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Determining the Time of Cancer 
Recurrence Using Claims or Electronic 
Medical Record Data

INTRODUCTION

Enormous quantities of data are collected by 
administrative systems and electronic medical 
records (EMRs) during the routine delivery of 
health care. Increasingly, these data are being 
used for reasons other than just delivering care 
(EMR systems) and requesting reimbursement 
(administrative systems), including population 
health management; epidemiologic, compara-
tive effectiveness, and outcomes research; qual-
ity measurement; and operational improvement. 
For many of these secondary uses, an essential 
first step is to identify which patients have a spe-
cific condition or have experienced a clinical 
event. When trying to identify these events, diag-
nosis and procedure codes are particularly help-
ful, because they are based on structured data 
elements (eg, International Classification of Dis-
eases, 10th revision [ICD-10], Healthcare Com-
mon Procedure Coding System, Systematized 

Nomenclature of Medicine) and they are used 
widely by EMRs and administrative systems.

However, extracting accurate and reliable clin-
ical information from structured EMR/claims 
data can be challenging, because many differ-
ent codes are entered by many different users. 
To determine who had a clinical event and when 
that event occurred, one must decide which 
codes to trust and figure out how to synthesize 
all the available information when many differ-
ent codes have been documented. Algorithms 
that systematically address these challenges 
have been developed.1-11 For example, a breast 
cancer–detection algorithm concludes that any 
patient who has a claim associated with the C50 
code (ICD-10) has breast cancer, and that the 
date of the first C50-associated claim is the date 
of the breast cancer diagnosis.12

Although many investigators have described 
methods for detecting who had a clinical event, 

Purpose Data from claims and electronic medical records (EMRs) are frequently used to iden-
tify clinical events (eg, cancer diagnosis, stroke). However, accurately determining the time of 
clinical events can be challenging, and the methods used to generate time estimates are under-
developed. We sought to develop an approach to determine the time of a clinical event—cancer 
recurrence—using high-dimensional longitudinal structured data.

Methods Manual chart abstraction provided information regarding the actual time of cancer recur-
rence. These data were linked to claims from Medicare or structured EMR data from the Cancer 
Research Network, which were used to determine time of recurrence for patients with lung or col-
orectal cancer. We analyzed the longitudinal profile of codes that could help determine the time 
of recurrence, adjusted for systematic differences between code dates and recurrence dates, and 
integrated time estimates from different codes to empirically derive an optimal algorithm.

Results We identified twelve code groups that could help determine the time of recurrence. Using 
claims data for patients with lung cancer, the optimal algorithm consisted of three code groups 
and provided an average prediction error of 4.8 months. Using EMR data or applying this approach 
to patients with colorectal cancer yielded similar results.

Conclusion Time estimates were improved by selecting codes not necessarily the same as those 
used to identify recurrence, combining time estimates from multiple code groups, and adjusting 
for systematic bias between code dates and recurrence dates. Improving the accuracy of time esti-
mates for clinical events can facilitate research, quality measurement, and process improvement.
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approaches to characterize the timing of clinical 
events are underdeveloped. We hypothesized 
that existing event-detection algorithms could 
yield biased or inaccurate estimates of an event’s 
timing for several reasons. First, there could be 
systematic differences between the date associ-
ated with a code used to detect an event and the 
date on which the event actually occurred. Sec-
ond, the codes best suited to detect an event may 
differ from the codes best suited to determine the 
timing of that event. Third, if a patient does not 
have the code being used to characterize tim-
ing, then no timing estimate can be generated. If 
timing estimates are missing or inaccurate, then 
efforts to analyze the quality of care delivered to, 
outcomes experienced by, and costs associated 
with a condition could be biased.

Recurrence—the return of cancer in a patient who 
completed therapy for localized disease and was 
believed to have been disease free—is a critically 
important outcome for patients with cancer. Not 
surprisingly, recurrence has been the focus of 
many epidemiologic, comparative-effectiveness, 
and outcomes research studies.13-16 Although 
tumor registries reliably capture cancer diagnoses, 
they do not typically capture recurrence status. In 
previous articles, we described highly accurate 
algorithms that use claims or EMR data to detect 
recurrence for patients with lung, colorectal, and 
breast cancer.17,18 In this article, we build on that 
work by describing a systematic and reproducible 
method for determining the timing of cancer recur-
rence using structured data and developing tools 
that can be used to compare the performance of 
different timing estimation algorithms.

