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Abstract

Mosquitoes, like other insects, produce a diversity of peptide hormones that are processed from 

different precursor proteins and have a range of activities. Early studies relied on purification of 

bioactive peptides for hormone identification, but more recently genomic data have provided the 

information needed to more comprehensively identify peptide hormone genes and associated 

receptors. The first part of this chapter summarizes the known or predicted peptide hormones that 

are produced by mosquitoes. The second part of this chapter discusses the sources of these 

molecules and their functions.

1. INTRODUCTION

All multicellular organisms produce peptide hormones that are classified on the basis of 

shared structural features and/or function (Fricker, 2012). Most derive from precursors 

called prepropeptides that are produced and enzymatically processed in different types of 

endocrine or neurosecretory cells. Endocrine cells usually store and directly release peptide 

hormones into circulation, whereas neurosecretory cells can either release hormones directly 

or transport them through axons to neurohemal organs or other locations where they are 

stored and released (Näassel and Winther, 2010; Szapiro and Barbour, 2009). Peptide 

hormones mediate activities by binding to membrane receptors that activate intracellular 

signalling and effector functions in different types of cells. A majority of peptide hormones 

bind receptors in the large G protein-coupled receptor (GPCR) family, but some bind protein 

kinase receptors (PKRs) or receptor guanylyl cyclases (RGCs) (Biarc et al., 2011; Lemmon 

and Schlessinger, 2010; Potter, 2011). The focus of this chapter is the peptide hormones of 

mosquitoes. We first discuss the known or predicted peptide hormones mosquitoes produce 

and the receptors they bind. We then examine the sources of these hormones and their 

functions. Insects, including mosquitoes, use some peptide hormones as neurotransmitters, 

while also producing other peptides that have important roles in development, locomotion, 

circadian rhythms, olfaction, and mating. We largely do not discuss these topics because of 

space constraints and/or the limited mosquito literature that is available.

2. PEPTIDE HORMONES AND RECEPTOR DISCOVERY IN MOSQUITOES

The first endocrine studies in mosquitoes began in the mid-20th century with experiments 

showing that a humoral factor released from the head of female mosquitoes stimulated 

development of eggs after blood feeding (Clements, 1956; Detinova, 1945; Gillett, 1956). 

This factor was initially named egg development neurosecretory hormone (EDNH) because 
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experiments showed it was produced by brain medial secretory cells (Lea, 1967, 1972). 

Studies later established that EDNH was a protein or small peptide that stimulated ovaries of 

Aedes aegypti to produce the steroid hormone ecdysone, which was shown to be essential 

for yolk biosynthesis by the fat body, yolk uptake by primary oocytes and egg maturation 

(Hagedorn et al., 1975, 1979; Lea, 1972) (see chapter “Regulation of Reproductive 

Processes in Female Mosquitoes” by Roy et al.). This finding resulted in the renaming of 

EDNH as ovary ecdysteroidogenic hormone (OEH) (Matsumoto et al., 1989a). However, 

identification of OEH as a 140 amino acid peptide required many years of effort because 

large quantities of starting material from mosquito heads were needed to ultimately purify 

the bioactive peptide and determine its sequence (Brown et al., 1998).

Other studies during this period provided evidence that mosquitoes produce peptide 

hormones with functions in nutrient storage (Lea and Van Handel, 1970), water balance and 

diuresis (Maddrell and Phillips, 1978; Nijhout and Carrow, 1978), host seeking (Klowden 

and Lea, 1979), and blood meal digestion (Graf et al., 1998). Yet the small size of 

mosquitoes presented similar difficulties to those confronted with OEH. As a result, few of 

these factors were identified. Instead, most peptide hormones that were successfully purified 

and identified came from larger insects like certain moths, locusts, and cockroaches (Gäade 

et al., 1997; Hauser et al., 1997, 2006a,b; Raabe, 1989). In some cases, these sequence data 

were then used to identify homologous peptide sequences from mosquitoes (Veenstra, 1994, 

1999; Veenstra et al., 1997a,b, 1999).

Approaches to studying peptide hormones and their receptors dramatically changed with the 

sequencing and annotation of the first insect genome from Drosophila melanogaster (Adams 

et al., 2000). This was soon followed by the sequencing of the mosquito, Anopheles gambiae 
(Holt et al., 2002), and several other mosquito species including Ae. aegypti and Culex 
quinquefasciatus (Arensburger et al., 2010; Jiang et al., 2014; Neafsey et al., 2015; Nene et 

al., 2007; Waterhouse, 2015). These data together with the genomes for several other insects, 

invertebrates, and vertebrates provided the foundation needed to identify candidate peptide 

hormone and receptor genes through homology-based searches (Hauser et al., 2010; Hewes 

and Taghert, 2001; Hummon et al., 2006; Li et al., 2008; Predel et al., 2010; Riehle et al., 

2002; Roller et al., 2008; Southey et al., 2008; Veenstra et al., 2012).

2.1 Peptide Hormone Genes

Annotation of the Ae. aegypti and An. gambiae genomes originally identified 43 and 35 

peptide hormone genes, respectively (Predel et al., 2010; Riehle et al., 2002). Additions to 

the literature since these studies were published together with annotation improvements 

increase this number to 50 for Ae. aegypti, 47 for An. gambiae, and 45 C. quinquefasciatus. 

We list these in alphabetical order in Table 1 along with their identifiers, which will be 

useful to readers because some of these genes are still difficult to find or correctly recognize 

in databases. We also list the 45 genes that have been identified from D. melanogaster, 
which is of value to this discussion from two perspectives. First, more peptide hormones 

have been functionally studied in D. melanogaster than in any mosquito species. Second, 

mosquitoes and D. melanogaster reside in families (Culicidae and Drosophilidae) that arose 

at different times in the evolutionary history of the order Diptera. The Culicidae is an early 
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lineage that arose 225 million years ago (mya) while the Drosophilidae evolved much more 

recently (40–65 mya) in concert with other cyclorrhaphan flies (Wiegmann et al., 2003). 

Thus, the peptide hormone genes from mosquitoes and drosophilids together provide 

information across the breadth of the order.

2.1.1 Comparative Genomics—Most peptide hormone genes are single copy and 

produce mature hormones that are monomeric. However, differential processing can yield 

multiple bioactive forms for some peptide hormones with the most extreme example in 

mosquitoes being prepro-FMRFamide, which is processed into nine functional FMRFamide 

isoforms (Predel et al., 2010). Some peptide hormone genes along with their receptors are 

duplicated in mosquitoes and select other insects. These include adipokinetic hormone 

(AKH), corazonin, and AKH/corazonin peptide (ACP) (Table 1). Some of these 

duplications, however, have been lost in drosophilids including D. melanogaster (Hauser and 

Grimmelikhuijzen, 2014; Vogel et al., 2013). The only multimember peptide hormone genes 

in mosquitoes, drosophilids, and other insects are the insulin-like peptides (ILPs), but it is 

unclear all family members derive from a common ancestral gene (Grönke et al., 2010). 

