for the optimal value.

Figure 2 displays the squared bias and mean CI length across the 2000 Monte Carlo draws. 

The online estimator consistently has lower squared bias across all of our simulations. The 

online estimator was negatively biased in all of our simulations, whereas the non-online 

estimator was positively biased in all of our simulations. This is not surprising: Theorem 4 

already implies that the online estimator will generally be negatively biased in finite 

samples, whereas the non-online estimator will generally be positively biased as we have 

discussed.
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9.2. Online one-step compared to m-out-of-n bootstrap

Figure 3 shows that our estimator outperforms the m-out-of-n bootstrap D-E and C-E for all 

choices of m considered at sample size 1000. That is, our CI achieves near-nominal coverage 

and is essentially always narrower than the CI from the m-out-of-n, except when m is very 

nearly equal to the sample size. When m is nearly equal to the sample size, coverage is low 

for D-E and C-E: for m = n, the coverage is respectively 77% and 65%. When m does 

achieve near-nominal coverage, the average CI width is between 1.5 and 2 times larger than 

the average width of the online one-step CIs. For C-NE, the estimation problem is regular 

and the bootstrap performs (reasonably) well as expected by theory. Nonetheless, so does the 

online procedure, and the online procedure yields CIs of slightly shorter length for C-NE. 

The same general results hold at other sample sizes, which we show in Figure A.3 in 

Supplementary Appendix C.

One might argue that our oracle procedure is not truly optimal, since in principle one could 

select a different choice of m for each Monte Carlo draw. While a valid criticism, we believe 

the overwhelming evidence in favor of the online estimator presented in Figure 3 should 

convince users that the online approach will typically outperform any selection of m at 

exceptional laws. As m is selected to be much less than n at exceptional laws, the m-out-of-n 
will typically yield wider CIs than our procedure. Given that our procedure has achieved 

near-nominal coverage at all simulation settings, it seems hard to justify such a loss in 

precision.

9.3. Sensitivity to permutations of the data and choice of ℓn
While we would hope that our estimator is not overly sensitive to the order of the data, the 

online estimator we have proposed necessarily relies on a data ordering. Figure A.2 in 

Supplementary Appendix C demonstrates how the optimal value estimates vary for C-E 

when the estimator is computed on two permutations of the same data set. Our point 

estimates are somewhat sensitive to the ordering of the data, but this sensitivity decreases as 

sample size grows. We computed two-sided CIs based on the two permuted data sets. We 

found that either both or neither CI covered the true optimal value in 94%, 94% and 93% of 

the Monte Carlo draws at sample sizes 250, 1000 and 4000, respectively. For C-NE, either 

both or neither CI covered the true optimal value in 91%, 93% and 95% of the Monte Carlo 

draws at sample sizes 250, 1000 and 4000, respectively.

Different choices of ℓn did not greatly affect the coverage in C-E and C-NE. Increasing ℓn for 

C-E decreased the coverage by less than 1% for sample sizes 1000 and 4000. Increasing ℓn 

for C-NE increased the coverage by less than 1% for sample sizes 1000 and 4000. Mean CI 

length increased predictably based on the increased value of n − ℓn: for n = 1000, 

increasing ℓn from 25 to 100 increased the CI length by a multiplicative factor of 
1000 − 25
1000 − 100 ≈ 1.04. Similarly, increasing ℓn from 100 to 400 increased the CI length by a 

factor of 1.04 for n = 4000.
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10. Discussion and future work

We have accomplished two tasks in this work. The first was to establish conditions under 

which we would expect that regular root-n rate inference is possible for the mean outcome 

under the optimal rule. In particular, we completely characterize the pathwise 

differentiability of the optimal value parameter. This characterization on the whole agrees 

with that implied by Robins and Rotnitzky (2014), but differs in a minor fringe case where 

the conditional variance of the outcome given covariates and treatment is zero. This fringe 

case may be relevant if everyone in a strata of baseline covariates is immune to a disease 

(regardless of treatment status) but are still included in the study because experts are 

unaware of this immunity a priori. In general, however, the two characterizations agree.

The remainder of our work shows that one can obtain an asymptotically unbiased estimate of 

and a CI for the optimal value under reasonable conditions. This estimator uses a slight 

modification of the online one-step estimator presented by van der Laan and Lendle (2014). 

Under reasonable conditions, this estimator will be asymptotically efficient among all RAL 

estimators of the optimal value at non-exceptional laws in the nonparametric model where 

the class of candidate treatment regimes is unrestricted. The main condition for the validity 

of our CI is that the value of one’s estimate of the optimal rule converges to the optimal 

value at a faster than root-n rate, which we show is often a reasonable assumption. The lower 

bound in our CI is valid even if this condition does not hold.

We confirmed the validity of our approach using simulations. Our two-sided CIs attained 

near-nominal coverage for all simulation settings considered, while our lower CIs attained 

better than nominal coverage (they were conservative) for all simulation settings considered. 

Our CIs were of a comparable length to those attained by the non-online one-step estimator. 