METHODS

Data Sources and Patient Sample

To develop and validate an algorithm that deter-
mines the timing of cancer recurrence, we used 

two data sets that contained codes that could 
suggest when recurrence occurred linked to 
information describing when recurrence actually 
occurred. The Cancer Care Outcomes Research 
and Surveillance (CanCORS) Consortium was a 
large, prospective study of the care provided to 
and outcomes experienced by patients with lung 
or colorectal cancer diagnosed in 2003 to 2005 
and followed through 2011.19 Medical record 
abstract data from CanCORS (used to identify 
gold-standard recurrence status) were linked 
to Medicare fee-for-service claims from 2002 
to 2011 (used to estimate the timing of recur-
rence).20 The Cancer Research Network (CRN) 
is a consortium of health maintenance organiza-
tions (HMOs) affiliated with the HMO Research 
Network. Two CRN sites have certified tumor reg-
istrars collect recurrence status data: Kaiser Per-
manente Colorado, Denver, Colorado, and Kaiser 
Permanente Northwest, Portland, Oregon. The 
CRN also maintains a Virtual Data Warehouse 
(VDW)1 that links tumor registry data (used to 
identify gold-standard recurrence status) with 
diagnosis and procedure codes documented in 
an EPIC-based EMR and with claims for services 
delivered by contract providers (used to estimate 
the timing of recurrence).

Gold-standard recurrence status was ascer-
tained through manual abstraction of the med-
ical record by study personnel (for CanCORS) or 
the tumor registry (for the CRN) and recorded 
using the North American Association of Cen-
tral Cancer Registry’s cancer status variable. To 
estimate the timing of recurrence, we used diag-
nosis and procedure codes associated with the 
following events: secondary malignant neoplasm 
involving a solid organ site, secondary malig-
nant neoplasm involving either a solid organ or 
lymph node site, chemotherapy, radiotherapy, 
hospice, high-cost imaging, cancer symptoms, 
narcotic/pain medications, inpatient encounters, 
observation encounters, emergency department 
encounters, and any procedure. The codes 
represented commonly used data standards: 
ICD-9th Revision–Clinical Modification, Current 
Procedural Terminology 4th Edition, Healthcare 
Common Procedure Coding System, National  
Drug Codes, Diagnosis-Related Groups, Berenson- 
Eggers Type of Service, and facility revenue 
centers (Data Supplement).1,3,21 Codes were 
extracted from all available Medicare files and 
from procedure, diagnosis, encounter, phar-
macy, and infusion files from the VDW.22,23 The 
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Fig 1. Illustration of  
a typical pattern of the 
trajectory of indicators.  
Xij (t) = longitudinal 
profile of a potential  
indicator j for subject i 
(eg, the trajectory of the 
count of diagnosis  
codes for secondary 
malignant neoplasm).  
0 = start of the obser-
vation period (eg, initial 
cancer diagnosis).  
Ri = end of the observa-
tion period for subject i 
(eg, end of observation/
follow-up time). Ti = time 
of the event occurrence 
for subject i (eg, cancer 
recurs).    T ̃    ij    = time when 
a large gap in Xij is 
observed (eg, the count 
of diagnosis codes for 
secondary malignant 
neoplasm per month 
increases more than  
a specified threshold 
compared with the  
previous months).  
aj = an unknown 
parameter that takes 
account of the potential 
difference between the 
event occurrence time 
Ti and the time when 
the observed gap in Xij is 
observed (   T ̃    ij   ).
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claim through date or the discharge date was 
used to assign a date to each code. The primary 
sample included 308 patients with stage I to IIIa 
lung cancer from CanCORS/Medicare, of whom 
89 (29%) developed recurrence. In secondary 
analyses, we determined the timing of recur-
rence using CanCORS/Medicare data for 600 
patients with colorectal cancer (14% developed 
recurrence), CRN/VDW data for 792 patients 
with lung cancer (27% developed recurrence), 
and CRN/VDW data for 2,827 patients with col-
orectal cancer (13% developed recurrence).17 
The institutional review boards from Dana- 
Farber and the participating Kaiser Permanente 
sites provided project oversight.

