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Abstract

Existing data indicate that cortical speech processing is hierarchically organized. Numerous 

studies have shown that early auditory areas encode fine acoustic details while later areas encode 

abstracted speech patterns. However, it remains unclear precisely what speech information is 

encoded across these hierarchical levels. Estimation of speech-driven spectrotemporal receptive 

fields (STRFs) provides a means to explore cortical speech processing in terms of acoustic or 

linguistic information associated with characteristic spectrotemporal patterns. Here, we estimate 

STRFs from cortical responses to continuous speech in fMRI. Using a novel approach based on 

filtering randomly-selected spectrotemporal modulations (STMs) from aurally-presented 

sentences, STRFs were estimated for a group of listeners and categorized using a data-driven 

clustering algorithm. ‘Behavioral STRFs’ highlighting STMs crucial for speech recognition were 

derived from intelligibility judgments. Clustering revealed that STRFs in the supratemporal plane 

represented a broad range of STMs, while STRFs in the lateral temporal lobe represented 

circumscribed STM patterns important to intelligibility. Detailed analysis recovered a bilateral 

organization with posterior-lateral regions preferentially processing STMs associated with 

phonological information and anterior-lateral regions preferentially processing STMs associated 

with word- and phrase-level information. Regions in lateral Heschl’s gyrus preferentially 

processed STMs associated with vocalic information (pitch).
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1. Introduction

Current functional neuroanatomical models (de la Mothe et al., 2006; Hackett, 2011; 

Hackett et al., 2014; Hackett et al., 1998; Kaas and Hackett, 1998, 2000) suggest that 

primate auditory cortex is organized as a regional hierarchy in which information flows 

along two major anatomical axes: (1) from core to belt to parabelt regions; and (2) from 

caudal to rostral regions. The hierarchical nature of this organization has been confirmed by 

physiological data, which show that temporal integration windows, frequency tuning 

bandwidth, response latency, and stimulus selectivity (i.e., receptive field complexity) tend 

to increase along these axes (Bendor and Wang, 2008a; Brugge and Merzenich, 1973; 

Camalier et al., 2012; Kikuchi et al., 2010; Kuśmierek and Rauschecker, 2009; Lakatos et 

al., 2005; Rauschecker, 1998; Rauschecker and Tian, 2004; Rauschecker et al., 1995; 

Rauschecker et al., 1997; Recanzone et al., 2000; Scott et al., 2011). Response patterns in 

human auditory cortex measured using electrocorticography (ECoG) and functional 

magnetic resonance imaging (fMRI) largely mirror this pattern (Bitterman et al., 2008; 

Brugge et al., 2009; Brugge et al., 2008; Chevillet et al., 2011; Howard et al., 2000; Leaver 

and Rauschecker, 2010; Liegeois-Chauvel et al., 1994; Liegeois-Chauvel et al., 1991; 

Nourski et al., 2013; Nourski et al., 2014; Nourski et al., 2012; Wessinger et al., 2001; 

Woods et al., 2010). Some exceptions have been noted including short latency responses in 

human posterolateral superior temporal gyrus (STG; Nourski et al., 2014) and sensitivity to 

complex features of synthetic speech sounds in the primary auditory cortex of ferrets (Bizley 

et al., 2009; Town and Bizley, 2013), although these findings remain interpretable within a 

hierarchical framework (Bizley and Cohen, 2013; Nourski et al., 2014).

Taking note of these data and, indeed, of the general trend for sensory cortices to analyze 

and represent complex inputs via hierarchical, feedforward processing (Felleman and Van 

Essen, 1991; Foxe and Schroeder, 2005; Griffiths and Warren, 2004; Hilgetag et al., 2000; 

Riesenhuber and Poggio, 2002; Serre et al., 2007), many speech researchers have embraced 

the notion that cortical analysis of speech sounds proceeds in a hierarchical fashion 

(Bornkessel-Schlesewsky et al., 2015; Peelle et al., 2010; Poeppel et al., 2012; Okada et al., 

2010; Rauschecker and Scott, 2009). Early work in human auditory neuroimaging 

demonstrated that lower-level (core-like) regions of the auditory cortex respond well to 

simple stimuli such as tones or unmodulated broadband noise, while belt-like regions in the 

supratemporal plane anterior and posterior to the auditory core respond more strongly to 

temporally-modulated signals, and parabelt-like regions in the lateral STG and superior 

temporal sulcus (STS) respond best to spectrotemporally-complex stimuli such as speech 