Lastly, bursicon and glycoprotein A2/B5 are dimeric peptide hormones that are produced 

from cleavage products of different prepropeptides (bursicon/partner of bursicon and 

glyprotein hormone A2/A5), whose corresponding genes are also expressed in different 

neurosecretory cells (Table 1). Trypsin modulating oostatic factor (TMOF) is a proline rich, 

10 amino acid peptide identified in Ae. aegypti that is often discussed as a peptidyl regulator 

of blood meal digestion and egg formation in mosquitoes (Borovsky et al., 1990; Verlinden 

et al., 2014). However, TMOF is not included in Table 1 or further discussed here because it 

matches a 10 amino acid sequence of the vitelline envelope protein (Lin et al., 1993), which 

clearly is not a peptide hormone precursor protein. In addition, no data compellingly 

supports that TMOF binds a specific receptor including any GPCR, PRK, or RGC, or 

activates signalling in any target cell that is consistent with it functioning as a peptide 

hormone.

Overall, the data in Table 1 show Ae. aegypti, An. gambiae, and C. quinquefasciatus encode 

the same peptide hormone genes with two exceptions. First the short neuropeptide (sNPF) 

gene in Ae. aegypti has duplicated, which we refer to here as sNPF1 and sNPF2 (see Section 

4.1.16), whereas An. gambiae and C. quinquefasciatus have only one sNPF gene. Second, 

Ae. aegypti has eight ILP genes while An. gambiae has seven and C. quinquefasciatus has 

five. Table 1 notes a few other instances of genes not being detected in C. quinquefasciatus 
but this is likely due to annotation issues. D. melanogaster lacks genes for ACP, allatotropin, 

and OEH but orthologs of all other peptide hormone genes in mosquitoes are present. 

Orthologs of most peptide hormone genes in mosquitoes and drosophilids are also present in 

insects in other orders. The proctolin gene is present in D. melanogaster and other insects 

but is absent in mosquitoes. A few other peptide hormone genes present in one or more 

insects from other orders are absent from both mosquitoes and drosophilids (Table 1). The 

latter could indicate these peptide hormones are absent from all of the Diptera.

2.1.2 Transcription and Peptidomics—Transcriptional profiling of individual genes 

has been reported for several peptide hormones in mosquitoes, but only a few studies report 
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expression data in specific tissues or life stages. In An. gambiae, tissue and/or life stage 

expression data are available for AKH and ACP (Kaufmann and Brown, 2006, 2008), 

bursicon (Robertson et al., 2007), ILPs, (Arsic and Guerin, 2008; Krieger et al., 2004), 

neuropeptide F (NPF) (Garczynski et al., 2005), and sNPF (Garczynski et al., 2007). In Ae. 
aegypti, such data are available for AKH and ACP (Kaufmann et al., 2009), allatostatin A 

and C (ASTA and C) (Hernández-Martínez et al., 2005; Li et al., 2006; Veenstra et al., 

1997a), allatotropin (Hernández-Martínez et al., 2005; Veenstra and Costes, 1999), ILPs 

(Brown et al., 2008; Riehle et al., 2006), kinin (Veenstra, 1994), NPF (Stanek et al., 2002), 

OEH (Brown et al., 1998), and sNPF2 (Stracker et al., 2002). Data are also available for 

what we name in this paper pyrokinin 2 (Choi et al., 2013) in Ae. aegypti (see Section 

4.1.15) and prothoracicotropic hormone (PTTH) in Culex pipiens (Zhang and Denlinger, 

2011). Profiling of multiple An. gambiae or Ae. aegypti genes through array based or 

RNAseq studies provide additional data on peptide hormone gene expression (Akbari et al., 

2013; Baker et al., 2011; Matthews et al., 2016). The only expression data available for other 

mosquito species are for ILP genes in C. pipiens (Sim and Denlinger, 2009) and Anopheles 
stephensi (Marquez et al., 2011; Pietri et al., 2015), and tachykinins in Culex salinaris 
(Meola et al., 1998). Insights about prepropeptide processing are currently only available for 

Ae. aegypti through peptidomic analysis of the central nervous system and select other 

tissues (Predel et al., 2010; Siju et al., 2013). It is also important to note that the accuracy of 

the above data depends on the quality of the reference genomes that were available at the 

time the above studies were conducted.

2.2 Peptide Hormone Receptors

Insights into the known or predicted receptors for mosquito peptide hormones derive from 

two lines of investigation. The first is experimental data in one or more mosquito species 

showing that a particular receptor is activated or required for the biological activity of a 

given peptide hormone. The second is homology-based studies of mosquito receptor genes 

relative to D. melanogaster, other insects, or other animals where experimental data on 

orthologs are available. While several studies discuss GPCRs that bind peptide hormones 

(see later), Vogel et al. (2013) provides the only comprehensive summary of the receptors in 

mosquitoes and drosophilids that are known or predicted to bind peptide hormones. Key 

features of these receptors are summarized below.

2.2.1 GPCRs—GPCRs form a very large protein family that is present in all multicellular 

animals. However, the first studies showing that peptide hormones are often ligands for 

GPCRs derive from experiments first conducted in mammals. GPCRs range from 40 to 60 

kDa in size and reside as monomers in the plasma membrane of cells. All exhibit a standard 

topology which consists of three regions: a variable extracellular N-terminal domain, a 

conserved transmembrane domain with seven hydrophobic α-helices that functions as a 

ligand binding pocket, and an intracellular C-terminal domain that mediates signalling 

through interactions with G proteins (Bockhaert and Pin, 1999). GPCRs are further 

subdivided into six classes (A–F) of which only Class A (rhodopsin-like) and Class B 

(secretin-like) contain members that bind peptide hormones (Attwood and Findlay, 1994; 

Hauser et al., 2006a,b).
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The conserved transmembrane domain shared by GPCRs was used during annotation to 

interrogate the D. melanogaster genome. This led to identification of more than 200 

predicted GPCR genes of which 44 were Class A and B members (Brody and Cravchik, 

2000; Hewes and Taghert, 2001). A few functional studies of GPCRs preceded sequencing 

of the D. melanogaster genome but most of these predicted GPCRs were ‘orphans’ that were 

subsequently targeted for study by many groups using different experimental approaches. 

This resulted in ‘deorphanization’ and identification of GPCRs that bind several of the 

peptide hormones listed in Table 1 (see Johnson et al., 2003; Näassel and Winther, 2010). 

The same approach was used to annotate the GPCR genes of An. gambiae, Ae. aegypti, and 

C. quinquefasciatus (Arensburger et al., 2010; Hill et al., 2002; Nene et al., 2007). However, 

experimental studies identifying mosquito GPCRs that bind peptide hormones are currently 

restricted in Ae. aegypti to ASTC (Mayoral et al., 2010), allatotropin (Hayes et al., 1997; 

Nouzova et al., 2012), kinins (Kersch and Pietrantonio, 2011; Kwon et al., 2012; 

Pietrantonio et al., 2005; Taneja-Bageshwar et al., 2009), NPF (Liesch et al., 2013), 

pyrokinin 2 (Choi et al., 2013), and sNPFs (Liesch et al., 2013). In anopheline mosquitoes, 

GPCRs that bind AKH, crustacean cardioactive peptide (CCAP), and corazonin (Belmont et 

al., 2006), ACP (Hansen et al., 2010), myosuppressin (Scholler et al., 2005), NPF 

(Garczynski et al., 2005), and sNPFs (Garczynski et al., 2007) have been identified in An. 
gambiae while the GPCR receptor for a kinin has been identified from A. stephensi (Radford 

et al., 2004).