General Approach

Month was chosen as the unit of analysis, 
because it was the most granular level for which 
we could ascertain changes in claims over 
time. Let [0, Ri] be a time window for subject 
i (i = 1,…,n). We assumed that each subject 
experienced a clinical event within this time win-
dow. Let Ti ∈ [0, Ri] denote the actual recurrence 
time. Consider J kinds of indicators, let Xij (t), 
(i = 1,…,n; j = 1,…,J) be a nonnegative function 

defined on the domain [0, Ri]. We consider the 
case that there exists such that Xij (t) takes a large 
change around or after Ti. For example, suppose 
we are interested in detecting the time of cancer 
recurrence. The trajectory of the count of codes 
for secondary malignant neoplasm between time 
0 and Ri would be an example of Xij (t), because 
the incidence of such codes would increase 
around recurrence. For additional explanation 
of the identification problem, let X*i (t) be the  
perfect identifier in the sense that X*i (t) = I (Ti = t)  
or I (Ti ≤ t) for all i, where I (.) is the indicator 
function. With X*i (t), we could accurately iden-
tify Ti for each subject by finding the smallest t 
when X*i (t) = 1. Of course, a perfect identifier 
X*i (t) does not exist, but we assume there exist 
several Xij (t)’s that behave as such. Specifically, 
in our notation, we consider J kinds of indicators, 
Xij (t), j = 1,…,J, for each subject (i = 1,…,n). 
Here we are interested in deriving an algorithm 
to identify the timing of the event Ti for each sub-
ject, integrating information from the Xij (t)’s.

Figure 1 illustrates a typical pattern of Xij (t) we 
use to identify Ti. In this example, we see a large 
increase in Xij (t) at    T ̃    ij   =  T  i   +  a  j  , where aj is an 
unknown offset parameter that takes account 
of the potential difference between the event 
occurrence time Ti and the time,    T ̃    ij  ,  when we 
observe a large change in Xij (t). In this exam-
ple, aj denotes the delay between when the event 
occurred and when it was reflected in Xij (t). Note 
that aj can be positive or negative, depending on 
the temporal relationship between the event and 
the indicator. After deriving a best estimate for 
Ti from the trajectory of Xij (t),i = 1,…,n for each 
j (j = 1,…,J), the proposed method integrates 
the    {    T ̂    i1  ,   T ̂    i2  , … ,   T ̂    iJ   }     (where   {    T ̂    i1  ,   T ̂    i2  , … ,   T ̂    iJ   }     
denotes a set of estimators for Ti for subject 
i(i = 1,…,n)) to derive an algorithm that gives a 
single Ti estimate for each subject

Derivation of Estimates

From here on, we assume Xij (t) is a nonnegative, 
discrete function of time. We also assume that 
t is discrete and takes on the values 0,1,2,…. 
Let   K  ij    (  t )    =   ∑  

k=0
  

t
    X  ij    (  k )     be the cumulative function 

of Xij (.) at t. We then standardize Kij (t) by t and 
calculate:

   L  ij    (  t )    =   
 K  ij    (  t )    ____ t  , 
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Table 1. Estimates of Offset Parameters and Average Absolute Prediction Errors for 
Each Indicator Variable Using Cancer Care Outcomes Research and Surveillance/
Medicare Data for Patients With Recurrent Lung Cancer

Indicator
Offset Parameter 
Estimate (months)

Average Absolute 
Prediction Error* 

(months)

Secondary malignant neoplasm (solid 
organ and lymph node sites)

0.2 5.4

Secondary malignant neoplasm (solid 
organ sites only)

0.2 5.2

Receipt of chemotherapy 1.2 5.9

Radiotherapy events 1.3 6.7

Hospice encounters 3.8 7.1

High-cost imaging −0.9 5.6

Diagnosis codes for cancer symptoms 0.3 7.5

Dispenses of narcotic/pain medications −0.7 6.3

Inpatient stays −0.8 6.4

Observation stays 7.4 7.1

Emergency department encounters −2.2 8.4

Any procedure −0.20 8.1

Naïve prediction NA 6.7

*For patients in whom an indicator did not generate a predicted time of cancer recurrence, the 
missing predicted time was imputed using the naïve prediction rule (Ri/2 = the half time of the given 
time window) before calculating the average absolute prediction error for that indicator variable.
Abbreviation: NA, not applicable.