(Binder et al., 2000; Hickok and Poeppel, 2004; Scott and Johnsrude, 2003; Scott and Wise, 

2003; Zatorre et al., 2002). Moreover, a subset of these later auditory regions respond 

preferentially to intelligible speech compared to unintelligible sounds with similar 

spectrotemporal complexity, e.g., noise-vocoded speech or spectrally rotated speech (Davis 

and Johnsrude, 2003; Narain et al., 2003; Scott et al., 2000).

While there is broad agreement that the human auditory cortex is hierarchically organized 

for speech, it remains unclear exactly what speech information is being encoded within 

different levels of the hierarchy. Several recent imaging studies using multivariate analysis 

methods have shown that early auditory regions in and around Heschl’s gyrus are able to 

Venezia et al. Page 2

Neuroimage. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distinguish intelligible speech from acoustically complex control stimuli including spectrally 

rotated speech (Evans et al., 2014; McGettigan et al., 2012; Okada et al., 2010). In line with 

hierarchical interpretations, these and other studies demonstrated that such discriminative 

capacity is likely driven by the exquisite sensitivity of early auditory areas to slight variation 

in acoustic form, while higher-level speech-selective regions are relatively invariant to 

superficial acoustic variation (Evans, 2017; Evans and Davis, 2015; Okada et al., 2010). 

However, work by Poeppel and others (Boemio et al., 2005; Overath et al., 2015) suggests 

that both early and late regions are sensitive to acoustic form, where the distinction between 

hierarchical levels concerns their tuning to temporal patterns on different time scales, with 

later regions such as the STS generally preferring longer time scales. A lack of data 

regarding the details of acoustic vs. abstract speech encoding at different cortical levels leads 

to at least two outstanding questions: (a) whether processing at higher levels of the hierarchy 

is bilaterally organized or left-lateralized; and (b) whether the processing hierarchy proceeds 

along posterior or anterior pathways (or both).

A promising technique to probe the detailed information encoded in cortical responses to 

natural sounds is the estimation of spectrotemporal receptive fields (STRFs). A STRF is a 

linear filter in the time-frequency domain showing the spectrotemporal patterns that best 

drive an individual neuron or neuronal population. Though STRF analysis was initially 

developed to characterize single-unit responses in animal models (cf., Theunissen and Elie, 

2014), speech-driven STRFs have recently been derived from human 

electroencephalography (EEG), magnetoencephalography (MEG), and ECoG data (Ding 

and Simon, 2012; Lalor and Foxe, 2010; Mesgarani and Chang, 2012). At the cortical level, 

it has proven useful to characterize STRFs in the spectrotemporal modulation (STM) domain 

(Hullett et al., 2016; Kowalski et al., 1996; Shamma, 2001). An STM is a fluctuation in 

acoustic energy at a given rate (i.e., over time) and scale (i.e., over frequency). In the context 

of speech, different STM patterns are associated with different levels of acoustic or linguistic 

analysis, e.g., formant vs. harmonic structure (Elliott and Theunissen, 2009) or phonemes vs. 

syllables/words (Hullett et al., 2016). Recent ECoG studies demonstrate that speech-

selective regions of the STG exhibit spatially organized tuning to a range of STMs (Hullett 

et al., 2016), that speech signals can be reconstructed from patterns of activity in the STG 

using STM-based STRF models (Pasley et al., 2012), and that shifts in STM tuning within 

the auditory cortex underlie cortical plasticity associated with priming-induced changes in 

speech intelligibility (Holdgraf et al., 2016). However, ECoG is inherently limited due to its 

invasive nature and relatively limited coverage of auditory cortical areas in the 

supratemporal plane (Reddy et al., 2010), and related non-invasive techniques (EEG/MEG) 

are limited by relatively poor spatial resolution. As a result, following pioneering work by 

Schönwiesner and Zator re (2009) who used (synthetic) dynamic spectral ripple stimuli to 

derive voxel-wise STRFs in fMRI, several recent studies have developed fMRI encoding 