The likely GPCRs for other peptide hormones in mosquitoes were comparatively assessed 

by Vogel et al. (2013) using all of the Class A (245) and B (82) genes from Ae. aegypti, An. 

gambiae, C. quinquefasciatus, D. melanogaster, and D. mojavensis. This produced 

phylogenies comprised of well-supported monophyletic clades that were subdivided into 

assemblages and subassemblages. A majority of clades contained receptors whose peptide 

hormone ligands are known from experimental studies in D. melanogaster or other species, 

which in turn provided evidence for the likely ligand of corresponding orthologs in 

mosquitoes. These ‘characterized’ GPCR clades and their known or predicted peptide 

hormone ligands are listed in Table 2 using the nomenclature of Vogel et al. (2013). Data on 

where different receptors are expressed in mosquitoes and drosophilids are difficult to 

summarize because of inconsistencies between studies in regard to the life stages and tissues 

that were examined. We therefore discuss such expression data, if available in mosquitoes, in 

Section 4.1.

Vogel et al. (2013) also identified several GPCR ‘orphan’ clades. In some cases placement in 

the phylogeny provides insights into predicted ligands. For example, subassemblage 1a of 

the Class A GPCRs contains two orphan clades (OA1 and OA2) that are sister to the 

bursicon and glycoprotein A2/B5 receptors. This makes them strong candidates for binding 

relaxin/ILPs such as ILP6 in Ae. aegypti and ILP8 in D. melanogaster (Brown et al., 2008). 

Notably, this prediction was recently supported experimentally for D. melanogaster ILP8, 

which deorphanizes OA1 (Garelli et al., 2015; Vallejo et al., 2015). Other orphan clades 

provide no insights about their ligands but their relationship to other GPCRs in the 

phylogeny strongly suggest they bind peptide hormones. If correct, this suggests that 

mosquitoes and drosophilids produce several peptide hormones that have not been identified. 

Lastly, these data show that dipteran Class A and B GPCRs have experienced several 
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instances of duplication or loss in particular species, which results in some characterized 

clades containing ‘in group’ orphans (Vogel et al., 2013). The functional significance of this 

is unclear although duplicated receptors may preferentially bind different isoforms of a 

given peptide hormone since differential processing can produce variants of the same ligand 

(Predel et al., 2010). Recent studies also provide some support for this suggestion (Liesch et 

al., 2013).

2.2.2 PKRs—Most PKRs are single subunit receptors that have an extracellular ligand 

binding domain, a single hydrophobic transmembrane-spanning domain, and an intracellular 

kinase domain that upon ligand binding autophosphorylates either tyrosine or serine/

threonine residues (Hubbard and Miller, 2007; Lemmon and Schlessinger, 2010). Most 

PKRs form noncovalent dimers upon entry into the plasma membrane or ligand binding, 

although some, like the insulin receptor (IR) (see later), form a covalent heterotetramer 

through intra- and intersubunit disulphide bonds. PKRs with tyrosine phosphorylation 

activity are referred to as receptor tyrosine kinases (RTKs) which can activate one or more 

signalling pathways. PKRs with serine/threonine kinase domains are also capable of 

activating one or more signalling pathways.

PKR ligands in mammals include insulin, several growth factors, and certain cell surface 

molecules (Lemmon and Schlessinger, 2010). A homologue of the vertebrate IR, was cloned 

from D. melanogaster prior to sequencing of its genome, which was named the Drosophila 
IR (Fernandez-Almonacid and Rosen, 1987). Biochemical studies showed this receptor 

binds vertebrate insulin (Fernandez-Almonacid and Rosen, 1987; Sajid et al., 2011) while 

genetic studies provided evidence that several endogenous ILPs activate the insulin 

signalling pathway (Brogiolo et al., 2001). Genetic studies in D. melanogaster also identified 

an RTK as the receptor for PTTH (Rewitz et al., 2009). In mosquitoes, experiments 

conducted in Ae. aegypti show that its IR binds endogenous ILP3 with high affinity which 

activates the canonical insulin signalling pathway (Brown et al., 2008; Dhara et al., 2013; 

Wen et al., 2010). In contrast, no functional studies have been conducted in mosquitoes on 

the PTTH receptor (see Section 4.1).

Results from Vogel et al. (2013) assemble the mosquito and drosophilid PKR genes into two 

branches: 12 well-supported clades consisting of RTKs and 5 clades containing PKRs with 

conserved serine–threonine kinase domains that are related to mammalian transforming 

growth factor beta (TGF-β) receptors. Unlike GPCRs, this analysis also shows that dipteran 

PKRs have undergone few lineage-specific gains or losses, which suggest the same genes 

are likely present in most or all Diptera. Mosquito and drosophilid IRs form a single clade 

that is closely related to a clade that contains homologues of human anaplastic lymphoma 

RTK (ALK) and leucocyte RTK plus a second orphan clade (OR1) lost from D. 
melanogaster. The ALK-like receptor has been shown to have functional roles in 

development, ethanol sensitivity, and learning in D. melaogaster but its ligand is unknown 

(Gouzi et al., 2011; Lasek et al., 2011; Lorén et al., 2001). The OR1 receptor from Ae. 
aegypti was recently deorphanized by showing that it binds OEH (Vogel et al., 2015; see 

Section 4.1). Many of the remaining clades whose ligands are growth factors have been 

studied in D. melanogaster but have not been examined in mosquitoes. The RTK genes with 
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known or predicted peptide hormone ligands in mosquitoes and D. melanogaster are 

summarized in Table 3.

2.2.3 RGCs—RGCs are conserved homodimeric membrane proteins which have an 

extracellular ligand binding domain, a single pass transmembrane domain, and an 

intracellular catalytic domain with adenylyl or guanylyl cyclase activities that are sensitive 

to intracellular calcium levels (Potter, 2011). RGCs also usually form dimers prior to or after 

ligand binding. Studies in mammals were the first to show that RGCs bind peptide hormones 

called brain and atrial natriuretic peptides (Potter, 2011). In insects, experiments with the 

oriental fruitfly, Bactrocera dorsalis, identified an RGC as the receptor for eclosion hormone 

(EH) (Chang et al., 2009), while a second RGC was identified as the receptor for 

neuropeptide-like peptide 1 (NPLP1) in D. melanogaster (Overend et al., 2012). 

Phylogenetic analysis of mosquito and drosophilid RGCs generated one clade containing 

predicted EH receptors, a second containing NPLP receptors, and four orphan clades 

(OGC1–4) (Vogel et al., 2013) (Table 3). One of these orphan clades appears orthologous to 

the vertebrate RGCs that bind natriuretic peptides, while a second appears orthologous to 

vertebrate retinal RGCs. The other two orphan clades have no vertebrate ortholog.

3. SOURCES, PROCESSING, AND RELEASE OF PEPTIDE HORMONES IN 

MOSQUITOES

In mosquitoes, most insights into where different peptide hormones are produced derive 

from studies of adult females. This bias mirrors the literature at-large where most of what we 

know about mosquito genetics, biochemistry, physiology, and behaviour also come from 

studies of adults, which is the life stage of interest from the perspective of vector biology 

and disease transmission. A different situation, however, exists in a number of other insects 

including D. melanogaster where the source of many peptide hormones have been carefully 

mapped in larvae but distribution in adults is less detailed (Näassel and Winther, 2010). 