http://ascopubs.org/journal/cci
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Fig 2. Scatter plots of the predicted time of recurrence and the observed time of recurrence, in months 
after definitive local therapy, for each indicator variable using Cancer Care Outcomes Research and 
Surveillance/Medicare data for patients with lung cancer. Secondary malignancy (1): secondary malignant 
neoplasm codes without lymph node sites of disease. Secondary malignancy (2): secondary malignant 
neoplasm codes including lymph node sites of disease. Red dots indicate subjects for whom the indicator 
variable produced a predicted time of recurrence. Blue dots indicate the subjects for whom the indicator 
variable produced no predicted time of recurrence, so the predicted time of recurrence displayed in the 
figure was estimated by the naïve prediction rule (ie, Ri/2; the half time of the given time window). Abs Err, 
absolute error; ER, emergency room; incl, including.
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where Lij (t) can be viewed as the average speed 
of the increment in Xij (t) per unit time. We derive 
the difference of Lij (t) with respect to time, to 
capture the time corresponding to the largest 
increase in the average speed. Specifically, at 
each t, we calculate

     b  ij    (  t )    =   
 {    L  ij    (  t )    + ε }   −  {    L  ij    (  t − 1 )    + ε }  

  _________________  
 {    L  ij    (  t − 1 )    + ε }  

  ,   

For (t = 1,2,…), where  ε = 1 , which is added to 
avoid division by 0. Note that bij (t) is a change in 
the average speed of rising codes per unit time, 
which can be viewed as an acceleration rate of 
Xij (t). We then extract the time point when bij (t) 
takes the maximum for the first time within the 
given time window

    T ̃    ij   = min  {  argma  x  t      b  ij    (  t )    }   . 

As illustrated in Figure 1, because we model    T ̃    ij   =  
T  i   +  a  j  ,    we then estimate the unknown parame-
ter aj for each j, from the observed data    (   T  i  ,   T ̃    ij   )   .  
In our empirical example, we used the median, 
rather than the mean, because of its robustness 
to extreme values. Let    a ^    j    be the empirical coun-
terpart for aj. The estimated event time, Ti, from 
the trajectory of the j-th indicator is then given by

    T ̂    ij   =   T ̃    ij   −   a ^    j  . 

We perform this procedure for each of the J indi-
cators. Note that when bij (t) is 0 for all t, we 
replace    T ̃    ij    and    T ̂    ij     by missing values.

Now we integrate the multiple estimated times    

{    T ̂    i1  ,   T ̂    i2  , … ,   T ̂    iJ   }      and derive a single value for 
each subject. Let ξij be the indicator variable for 
i-th subject and j-th indicator, which takes 1 if    T ̂    ij    
is not missing and 0 otherwise. We derive the 
integrated estimated time for Ti through

    T ̂    i   =   
 ∑  j=1  

J     T ̂    ij    ξ  ij    W  j   _________ 
 ∑  j=1  

J    ξ  ij    W  j  
  , 

where Wj indicates a weight for the j-th indicator. 
Because the estimated time with smaller devia-
tion from the observed recurrence time is more 
reliable, we determine Wj by the reciprocal of the 
variance of    T ̂    ij    across n subjects. From a prac-
tical perspective, we used a trimmed variance 
instead to reduce the impact of a small number 
of extreme values in    T ̂    ij    on the weight Wj. Specif-
ically, we empirically determined to exclude the 
top and bottom 3% when calculating the vari-
ance. When    T ̂    ij    is missing for all j, we substitute 
the naïve prediction Ri/2 to    T ̂    i   .