The non-online one-step estimator only attained near-nominal coverage for the simulation 

which used a non-exceptional data generating distribution, as would be predicted by theory.

In future work, we hope to mitigate the sensitivity of our estimator to the order of the data. 

While we showed in our simulations that the effect of permutations was minor, this property 

may be unappealing to some. Such problems occur for many sample-split estimators; 

however, one often has the option of estimating the parameter on several permutations of the 

data and then averaging these estimates together. The typical argument for averaging sample 

split estimates together is that the estimator is asymptotically linear, that is, approximately 

an average of a deterministic function applied to each of the n i.i.d. observations. Under mild 

conditions, we have an estimator which, properly scaled, is equivalent to a sum of random 
functions applied to the n observations, where these functions rely only on past observations, 

making it impossible to apply this typical argument. Further study is needed to determine if 

one can remove finite sample noise from this estimator without affecting its asymptotic 

behavior.

Unsurprisingly, there is still more work to be done in estimating CIs for the optimal rule. 

While we have shown that the lower bound from our CI maintains nominal coverage under 

mild conditions, the upper bound requires the additional assumption that the optimal rule is 

estimated at a sufficiently fast rate. We observed in our simulations that the non-online 
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estimate of the optimal value had positive bias for all settings. This is to be expected if the 

optimal rule is chosen to maximize the estimated value, and can easily be explained 

analytically under mild assumptions. It may be worth replacing the upper bound UBn in our 

CI by something like max{UBn,ψn(dn)}, where ψn(dn) is a non-online one-step estimate or 

TMLE of the optimal value. One might expect that the upper bound ψn(dn) will dominate 

the maximum precisely when the optimal rule is estimated poorly.

Finally, we note that our estimation strategy is not limited to unrestricted classes of optimal 

rules. One could replace our unrestricted class with, for example, a parametric working 

model for the blip function and expect similar results. This is because the pathwise 

derivative of P ↦ EP0[Yd(P)], which treats the P0 in the expectation subscript as known, will 

typically be zero when d(P) is an optimal rule in some class and does not fall on the 

boundary of that class (with respect to some metric). Such a result does not rely on d(P) 

being a unique optimal rule. When the pathwise derivative of P ↦ EP0[Yd(P)] is zero, one 

can often prove something like Theorem 8, which shows that the value of the estimated rule 

converges to the optimal value at a faster than root-n rate under conditions.

Here, we considered the problem of developing a confidence interval for the value of an 

unknown optimal treatment rule in a non-parametric model. Under reasonable conditions, 

our proposed optimal value estimator provides an interpretable and statistically valid 

approach to gauging the effect of implementing the optimal individualized treatment regime 

in the population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors would like to thank Sam Lendle for suggesting the permutation analysis in our simulation, Robin Mejia 
and Antoine Chambaz for greatly improving the readability of the document, and the reviewers for helpful 
comments.

References

Athreya, KB, Lahiri, SN. Measure Theory and Probability Theory. Springer; New York: 2006. 

Audibert JY, Tsybakov AB. 2007; Fast learning rates for plug-in classifiers. Ann Statist. 35:608–633.

Bickel, PJ, Klaassen, CAJ, Ritov, Y, Wellner, JA. Efficient and Adaptive Estimation for 
Semiparametric Models. Johns Hopkins Univ. Press; Baltimore, MD: 1993. 

Chakraborty B, Laber EB, Zhao YQ. 2014; Inference about the expected performance of a data-driven 
dynamic treatment regime. Clin Trials. 11:408–417. [PubMed: 24925083] 

Chakraborty, B, Moodie, EEM. Statistical Methods for Dynamic Treatment Regimes. Springer; New 
York: 2013. 

Chen, J. A Festschrift for Herman Rubin Institute of Mathematical Statistics Lecture Notes—
Monograph Series. Vol. 45. IMS; Beachwood, OH: 2004. Notes on the bias–variance trade-off 
phenomenon; 207–217. 

Gaenssler P, Strobel J, Stute W. 1978; On central limit theorems for martingale triangular arrays. Acta 
Math Acad Sci Hungar. 31:205–216.

Luedtke and van der Laan Page 27

Ann Stat. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Goldberg Y, Song R, Zeng D, Kosorok MR. 2014; Comment on “Dynamic treatment regimes: 
Technical challenges and applications” [MR3263118]. Electron J Stat. 8:1290–1300. [PubMed: 
25485028] 

Hirano K, Porter JR. 2012; Impossibility results for nondifferentiable functionals. Econometrica. 
80:1769–1790.

Laber EB, Murphy SA. 2011; Adaptive confidence intervals for the test error in classification. J Amer 
Statist Assoc. 106:904–913.

Laber EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA. 2014a; Dynamic treatment regimes: 
Technical challenges and applications. Electron J Stat. 8:1225–1272. [PubMed: 25356091] 

Laber EB, Lizotte DJ, Qian M, Pelham WE, Murphy SA. 2014b; Rejoinder of “Dynamic treatment 
regimes: Technical challenges and applications. Electron J Stat. 8:1312–1321.