Studies on peptide hormone production and function in Lepidoptera also overall focus on 

larvae because of the historic interest in these insects as models for the study of moulting 

(Nijhout, 1998; Smith and Rybczynski, 2012; Truman and Riddiford, 2002). Thus, while 

most peptide hormone genes in mosquitoes are conserved with other insects, differences in 

functional priorities prevent some comparisons from being made in regard to where they are 

produced. The emphasis on adults has also affected which peptide hormones have been most 

studied in mosquitoes.

3.1 Peptide Hormone Producing Cells

Immunocytochemistry and peptidomics provide information on cells in mosquitoes where 

different peptide hormones have been detected. We list the species for which such data are 

available in Table 1 and illustrate these sites in Fig. 1. For the central nervous system several 

hormones are detected in the brain, specific neurosecretory cells, and ganglia of the ventral 

nerve chord (Brown and Cao, 2001; Brown and Lea, 1988; Brown et al., 2008; Cao and 

Brown, 2001; Estévez-Lao et al., 2013; Hellmich et al., 2014; Hernández-Martínez et al., 

2005; Kaufmann and Brown, 2006; Kaufmann et al., 2009; Krieger et al., 2004; Marquez et 

al., 2011; Meola and Lea, 1972; Meola et al., 1998; Moffett and Moffett, 2005; Predel et al., 
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2010; Riehle et al., 2006; Siju et al., 2013; Stracker et al., 2002). The corpus cardiacum (CC) 

and perivisceral organs iteratively present in abdominal segments are neurohemal organs that 

store and release several different peptide hormones in mosquitoes (Brown and Cao, 2001; 

Brown and Lea, 1988; Cao and Brown, 2001; Estévez-Lao et al., 2013; Hernández-Martínez 

et al., 2005; Honegger et al., 2011; Kaufmann and Brown, 2006; Kaufmann et al., 2009; 

Marquez et al., 2011; Predel et al., 2010; Riehle et al., 2006; Veenstra and Costes, 1999). 

Studies conducted primarily in D. melanogaster show that the midgut epithelium contains 

intestinal stem cells, which self-renew and differentiate into two other cell types: 

enterocytes, that produce digestive enzymes and mediate nutrient uptake, and endocrine cells 

(Jiang and Edgar, 2012). In Ae. aegypti, midgut endocrine cells are known to produce and/or 

release several peptide hormones (Brown et al., 1986; Hernández-Martínez et al., 2005; 

Marquez et al., 2011; Moffett and Moffett, 2005; Predel et al., 2010; Stracker et al., 2002; 

Veenstra et al., 1995) (Table 1, Fig. 1).

3.2 Processing Enzymes and Hormone Secretion

Microscopy studies show that peptide hormones accumulate in the body of endocrine and 

neurosecretory cells where these are packaged into secretory vesicles as propeptides along 

with processing enzymes (Brown and Lea, 1988; Raabe, 1989). Studies of mammalian 

peptidergic cells indicate these include endopeptidases, which are primarily convertases that 

process propeptides, and other modifying enzymes that can alter the amino- and carboxyl 

termini of processed peptides in ways that are important for function (Hook et al., 2008; 

Isaac et al., 2009). Amidation of carboxyl termini also confers resistance to peptidases, 

which potentially extends half-life after release into circulation. Functional studies of 

convertases and the enzymes responsible for carboxy-terminal amidation have been 

conducted in D. melanogaster (Jiang et al., 2000; Reiher et al., 2011; Taghert and Veenstra, 

2003; Wegener et al., 2011). Genes encoding homologous processing enzymes have been 

identified in mosquitoes but no functional studies have been conducted (Akbari et al., 2013; 

Matthews et al., 2016; Riehle et al., 2002).

Peptide hormones are released from endocrine and neurosecretory cells in response to 

external and internal stimuli. For neurosecretory cells in the brain, this release occurs 

primarily from axons extending to the CC and along the gut (Brown and Cao, 2001; Cao and 

Brown, 2001; Raabe, 1989). In contrast, neurosecretory cells located in other ganglia or 

tissues release peptide hormones in several other locations throughout the body (Raabe, 

1989). Midgut endocrine cells release peptides into the space between epithelial cells for 

diffusion to neighbouring cells and the hemolymph (Brown et al., 1986, 1988). Several 

enzymes that degrade peptide hormones in circulation or after binding to target cells have 

been identified in mammals (Isaac et al., 2009). While homologues of these enzymes are 

known in both mosquitoes and D. melanogaster (Riehle et al., 2002; Taghert and Veenstra, 

2003), little information is available regarding their expression or function. The only 

exception to this is in the context of data showing that some kinin agonists are resistant to 

proteolysis in mosquitoes, which suggests they could be useful as control agents (Taneja-

Bageshwar et al., 2009).
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Some peptide hormones are also likely degradated by endosomal enzymes after receptor 

binding and internalization. One example of this is insulin degrading enzymes (IDE, 

insulinases) that are conserved between mammals and insects including An. gambiae and D. 
melanogaster (Duckworth et al., 1989; Riehle et al., 2002). A recent study showed that an 

IDE is globally expressed in D. melanogaster throughout development, is present in both the 

membrane and cytoplasm of cells, and affects ILP levels and signalling (Galagovsky et al., 

2014). Studies from mammals also suggest IDEs may have important roles in intracellular 

degradation of other peptides (Fernández-Gamba et al., 2009).

4. PEPTIDE HORMONE FUNCTIONS IN MOSQUITOES

Many studies have been conducted on the functions of peptide hormones in insects, but this 

literature is also large and difficult to summarize across species that have been studied. As a 

result, most reviews focus on either: (1) processes that peptide hormones have roles in 

regulating like metabolism (Baker and Thummel, 2007; Broughton and Partridge, 2009), 

moulting and metamorphosis (Smith and Rybczynski, 2012; White and Ewer, 2014), and 

water balance (Dow and Davies, 2006) or (2) particular types of peptide hormones such as 

FMRFamides (Nichols, 2003), ILPs (Antonova et al., 2012), or PRXamides (Jurenka, 2015). 

A few recent summaries discuss peptide hormone functions more broadly but they primarily 

emphasize nonmosquito species, which results in a number of studies from the mosquito 

literature being uncited (Hauser et al., 2008; Näassel and Winther, 2010; Verlinden et al., 

2014). Our own assessment identifies functional data in one or more mosquito species for 

about a third of the entries in Table 1. Below, we first summarize these findings in 

alphabetical order with the absence of a given peptide from Table 1 indicating that no 

functional studies to our knowledge have been conducted in mosquitoes. We also provide a 

succinct summary of comparative information, so that the reader can put into firmer context 

findings from mosquitoes. We then follow this information with some concluding remarks.