Variable Selection and Algorithm Assessment

Several standard measures quantify the per-
formance of prediction models for continuous 
variables. For example, the average absolute 
prediction error is given by

    D ^    1   =  n   −1    ∑  
i=1

  
n
    |   T  i   −   T ̂    i   |   , 

and the average squared error is given by

    D ^    2   =  n   −1    ∑  
i=1

  
n
     (   T  i   −   T ̂    i   )     

2

  

One may standardize these measures by tak-
ing the width of the time window into account. 
The standardized versions of these measures 
are given by    D ˜    1   =  n   −1    ∑  

i=1
  

n
    |   T  i   −   T ̂    i   |    /  R  i    and    D ˜    2   =  

n   −1    ∑  
i=1

  
n
     {    (   T  i   −   T ̂    i   )    /  R  i   }     

2

 ,  respectively. Also, for a 
given cutoff value, we can estimate a correct 
classification rate by:

    D ^    CCR    (  c )    =  n   −1    ∑  
i=1

  
n
   I  {    |   T  i   −   T ̂    i   |    < c }   . 

To adjust for the optimistic bias that is generally 
included in these substitution performance esti-
mates, we use a Monte Carlo cross-validation 
procedure to estimate performance metrics for 
each of the 4,095 (ie, 212 − 1) candidate algo-
rithms. Specifically, we randomly split the data  
into two equally sized groups, use one to determine 
the unknown parameters included in    T ^    i   , and 
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Fig 3. Scatter plot 
between the predicted 
time of recurrence and 
the observed time of 
recurrence for the final 
model using Cancer Care 
Outcomes Research and 
Surveillance/Medicare 
data for patients with 
lung cancer, in months 
after definitive local 
therapy. Red dots indi-
cate subjects for whom 
the indicator variable 
produced a predicted 
time of recurrence. The 
blue dot indicates the 
subject whose predicted 
time of recurrence was 
estimated by the naïve 
prediction rule (ie, Ri/2; 
the half time of the given 
time window).
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use the other to estimate the performance metric. 
We then repeated this process M times and took 
the average. For example, the cross-validation 
estimate for the average absolute prediction error 
is given by

    D ^    1  
∗

   =  M   −1    ∑  
m=1

  
M
    {   n  m        −1    ∑  

i∈ Θ  m  
  

 n  m  

    |   T  i   −   T ̂    i  
(  Θ ¯    m  )

  |    }   , 

where    Θ ¯    m    and Θm are the disjoint subsets cre-
ated by the m-th random split—the former is 
used to estimate the unknown parameters of the 
algorithm, and the latter is used to calculate the 

performance. Here,    T ̂    i  
(  Θ ¯    m  )

   denotes the estimate 
for Ti, when it is derived without using the data 
elements in Θm. Such a cross-validation estimate 
for selected performance metrics can be used 
to choose a final algorithm from the several can-
didate algorithms. Confidence intervals for per-
formance metrics are calculated via a standard 
bootstrap method.

RESULTS

First, we applied this method to patients with 
recurrent lung cancer from the CanCORS/Medi-
care data set. Table 1 shows the offset param-
eters and absolute prediction errors for 12 
indicators. A negative offset parameter indicates 

that the peak in the code count was observed 
before the event occurrence. For example, the 
offset parameter for the imaging codes was −0.9 
months. This is expected, because imaging is 
often performed to evaluate symptoms before a 
biopsy is done and recurrence is confirmed. On 
the other hand, the offset parameter for chemo-
therapy was positive (0.2 months), which is also 
reasonable, because chemotherapy is a conse-
quence of having recurrent cancer.

Figure 2 shows scatter plots between the pre-
dicted and the observed time of recurrence for 
89 patients with recurrent disease across all 12 
indicators. The blue dots indicate patients in 
whom the naïve prediction was used because 
the predicted time was not determined by the 
corresponding code group. The estimated abso-
lute prediction error analysis shows that second-
ary malignant neoplasm involving solid organ 
sites was the strongest indicator among the 12; 
the corresponding absolute prediction error was 
5.2 months. As a reference, the absolute predic-
tion error on the basis of the naïve prediction was 
6.7 months (Table 1).