(Naselaris et al., 2011) paradigms for measuring STRFs throughout the auditory cortex 

using speech and other natural sounds as driving stimuli (de Heer et al., 2017; Santoro et al., 

2014; Santoro et al., 2017). A limitation of these encoding methods for studying speech is 

that there may not be sufficient long-term acoustic variability in natural speech signals to 

allow derivation of good-fitting STRFs with fMRI, which has relatively poor temporal 

resolution. This may be particularly true in the STM domain (de Heer et al., 2017), where 

Venezia et al. Page 3

Neuroimage. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



long-term patterns of acoustic energy in the speech modulation power spectrum (MPS) are 

quite stable across utterances (Elliott and Theunissen, 2009; Fig. 1A).

In the present fMRI study, we induce random variation in the speech MPS to derive speech-

driven STRFs using a classification image technique known as “bubbles” (Gosselin and 

Schyns, 2001). Used frequently in vision research, the bubbles procedure involves masking 

randomly-selected regions of an image (e.g., a face; Fig. 1B, left) and relating the masker 

patterns to behavior (e.g., emotion identification) using reverse correlation to identify task-

relevant features of the stimulus (i.e., a ‘perceptual receptive field’). We recently extended 

the bubbles procedure to the auditory domain by applying bubbles-like filters to the MPS of 

auditory sentences (Fig. 1B, right) and deriving behavioral classification images describing 

the relative contributions of different STMs to intelligibility (Venezia et al., 2016). Here, we 

apply the auditory bubbles procedure to fMRI by using single-trial blood-oxygen-level 

dependent (BOLD) response magnitudes (cf., Smith et al., 2008) to derive speech-driven 

STRFs in the STM domain (Fig. 2). We then apply an unsupervised clustering algorithm to 

reveal the large-scale organization of STRF patterns in the human auditory cortex. The broad 

goal of this data-driven approach was to reveal the precise speech information encoded in 

different regions of the auditory cortex. The specific goals were three-fold: (1) to estimate 

speech-driven STRFs throughout the auditory cortex; (2) to probe for characteristic patterns 

of STRF organization at different levels of cortical processing as they relate to different 

levels of acoustic or linguistic analysis of speech; and (3) to compare behavioral 

classification images for intelligibility (perceptual receptive fields) to BOLD-based 

measures (STRFs). Here and throughout, it is assumed that cortical analysis of speech 

sounds proceeds hierarchically in terms of increasing functional complexity (e.g., 

spectrotemporal features phonemes syllables words), and that STRF patterns correlated with 

these different levels of analysis can be used to capture the computational roles of different 

stages in the feedforward cortical speech network. Therefore, we did not aim to explicitly 

test for a hierarchical organization, but rather to probe the detailed organization of different 

levels of the presumed cortical speech hierarchy.

The results showed that all reliably-tuned STRFs were located in the auditory cortex and 

lateral superior temporal lobe. Data-driven clustering identified four groups of STRF 

patterns: (1) broad responses covering most of the speech MPS; (2) responses preferring 

high temporal modulation rates; and (3)/(4) responses closely matched to behavioral 

classification images for intelligibility. Group 1 was primarily located in the supratemporal 

plane including Heschl’s gyrus/sulcus and the posterior STG, Group 2 was located primarily 

in medial supratemporal regions, and Groups 3/4 were located in the lateral STG and STS. 

The latter groups split anatomically and functionally along an STG-STS division with Group 

3, which preferred slightly higher temporal modulation rates, located in more prominently in 

the STG, while Group 4 was located more prominently in the STS. Within each cluster 

group, there were specialized STRF patterns including a high-spectral-modulation-rate 

response on part of Heschl’s gyrus, and a low-temporal-modulation-rate response in the 

anterior temporal lobe. Together, these results characterize the cortical speech hierarchy in 

acoustic-informational terms and reveal processing specializations within and across levels 

of the hierarchy that relate directly to perception of intelligible speech.
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2. Materials and Methods

2.1 Participants

Ten participants (mean age = 26, range = 20–33, 2 females) took part in the experiment. All 

participants were right-handed, native speakers of American English with self-reported 

normal hearing and normal or corrected-to-normal vision. All participants provided 

informed consent in accordance with the University of California, Irvine Institutional 

Review Board guidelines. No statistical methods were used to predetermine sample size; 

rather, our sample size was set to match that used in our previous psychophysical study 

using the same experimental paradigm (Venezia et al., 2016).