4.1 Peptide Hormones with Reported Activities

4.1.1 Adipokinetic Hormone (AKH) and AKH/Corazonin Peptide (ACP)—Most 

insects including D. melanogaster have one AKH gene that is processed into an N-terminally 

pyroglutamate blocked peptide of 8–10 amino acids (Gäade, 2009). Functional studies 

outside of mosquitoes report that AKHs mobilize stored lipid and/or carbohydrate from the 

fat body into the hemolymph; making this hormone a functional analogue of mammalian 

glucagon (Van der Host, 2003). Studies from D. melanogaster focus primarily on AKH 

function in concert with ILPs in regulating metabolism (Baker and Thummel, 2007; Näassel 

and Winther, 2010) although one study also reports that AKH is cardiostimulatory (Noyes et 

al., 1995). As noted earlier, mosquitoes have AKH and ACP genes, which give rise to two 

peptides that bind class A GPCRs in subassemblage 1b. These receptors are also related to 

the receptors for CCAP and allatotropin (Belmont et al., 2006; Caers et al., 2012; 

Mugumbate et al., 2011, 2013; Vogel et al., 2013). Functional experiments indicate that 

AKH mobilizes stored carbohydrate but not lipid in An. gambiae while ACP has no effect on 

either lipid or carbohydrate mobilization (Kaufmann and Brown, 2008).
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4.1.2 Allatostatin A and C (ASTA and C)—ASTs are structurally variable peptides 

from distinctly different genes (Veenstra, 2008). The first AST was identified from the 

cockroach Diploptera punctata as an allatostatin (Woodhead et al., 1989). However, studies 

report activities for ASTs in other insects that do not include the inhibition of juvenile 

hormone (JH). Thus, the name AST for these peptides is largely historical. We thus include 

allatostatin B (ASTB) with the myoinhibitory peptides (MIP) on the basis of sequence 

similarity (Table 1). In mosquitoes and drosophilids, ASTA and C bind related class A 

GPCRs that cluster together into subassemblage 2c along with the receptor for CCHamide 

(Mayoral et al., 2010; Vogel et al., 2013). ASTA and C have both been shown to regulate JH 

biosynthesis in Ae. aegypti (Li et al., 2004, 2006), while one report suggests a role for ASTs 

in gut motility (Onken et al., 2004). The role of ASTs in regulation of JH is comprehensively 

discussed in chapter “The Role of Juvenile Hormone in Mosquito Development and 

Reproduction” by Zhu and Noriega.

4.1.3 Allatotropin—Allatotropins are 14 amino acid peptides that stimulate JH 

biosynthesis in insects from several orders. As previously noted, however, drosophilids lack 

orthologous genes for both allatotropin and its receptor (Vogel et al., 2013). Functional 

studies identify the Class A, subassemblage 1a GPCR that binds allatotropin in Ae. aegypti 
while also demonstrating that allatotropin stimulates JH biosynthesis (Hernández-Martínez 

et al., 2007; Li et al., 2003; Nouzova et al., 2012). These results are further discussed in 

chapter “The Role of Juvenile Hormone in Mosquito Development and Reproduction” by 

Zhu and Noriega. Vogel et al. (2013) identified a closely related paralogue of the allatotropin 

receptor in Ae. aegypti but its ligand is unknown.

4.1.4 Bursicon and Partner of Bursicon—Bursicon has long been known in the 

literature as a factor required for tanning of insect cuticle after moulting (Nijhout, 1998). 

However, it was only recently identified in D. melanogaster as a 30 kDa heterodimer that is 

produced from products of the bursicon and partner of bursicon genes (Luo et al., 2005; 

Mendive et al., 2005). The Class A GPCR that binds bursicon in D. melanogaster clusters in 

subassemblage 1a with single orthologs in all mosquitoes (Vogel et al., 2013). This 

subassemblage also contains receptors that bind biogenic amines, steroid hormones, and 

certain large peptide ligands. As such, subassemblage 1a receptors are referred to as derived-

peptide GPCRs (Vogel et al., 2013). The adult bias of the literature largely underlies the 

paucity of data on bursicon function in mosquitoes although one study does show that 

bursicon-producing neurosecretory cells undergo apoptosis in An. gambiae after adult 

ecdysis (Honegger et al., 2011).

4.1.5 Corazonin—An 11 amino acid peptide structurally similar to AKHs was isolated 

and named corazonin based on its activation of heart contractions in the cockroach 

Periplaneta americana (Veenstra, 1989). Characterization of the corazonin gene in 

mosquitoes and other insects revealed this similarity extended to their prepropeptides and 

led to the identification of a gene encoding another peptide named ACP (Hansen et al., 

2010). These prepropeptides show structural similarity to the gonadotropin-releasing 

hormones (GnRH) in mammals. AKH, corazonin, and ACP bind different but closely related 

Class A GPCRs in An. gambiae that belong to subassemblage 1b (Belmont et al., 2006; 
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Hansen et al., 2010; Vogel et al., 2013). These GPCRs also share homology with the GnRH 

GPCRs (Hauser and Grimmelikhuijzen, 2014). The function and expression of ACP and its 

receptor are unknown in insects, whereas corazonin has a range of reported activities 

including being cardioactive (Hauser and Grimmelikhuijzen, 2014). However, studies in An. 
gambiae indicate no significant effect on dorsal vessel contraction after knockdown of this 

factor and its receptor by RNA interference (RNAi) (Hillyer et al., 2012).

4.1.6 Crustacean Cardioactive Peptide (CCAP)—CCAPs are cyclic, amidated nine 

amino acid peptides that were first identified from the crab Carcinus maenas but are widely 

conserved regulators of dorsal vessel contraction in insects and other arthropods (Stangier et 

al., 1999; White and Ewer, 2014). CCAP has also been implicated in regulating ecdysis 

(White and Ewer, 2014). The Class A, subassemblage 1b GPCR that binds CCAP was first 

identified in D. melanogaster and later in An. gambiae (Belmont et al., 2006). Expression 

studies in adult An. gambiae establish that CCAP localizes to brain neurosecretory cells with 

axons to the CC, and cells in abdominal ganglia with axons to the heart (Estévez-Lao et al., 

2013) (Fig. 1). CCAP injected into adult female An. gambiae stimulates heart contractions, 

whereas RNAi knockdown of CCAP had the opposite effect (Chen and Hillyer, 2013; 

Estévez-Lao et al., 2013). Both water and sucrose deprivation reduce heart contraction rate 

but these effects occur independently of CCAP activity (Ellison et al., 2015).

4.1.7 Diuretic Hormone 31 (DH31, Calcitonin-Like)—This hormone was first 

identified from the cockroach Di. punctata as a 31 amino acid peptide with a C-terminal 

GXPamide that shares structural features and diuretic activity with vertebrate calcitonins 

(Furuya et al., 2000). DH31 homologues are now known from several other insects 

(Zandawala, 2012). Early studies showing that a peptide hormone regulates diuresis in 

mosquitoes after blood feeding (see earlier) was identified as a DH31 homologue in An. 
gambiae (Coast et al., 2005). Identification of the DH31 receptor in D. melanogaster as a 

Class B GPCR was followed by identification of its ortholog in Ae. aegypti, which is 

expressed as a gradient along the Malpighian tubules (Kwon et al., 2012). Expression in the 

hindgut further led to the discovery that DH31 exhibits myotropic activity (Kwon and 

Pietrantonio, 2013). These data are further elaborated upon in chapter “Renal Excretory 

Processes in Mosquitoes” by Piermarini.

4.1.8 Diuretic Hormone 44 (Corticotropin-Releasing Factor-Like)—A 41 amino 

acid peptide with diuretic activity that was initially identified from the moth Manduca sexta 
with its receptor (Kataoka et al., 1989; Reagan, 1994). DH44 sequences exhibit similarities 

to peptide hormones in the vertebrate corticotropin-releasing factor (CRF) family that bind 

Class B GPCRs (Balment and Lovejoy, 1999; Cardoso et al., 2014). A DH44 homologue 

was isolated from whole body extracts of Culex salinarius that increased cAMP levels in M. 
sexta Malpighian tubules and stimulated diuresis in Ae. aegypti tubules (Clark et al., 1998). 