To select the final algorithm, we examined all 
possible combinations of the 12 indicators    

{    T ̂    i1  ,   T ̂    i2  , … ,   T ̂    i12   }       and calculated the average 
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Table 2. Comparative Algorithm Performance for Lung Cancer Recurrence Timing Using Cancer Care Outcomes Research and Surveillance/Medi-
care Data

Measure of 
Performance

Our Final 
Algorithm Secondary Malignancy Codes Chemotherapy Only High-Cost Imaging Only

Result Result
Difference v 

Ours Result
Difference v 

Ours Result
Difference v 

Ours

Performance*

   D ^    1    (months) 4.8 6.3 1.5 6.2 1.4 5.6 0.9

   D ˜    1    (%) 16.2 21.8 5.6 20.9 4.7 20.6 4.4

Correct classification, 
cumulative %

± 1 month 34.8 29.2 −5.6 20.2 −14.6 29.2 −5.6

± 2 months 42.7 41.6 −1.1 32.6 −10.1 43.8 1.1

± 3 months 57.3 56.2 −1.1 50.6 −6.7 55.1 −2.2

± 4 months 61.8 62.9 1.1 60.7 −1.1 61.8 0.0

± 5 months 70.8 66.3 −4.5 61.8 −9.0 64.0 −6.7

± 6 months 75.3 68.5 −6.7 68.5 −6.7 69.7 −5.6

*   D ^    1    is the average absolute error, and    D ˜    1    is the standardized version of    D ^    1    where the absolute prediction error is divided by the width of the observed time window (see 
Methods).
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absolute prediction error for each one, selecting 
the combination of indicators, weights, and offset 
parameters that offered the best performance. 
The indicators in the final selected algorithm 
and their relative weights were: secondary malig-
nant neoplasm involving solid organ or lymph 
node sites (0.279), chemotherapy (0.296), and  
high-cost imaging (0.425). Figure 3 shows a 
scatter plot of the 89 patients with recurrent 
disease, with the predicted time of recurrence 
on the basis of the final model plotted against 
the observed time of recurrence. The estimated 
absolute prediction error was 4.8 months (0.95 
CI, 3.5 to 6.3). The correct classification rate 
(± 3-month time window) was 57.3% (0.95 CI, 
47.2% to 67.4%). Model performance was com-
pared with three alternatives: secondary malig-
nancy involving either solid organ or lymph node 
sites only, chemotherapy only, and high-cost 
imaging only. The absolute prediction error of 

our algorithm was better (ie, smaller) than any of 
the single indicator–based alternatives (Table 2).

To evaluate this technique in other cancers 
using data from other sources, we applied the 
same method to colorectal cancer cases from 
CanCORS/Medicare and to lung and colorectal 
cancer cases from the CRN/VDW. Whether using 
claims data from CanCORS/Medicare or EMR 
data from the CRN/VDW, and whether detecting 
recurrence after a colorectal or lung cancer diag-
nosis, the same three code groups were part of 
the final algorithm (Table 3). Although the direc-
tionality of the offsets was similar, the weights 
for the codes varied somewhat across the four 
algorithms.

DISCUSSION

Compared with the methods used to detect which 
patients experience an event, the methods used 
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Table 3. Components and Performance Characteristics of Timing Estimation Algorithms for Two Cancers Using Two 
Data Sets

Data Source

CanCORS/Medicare CRN/VDW

Lung Cancer
Colorectal 

Cancer Lung Cancer
Colorectal 

Cancer

No. of patients with recurrence 89 84 216 355

Variables included in timing algorithm, 
offset in months* (weight)†

Secondary malignancy‡ 0.2 (0.279) −0.1 (0.387) 0.9 (0.264) 1.8 (0.297)

Chemotherapy 1.2 (0.296) 3.7 (0.500) 1.6 (0.379) 2.6 (0.460)

Imaging −0.9 (0.425) −1.1 (0.113) −0.5 (0.357) −0.6 (0.243)

Average absolute error, months 4.8 4.8 4.9 5.4

Standard error, %§ 16.2 13.4 15.2 13.7

Correct classification, cumulative No. (%)

≤ 1 month 31 (34.8) 18 (21.4) 81 (37.5) 80 (22.5)

≤ 2 months 38 (42.7) 34 (40.5) 110 (50.9) 149 (42.0)

≤ 3 months 51 (57.3) 44 (52.4) 127 (58.8) 188 (53.0)

≤ 4 months 55 (61.8) 57 (67.9) 142 (65.7) 211 (59.4)