Langford, J, Li, L, Zhang, T. In Advances in Neural Information Processing Systems. Vol. 21. Curran 
Associates; Red Hook, NY: 2009. Sparse online learning via truncated gradient; 908–915. 

Liu RC, Brown LD. 1993; Nonexistence of informative unbiased estimators in singular problems. Ann 
Statist. 21:1–13.

Luedtke, AR, van der Laan, MJ. Technical Report 326. Division of Biostatistics, Univ. California; 
Berkeley: 2014. Super-learning of an optimal dynamic treatment rule. Available at http://
www.bepress.com/ucbbiostat/

Luedtke AR, van der Laan MJ. 2015; Supplement to “Statistical inference for the mean outcome under 
a possibly non-unique optimal treatment strategy”. doi: 10.1214/15-AOS1384SUPP

Luts J, Broderick T, Wand MP. 2014; Real-time semiparametric regression. J Comput Graph Statist. 
23:589–615.

Qian M, Murphy SA. 2011; Performance guarantees for individualized treatment rules. Ann Statist. 
39:1180–1210.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical 
Computing; Vienna, Austria: 2014. Available at http://www.r-project.org/

Robins, JM. Proceedings of the Second Seattle Symposium in Biostatistics Lecture Notes in Statist. 
Vol. 179. Springer; New York: 2004. Optimal structural nested models for optimal sequential 
decisions; 189–326. 

Robins J, Rotnitzky A. 2014; Discussion of “Dynamic treatment regimes: Technical challenges and 
applications” [MR3263118]. Electron J Stat. 8:1273–1289.

Rubin DB, van der Laan MJ. 2012; Statistical issues and limitations in personalized medicine research 
with clinical trials. Int J Biostat. 8

Tsybakov AB. 2004; Optimal aggregation of classifiers in statistical learning. Ann Statist. 32:135–166.

van der Laan, MJ, Lendle, SD. Technical Report 330. Division of Biostatistics, Univ. California; 
Berkeley: 2014. Online targeted learning. Available at http://www.bepress.com/ucbbiostat/

van der Laan, MJ, Luedtke, AR. Technical Report 329. Division of Biostatistics, Univ. California; 
Berkeley: 2014a. Targeted learning of an optimal dynamic treatment, and statistical inference for 
its mean outcome. Available at http://www.bepress.com/ucbbiostat/

van der Laan MJ, Luedtke AR. 2014b; Targeted learning of the mean outcome under an optimal 
dynamic treatment rule. J Causal Inference. 3:61–95.

van der Vaart, AW, Wellner, JA. Weak Convergence and Empirical Processes. Springer; New York: 
1996. 

Zhang, T. Solving large scale linear prediction problems using stochastic gradient descent algorithms. 
ICML’04 Proceedings of the Twenty-First International Conference on Machine Learning; New 
York: ACM; 2004. 116

Zhang B, Tsiatis A, Davidian M, Zhang M, Laber E. 2012a; A robust method for estimating optimal 
treatment regimes. Biometrics. 68:1010–1018. [PubMed: 22550953] 

Zhang B, Tsiatis AA, Davidian M, Zhang M, Laber E. 2012b; Estimating optimal treatment regimes 
from a classification perspective. Statistics. 68:103–114.

Zhao Y, Zeng D, Rush AJ, Kosorok MR. 2012; Estimating individualized treatment rules using 
outcome weighted learning. J Amer Statist Assoc. 107:1106–1118.

Luedtke and van der Laan Page 28

Ann Stat. Author manuscript; available in PMC 2019 January 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.bepress.com/ucbbiostat/
http://www.bepress.com/ucbbiostat/
http://www.r-project.org/
http://www.bepress.com/ucbbiostat/
http://www.bepress.com/ucbbiostat/


Fig. 1. 
Coverage of 95% two-sided and one-sided (lower) CIs. The online one-step estimator 

achieves near-nominal coverage for all of the two-sided CIs and attains better than nominal 

coverage for the one-sided CI. The classical one-step estimator only achieves near-nominal 

coverage for C-NE. Error bars indicate 95% CIs to account for Monte Carlo uncertainty.
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Fig. 2. 
Squared bias and 95% two-sided CI lengths for the online and classical one-step estimators, 

where the mean is taken across 2000 Monte Carlo draws. The online estimator has lower 

squared bias than the non-online estimator, while its mean CI length is only slightly longer. 

Error bars indicate 95% CIs to account for Monte Carlo uncertainty.
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Fig. 3. 
Performance of the m-out-of-n bootstrap at sample size 1000. The vertical axis shows the 

average CI width divided by the average CI width of the online one-step CI. That is, any 

vertical axis value above 1 indicates the m-out-of-n bootstrap has on average wider CIs than 

the online one-step CI.
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Table 1

Primary combinations of sample size (n) and initial chunk size (ℓn) considered in each simulation. Different 

choices of ℓn were considered for C-NE and C-E to explore the sensitivity of the estimator to the choice of ℓn

Simulation (n, ℓn)

D-E (1000, 100), (4000, 100)

C-NE, C-E, TTP-E (250, 25), (1000, 25), (4000, 100)
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