Subsequently, two Class B GPCRs that bind DH44 were identified from D. melanogaster 
while one was identified from Ae. aegypti (Hector et al., 2009; Jagge and Pietrantonio, 

2008). More information on DH44 is provided in chapter “Renal Excretory Processes in 

Mosquitoes” by Piermarini.
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4.1.9 Ecdysis Triggering Hormone (ETH)—Studies conducted in M. sexta identified 

ETH as a 26 amino acid peptide that ended at its C-terminus with the sequence PRMamide 

(Zitnan et al., 1996). ETH genes encoding usually two ETH peptides have since been 

identified from insects in most orders including Diptera (Jurenka, 2015; Zitnan et al., 2003). 

As noted earlier, ETH peptides are conservatively produced in Inka (=epitracheal) cells (Fig. 

1). ETH genes and the mature peptides they encode exhibit distinct features. However, the 

C-terminal PRXamide motif of ETHs is shared with another group of peptide hormones we 

refer to below as pyrokinins (see Section 4.1.15). ETHs also bind Class A GPCRs that are 

closely related to the pyrokinin receptors (Vogel et al., 2013). In D. melanogaster the ETH 

receptor gene is alternatively spliced to produce receptors that preferentially bind the two 

mature ETHs that are processed from prepro-ETH (Iversen et al., 2002; Park et al., 2002). 

Mosquito ETH genes also produce two ETH isoforms but no studies have examined receptor 

binding. Functional data support a conserved role for ETH in triggering ecdysis in Ae. 
aegypti during larval and pupal moulting (Dai and Adams, 2009). A recent study also 

implicates ETH in the timing of JH synthesis (Areiza et al., 2014).

4.1.10 FMRFamides—These neuropeptides are 7–10 amino acids in length, share C-

terminal RFamide sequences, and have broadly conserved myotropic functions. The 

literature initially treated peptides ending in RF/Pamide including insect FMRFamides, 

sulfakinins, myosuppressins, NPF, and sNPF as related ‘FMRFamide’ or ‘FaRPamide’ 

peptides. These peptides also all bind Class A GPCRs. Subsequent studies, however, showed 

that FMRFamides, sulfakinins, myosuppressins, NPFs, and sNPFs derive from distinctly 

different genes, which suggests their similar C-termini reflects evolutionary convergence 

driven by currently unknown factors. The receptors for mosquito and drosophilid 

FMRFamides all reside in a single cluster 2 clade (Vogel et al., 2013). The myotropic action 

of FMRFamides on the heart and gut of D. melanogaster as well as their expression in the 

nervous system are well studied (Nichols, 2003). The first functional studies in mosquitoes 

used an FMRFamide antiserum to identify FMRFamide cells that were immunopositive in 

the nervous system and midgut of Ae. aegypti (Brown and Lea, 1988; Brown et al., 1986; 

Moffett and Moffett, 2005). These data though provide unclear results regarding which of 

these cells actually produce and/or store FMRFamides because the antisera used recognizes 

only the RFamide epitope. Studies in An. gambiae show that a single dose of FMRFamide 

stimulates larval heart contractions (Duttlinger et al., 2003). Hillyer et al. (2014) profiled 

FMRFamide gene expression in An. gambiae and predicted prepro-FMRFamide produces 

eight FMRFamide peptides, which is consistent with previously discussed peptidomic data 

showing that prepro-FMRFamide from Ae. aegypti produces nine peptides (Predel et al., 

2010). Functional experiments indicate that two FMRFamide peptides increase heart 

contractions in An. gambiae at low doses but reduce contractions at high doses (Hillyer et 

al., 2014). A direction for study that would aid in interpreting the physiological importance 

of FMRFamides in mosquito physiology would be to clearly identify the cell sources for 

these peptides and release dynamics.

4.1.11 Insulin-Like Peptides (ILPs)—All ILPs are 6–8 kDa, share a common 

structural motif called the insulin fold, and are processed from precursors with similar 

domain structure (Pre, B, C, A) (De Meyts et al., 2009). ILPs are also broadly conserved 
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among metazoans and are the most studied peptide hormones because of their important 

regulatory roles in metabolism, growth, and development. In mammals, insulin is the only 

ILP that binds with high affinity to the IR; an RTK, which activates the insulin signalling 

pathway (De Meyts et al., 2009). Mammals also produce two other types of ILPs: (1) 

insulin-like growth factors (IGFs) that preferentially bind another RTK, the IGF receptor 

(IGFR), and activate MAPK signalling and (2) relaxins that bind GPCRs and activate several 

signalling pathways (Bani, 1997; McDonald et al., 1989). Insulin primarily regulates 

metabolic responses, IGFs primarily have functions in growth, while relaxins are implicated 

in several activities.

This background is important because mosquitoes and other insects produce multiple ILPs 

but usually have only one IR/IGFR homologue which as previously noted is named the IR. 

Several but not all ILP family members are functionally redundant in D. melanogaster but it 

is currently unknown whether all ILP family members are capable of binding and activating 

the IR (Grönke et al., 2010; Zhang et al., 2009). That ILP8 requires a GPCR for function 

suggests it is relaxin-like and may not interact with the IR (Garelli et al., 2015; see earlier). 

Factors released from the fat body plus the peptide hormone CCHamide2 from gut 

endocrine cells are both implicated in regulating ILP release from brain medial 

neurosecretory cells in D. melanogaster (Sano et al., 2015).

Studies in mosquitoes have mostly been conducted in Ae. aegypti where five ILP genes (1, 

3, 4, 7, and 8) are expressed in brain medial neurosecretory cells while three (2, 5, and 6) are 

detected in other tissues including the midgut and fat body (Riehle et al., 2006). Each 

prepro-ILP exhibits features consistent with processing like vertebrate insulin/relaxins 

except ILP6, which has features that suggest it is processed like a vertebrate IGF (Brown et 

al., 2008; Riehle et al., 2006). Most functional data focus on ILP3 because it is most similar 

to vertebrate insulin, binds with high affinity to the Ae. aegypti IR, and activates the insulin 

signalling pathway (Brown et al., 2008; Dhara et al., 2013; Wen et al., 2010).

ILP3 exhibits vertebrate insulin-like activity by reducing blood sugar (trehalose) in adult 

female Ae. aegypti while elevating carbohydrate and lipid stores in the fat body (Brown et 

al., 2008). ILP3 also has several functions in female reproduction. As noted earlier, the 

mosquito endocrinology literature began with characterization of EDNH, which was 

renamed OEH. In the process of identifying OEH, data suggested factors smaller than OEH 

were released from the brain after blood feeding that had similar activity (Brown et al., 

1998; Matsumoto et al., 1989a). Subsequent experiments demonstrated this factor was ILP3 

which is released with OEH from medial neurosecretory cells (Fig. 1). The factors that 

regulate ILP and OEH release after blood feeding are unknown but data strongly support 

that ILP3 directly stimulates ovary follicle cells to produce ecdysone by binding the IR 

(Brown et al., 2008; Riehle et al., 2002; Wen et al., 2010). ILP3 also stimulates late-phase 

trypsin expression by the midgut, which is required for blood meal digestion, and 

proliferation of hemocytes (Castillo et al., 2011; Gulia-Nuss et al., 2011). Other factors 

involved in regulation of egg formation are discussed in chapter “Regulation of 

Reproductive Processes in Female Mosquitoes” by Roy et al.
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Functional studies of ILPs in other mosquitoes are restricted two lines of investigation. First, 

data support a role for insulin signalling in arrest of ovary development and lipid storage in 

overwintering diapause by C. pipiens (Sim and Denlinger, 2009). Second, ingestion of 

vertebrate insulin in a blood meal activates insulin signalling and synthesis of reactive 

oxygen species in the midgut of anopheline mosquitoes (Kang et al., 2008).