≤ 5 months 63 (70.8) 62 (73.8) 155 (71.8) 236 (66.5)

≤ 6 months 67 (75.3) 68 (81.0) 160 (74.1) 254 (71.5)

 6 months 22 (24.7) 16 (19.0) 56 (25.9) 101 (28.5)

Abbreviations: CanCORS, Cancer Care Outcomes Research and Surveillance; CRN, Cancer Research Network; VDW, Virtual Data 
Warehouse.
*The offset represents the average of the difference between the time when the component variable count peaked and the time of the 
gold-standard recurrence. Negative values indicate that the peak in the component variable was before the gold-standard recurrence 
date.
†The weight is the amount a component variable’s estimated recurrence date contributed to estimated date of recurrence.
‡For the CanCORS/Medicare population, this variable included secondary malignancy codes for both solid organ and lymph node sites, 
whereas for the CRN/VDW sample, this variable included secondary malignancy codes only for solid organ sites (ie, excluding lymph 
node sites).
§The average absolute error in months divided by the average duration of follow-up in months.
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to determine the timing of an event have been 
underdeveloped. Historically, timing estimation 
algorithms have relied on only one code (eg, 
secondary malignancy) or a small set of homog-
enous codes (eg, chemotherapy). We found 
that using just one code yielded estimates that 
tended to be less accurate and meant that many 
patients had no timing estimate. A key strength 
of our approach is the use of multiple compli-
mentary code sets. Of 89 patients with recurrent 
lung cancer in CanCORS/Medicare, our algo-
rithm provided a timing estimate for all but one 
subject. Also, in situations where the algorithm 
does not derive a timing estimate, we describe a 
straightforward imputation method on the basis 
of the time half way between the original cancer 
diagnosis and the end of follow-up.

Timing estimation algorithms often assume that 
the dates of the codes used to detect events can 
also be used to determine the timing of events. 
We found that the codes best suited to deter-
mine the timing of an event were not necessarily 
the same as the codes best suited to detect who 
had an event. For example, hospice was part of 
the model that determined who had recurrence 
but not part of the model that determined when 
recurrence occurred.17 Also, imaging was a rel-
atively weak predictor of developing recurrence 
but a strong factor when estimating the timing of 
recurrence. The date associated with the code 
in claims/EMR-based systems often differed sys-
tematically from the actual recurrence date, and 
the directionality of this difference made intuitive 
sense.

Limitations of our approach include that it is 
more complex than previous techniques.12 Also, 
the accuracy of timing estimates still remains 
suboptimal for a meaningful subset of patients. 
Although estimates were within a few months 
for most patients, one quarter had estimates 
with an average absolute error > 6 months, and 
model performance was only 2 months better 

than the naïve estimate. We are not aware of 
methods that derive more accurate estimates. 
No standard threshold for optimal accuracy 
has been defined, but we believe better timing 
estimates are needed. Caution should be taken  
when using most existing timing estimation algo-
rithms. An inaccurate timing estimate could lead 
to the inappropriate inclusion of expenditures in 
an episode of care or a biased estimate of an 
outcome (ie, recurrence-free survival) in a com-
parative effectiveness research study.

The tools that we developed to determine the 
timing of recurrence for patients with lung and 
colorectal cancer can be applied to other data 
sources (eg, SEER-Medicare, CancerLinq), and 
the methodology that we described can be used 
to determine the timing of other cancers or 
other events. In fact, we have already used this 
technique to estimate the timing of recurrence  
for patients with breast cancer.18 Although our 
approach relied on claims- and EMR-based 
data sources, it could easily incorporate other 
data types too. For example, natural language 
processing could be used to convert unstruc-
tured text into structured format, and then our 
methodology could be used to combine natural 
language processing– and claims-based infor-
mation to generate a refined timing estimate. 
Having consistent methods for assessing the 
performance of timing-estimation algorithms 
offers important advantages to those who 
develop and use these tools. Regardless, efforts 
to develop better timing estimation algorithms 
are still warranted. The need for accurate tim-
ing estimates will continue to grow as the use of 
clinical and administrative data for quality mea-
surement, clinical research, and reimbursement 
expands.
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