4.1.12 Kinin—The first kinin was identified from the cockroach Rhyparobia (formerly 

Leucophaea) maderae (Holman et al., 1986), which was followed by identification of 

structurally similar peptides from other insects (Hayes et al., 1997; Hewes and Taghert, 

2001). The single kinin gene in Ae. aegypti encodes a prepropeptide that is processed into 

three isoforms but the kinin gene from D. melanogaster is processed into only one (Hewes 

and Taghert, 2001; Veenstra et al., 1997b). In turn, Ae. aegypti encodes two class A GPCRs 

that bind kinins while D. melanogaster encodes one (Hewes and Taghert, 2001; Pietrantonio 

et al., 2005; Taneja-Bageshwar et al., 2009; Vogel et al., 2013). Immunostaining localizes 

the kinin receptor to the membrane of endocrine cells in the posterior midgut, Malpighian 

tubules, and the rectal pads of female Ae. aegypti (Kersch and Pietrantonio, 2011). Vogel et 

al. (2013) assigns these receptors to subassemblage 2b along with the receptors that bind 

RYamide, tachykinin, NPF, sNPF, and SIFamide. Functional studies in Ae. aegypti provide 

strong support for the role of kinins in diuresis (Beyenbach and Piermarini, 2010; Kersch 

and Pietrantonio, 2011), which is further discussed in chapter “Renal Excretory Processes in 

Mosquitoes” by Piermarini.

4.1.13 Neuropeptide F (NPF)—NPFs are 28–40 amino acid peptides that share a 

consensus C-terminal RxRFamide motif (Näassel and Wegener, 2011). They are broadly 

conserved among invertebrates and also share homology with vertebrate neuropeptide Y 

(NPY) and pancreatic polypeptides that regulate appetite, digestion, reproduction, stress, and 

other activities (Holzer et al., 2012). The first insect NPF was identified from D. 
melanogaster on the basis of its RFamide immunoreactivity (Brown et al., 1999), which was 

followed by cloning of an NPF gene from Ae. aegypti (Stanek et al., 2002). Drosophilids 

and mosquitoes both encode a single NPF gene while mature NPFs bind Class A GPCRs in 

subassemblage 2b that are most closely related to the receptors that bind sNPFs (Näassel and 

Wegener, 2011; Vogel et al., 2013). This finding is interesting because NPFs and sNPFs are 

structurally distinct and derive from unrelated genes (see below). Functional studies in D. 
melanogaster indicate NPF has similar activities to NPY in mammals (Näassel and Wegener, 

2011). In contrast, little is known about NPF function in mosquitoes. Expression studies 

detect NPF mRNA in the brain and midgut of Ae. aegypti while binding studies show that 

mature NPF from Ae. aegypti and An. gambiae both bind the An. gambiae NPF receptor 

(Garczynski et al., 2005; Stanek et al., 2002). More recently, studies of five Class A, 

subassemblage 2 GPCRs from Ae. aegypti identified two that bind Ae. aegypti NPF (Liesch 

et al., 2013). The only reported function for NPF in mosquitoes is the inhibition of anterior 

midgut peristalsis in larval stage Ae. aegypti (Onken et al., 2004), but it is highly likely these 

peptide hormones have other, more functionally significant activities, given the greater 

literature.
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4.1.14 Ovary Ecdysteroidogenic Hormone (OEH)—OEH is a relatively large 9–13 

kDa hormone that as previously noted was identified from Ae. aegypti (Brown et al., 1998). 

It is structurally related to neuroparsins which are peptides of unclear function that were first 

isolated from locusts (Badisco et al, 2007). OEH is released with ILPs from medial 

neurosecretory cells with both stimulating ovary follicle cells to produce ecdysone (Fig. 1). 

Functional redundancy with ILPs together with the absence of an identified receptor 

obscured the mode of action of OEH for many years. This changed with identification of the 

OEH receptor as an RTK that is closely related to the IR (Vogel et al., 2015). Results also 

show that OEH directly induces ecdysone production by activating PI3K/Akt signalling 

(Dhara et al., 2013; Vogel et al., 2015). Thus, redundancy is due to OEH and ILPs binding 

different receptors on follicle cells that appear to both activate insulin pathway signalling. In 

contrast, OEH does not activate late-phase trypsin expression or haemocyte proliferation 

because OEH receptor expression is restricted to ovary follicle cells (Vogel et al., 2015). 

Some mosquito species have evolved from blood feeding relatives to produce eggs without 

blood feeding (autogeny). Recent studies show that facultatively autogenous Georgecraigius 
(=Aedes) atropalpus releases OEH and ILP from medial neurosecretory cells shortly after 

adult emergence but OEH is the primary regulator of ecdysone synthesis by the ovaries 

(Gulia-Nuss et al., 2012). OEH alone also stimulates limited egg development in nonblood 

fed Ae. aegypti (Gulia-Nuss et al., 2015). These findings suggest the evolution of autogeny 

is due in part to the shift from blood meal dependent to blood meal-independent release of 

OEH and ILPs from the nervous system.

4.1.15 Pyrokinins (PKs)—Peptide hormones we name PKs are relatively small and 

usually end with the C-terminal motif PRL/Vamide. This motif is similar to that of ETHs 

discussed earlier, which is why these peptides are often referred to collectively as 

PRXamides (Jurenka, 2015). The PRXamide literature is very difficult to follow for most 

individuals. One reason is because of the range of activities PRXamide peptides exhibit. The 

other is confusing nomenclature. PRXamides are named for either the biological activity or 

structural features exhibited by the first peptides that were identified. Thus, 

cardioacceleratory peptide (CAPA) was the name given for a PRXamide purified from M. 
sexta, leucopyrokinin (PK), and perviscerokinin (PVK) for myotropic PRXamides from 

cockroaches (R. maderae and P. americana), diapause hormone for PRXamides from 

Bombyx mori and Helicoverpa zea (DH-2), ETHs for PRXamides from M. sexta, 

pheromone biosynthesis activating peptide (PBAN) for a PRXamide from H. zea, and 

diuretic hormone (DH-1) for a PRXamide from P. americana (see Jurenka, 2015 for primary 

citations).

Peptide hormones are often named this way. It also works well for ETHs, which derive from 

a single gene and exhibit conservation in sequence and function. In contrast, the other 

PRXamides often exhibit cross-reactivity or activities that differ from given names when 

studied in different species. They also derive from two distinct genes. The first of these was 

named pban in H. zea because it encoded the corresponding peptide. However, pban from H. 
zea also contains four other PRXamides: DH-2 and three others referred to as PKs (Jurenka, 

2015). Orthologs of this gene are known in many insects including D. melanogaster where it 

is named hugin. Hugin though encodes only two PRXamides named PK and hugin λ (see 
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Näassel and Winther, 2010). The second gene is capability (capa), which was first identified 

in D. melanogaster with orthologs also now known from other insects. This gene usually 

contains three PRXamides: two named CAPA or CAPA-PVK peptides and a third named 

DH-1 or PK depending on publication (see Jurenka, 2015; Näassel and Winther, 2010). 

These names derive from sequence similarities with the originally identified CAPA, PVK, or 

PKs but again functional data often differ when studied in different species.

Given this background, we discuss ETHs as distinct peptide hormones (see earlier) because 

their structure and function support this. In contrast, the functional literature does not 

currently support giving different names to the peptides encoded by the pban/hugin or capa 
genes. We therefore name these genes in mosquitoes pk1 and pk2. In Ae. aegypti pk1 
encodes four peptides we name PK1a–d while pk2 encodes three we name PK2a–c. The 

Class A GPCRs in mosquitoes and drosophilids that bind peptides encoded by the above 

genes form one clade in subassemblage 2F while the receptors that bind ETHs form a sister 

group (Choi et al., 2013; Dai and Adams, 2009; Olsen et al., 2007; Vogel et al., 2013). 

Peptidomic and immunocytochemistry methods detect PKs in the CNS, periviseral organs, 

CC, and midgut of adult mosquitoes (Hellmich et al., 2014; Predel et al., 2010). The only 

functional data in mosquitoes show that PK2a from Ae. aegypti inhibits fluid secretion in 

larval Malpighian tubules at femtomolar concentration but stimulates diuresis at higher 

concentrations (Ionescu and Donini, 2012). By previous nomenclature PK2a would be 

referred to as CAPA1 (Jurenka, 2015), which is inconsistent with its diuretic activity.

4.1.16 Short Neuropeptide F (sNPF)—sNPFs are peptides of variable length (6–19 

amino acids) that end with the consensus C-terminal motif PxLRLRFamide in insects 

(Näassel and Wegener, 2011). All sequenced insect and other invertebrate genomes contain 

one or more sNPF genes but orthologs are absent from vertebrates. Among holometabolous 

insects like mosquitoes, prepropeptides often contain multiple sNPF sequences, whereas 

hemimetabolous insects and other invertebrates tend to produce prepropeptides that contain 

only one sNPF. The naming of NPFs and sNPFs derives from early studies in the literature 

where multiple peptides with related C-termini were identified. Later studies showed that 

NPFs and sNPFs derive from different genes and bind distinct but related class A, GPCRs 

that for Diptera reside in subassemblage 2b (Näassel and Wegener, 2011; Vogel et al., 2013). 

We earlier noted that the sNPF gene has duplicated in Ae. aegypti but not in An. gambiae or 

C. quinquefasciatus. Ae. aegypti sNPF1 encodes what was historically named sNPF while 

sNPF2 contains three copies of what was originally named head peptide (Matsumoto et al., 

1989b; Stracker et al., 2002).

A diversity of neurons in the CNS and chemosensory structures like the antennae express 

sNPF in D. melanogaster while functional data implicate sNPFs in regulating feeding, 

growth, and ILP production by medial neurosecretory cells (Näassel and Winther, 2010). 

The literature likewise suggests sNPFs are broadly expressed in the adult mosquito CNS 

(Garczynski et al., 2007; Matsumoto et al., 1989b; Predel et al., 2010; Siju et al., 2013; 

Stracker et al., 2002; Veenstra, 1999) (Fig. 1), while a recent study reports male accessory 

glands in Ae. aegypti produce and transfer sNPF2 to females during mating (Naccarati et al., 

2012). Early functional experiments in Ae. aegypti showed that sNPF2 titer increases in the 

hemolymph of adult females after consuming a blood meal, which coincides with females 
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exhibiting no host-seeking behaviour (Brown et al., 1994). Nonblood fed females in contrast 

are highly responsive to vertebrate hosts but injection of sNPF2 inhibited host seeking for up 

to 5 h which suggested a role for sNPF2 in regulating host-seeking behaviour (Brown et al., 

1994). More recent studies confirm that Ae. aegypti NPF and sNPFs bind different receptors 

but also detected overlap in receptor binding between sNPF1 and sNPF2 (Liesch et al., 

2013). Bioassays identified roles for both NPF and sNPFs in host-seeking behaviour by 

nonblood females, yet curiously mutagenesis of the GPCR that binds sNPFs has no effect on 

host seeking, sugar, and blood-feeding behaviour, egg laying, or locomotion (Liesch et al., 

2013). Naccarati et al. (2012) tested whether sNPF2 regulates female mating receptivity in 

Ae. aegypti because a structurally unrelated factor named sex peptide in male accessory 

gland secretions of D. melanogaster exhibits this activity. However, sNPF2 had no effect on 

female mating receptivity. Lastly, one study reports that sNPF1 and two both inhibit 

peristalsis of the Ae. aegypti larval anterior midgut (Onken et al., 2004).

4.2 Concluding Remarks

Significant progress has been made in identifying peptide hormone genes and receptors in 

mosquitoes. The functional literature is also strong in a few areas of study that focus on 

adult females. These include the roles of peptide hormones in regulating egg formation, JH 

biosynthesis, and diuresis, which are also subjects of separate chapters in this volume. In 

contrast, mapping the cell sources of different peptides hormones across life stages remains 

weak as is the literature on functional activities during immature development. For example, 

the endocrine regulation of moulting and metamorphosis in D. melanogaster implicates 

PTTH in regulating ecdysone production by prothoracic glands (PGs) and insulin signalling 

in nutrition-dependent growth (Nijhout et al., 2014; Rewitz et al., 2009). No data, however, 

support that PTTH or ILPs directly activate ecdysone production (Niwa and Niwa, 2014). 

Given the literature on many other insects, it is somewhat ironic that surprisingly little is 

known about the regulation of moulting in mosquitoes. An early study showed that larval 

thoracic and abdominal wall tissues produce ecdysone yet also reported that PGs do not 

(Jenkins et al., 1992). These findings together with the Drosophila literature indicate our 

understanding of peptide hormone functions in moulting are far from complete for Diptera. 

The orphan GPCR, RTK, and RGCs in mosquitoes also suggests some peptide hormones 

remain to be identified and characterized.
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Fig. 1. 
Schematic illustrating the sources of different peptide hormones in adult female mosquitoes 

as determined by immunocytochemistry or peptidomics. Sagittal view of the whole body 

(A), dorsal view of the head and thoracic regions (B), and a cross section through the third 

abdominal segment (C). Select regions of the nervous system, organs and cells are labelled 

in bold. Peptide hormones in Table 1 are listed alphabetically below detected sites. 

Abbreviations: AG1–7, abdominal ganglia 1 through 7; BN, brain; CA, corpora allata; CC, 

corpus cardiacum; CC-C, corpus cardiacum intrinsic cells; DV, dorsal vessel; EC, gut 
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endocrine cells; IC, Inka cells; LNC, lateral neurosecretory cells; MG, midgut; MNC, 

medial neurosecretory cells; PC, pericardia; PVO, perivisceral organs; SEG, subesophegial 

ganglion; VG, ventricular ganglion. Peptide hormone abbreviations are listed in Table 1. 

Most of these data derive from studies of adults with the exception being for ETH, which is 

shown in (C) although data derive from studies of larvae (see text).
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