2.2 Bubbles Stimuli

The stimuli used in this study have been described in detail in our previous paper on 

auditory bubbles (refer to the “uncompressed” or UC stimuli; Venezia et al., 2016). Briefly, 

the speech source signals were recordings of 452 sentences from the Institute of Electrical 

and Electronics Engineers (IEEE) sentence corpus (IEEE, 1969) spoken by a single female 

talker. Each sentence was stored as a separate .wav file digitized at 22050 Hz with 16-bit 

quantization. The sound files were zero-padded to an equal duration of 3.29 s. To create the 

bubbles stimuli, the sentence audio files were filtered to remove randomly-selected patterns 

of energy in the spectrotemporal modulation domain. For each sentence, a log-power (dB) 

spectrogram was obtained using Gaussian windows with a 4.75 ms-33.5 Hz time-frequency 

scale. The 2D modulation spectrum was then obtained as the modulus of the 2D Fourier 

transform of the spectrogram. The modulation spectrum was restricted to temporal 

modulation rates less than 20 Hz and spectral modulation rates less than 6 cyc/kHz, a region 

containing approximately 90–95% of speech energy (Elliott and Theunissen, 2009). A 2D 

filter of the same dimensions as the modulation spectrum was created by generating an 

identically-sized image with a set number of randomly-chosen pixel locations assigned the 

value 1 and the remainder of pixels assigned the value 0. A symmetric Gaussian blur (sigma 

= 7 pixels) was applied to the image and all resultant values above 0.1 were set to 1 while 

the remaining values were set to 0. This produced a binary image with a number of 

randomly-located contiguous regions with value 1. A second Gaussian blur (sigma = 1 pixel) 

was applied to smooth the edges between 0- and 1-valued regions, producing the final 2D 

filter. The number of pixels originally assigned a value of 1 (i.e., prior to any blurring) 

corresponds to the number of “bubbles” in the filter. The modulation spectrum was then 

multiplied by the filter, thus removing randomly-selected sections of modulation energy 

from the signal. The multiplication procedure was performed identically for upward-and 

downward-sweeping spectrotemporal modulations, effectively collapsing over these 

representations in subsequent analyses (see Venezia et al., 2016 for a discussion). A filtered 

speech waveform was obtained from the degraded modulation spectrum by performing an 

inverse 2D Fourier transform followed by iterative spectrogram inversion (Griffin and Lim, 

1984). For each of the 452 sentences, filtered versions were created using independent, 

randomly-generated filter patterns. This renders some filtered items unintelligible while 

others remain intelligible depending on the filter pattern. Separate sets of filtered stimuli 

were created using different numbers of bubbles (20–100 in steps of five). This produced a 

total of 7684 filtered sentences. All stimuli were generated offline and stored prior to the 
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experiment. For reference, the average proportion of the STM spectrum revealed to the 

listener is ~ 0.25 for 20 bubbles and ~ 0.7 for 100 bubbles, and the relation between number 

of bubbles and proportion of the STM spectrum revealed is exponential.

2.3 Procedure

Participants listened to filtered sentences during sparse acquisition fMRI scanning. On each 

trial of the experiment, a single filtered sentence was presented in the silent period (4 s) 

between image acquisitions (2 s). Stimulus presentation was triggered 400 ms into the silent 

period and sentence duration ranged from 1.57–3.29 s (mean = 3.02 s). At the end of 

sentence presentation, participants were visually cued to make a subjective yes-no judgment 

indicating whether the sentence was intelligible or not. The number of bubbles was adjusted 

trial-by-trial using an up-down staircase procedure such that participants rated sentences as 

intelligible on ~ 50% of trials. Equilibrium for the staircase procedure was reached after ~ 

10–20 trials, and the adaptive track was maintained continuously across scan runs. It should 

be noted that performance increases systematically with number of bubbles only in the long 

run, since performance depends not only on the number of bubbles (total information 

transmitted) but on the pattern of bubbles (particular information transmitted). Therefore, in 

practice the equilibrium number of bubbles varies over a range. Our previous behavioral 

work (Venezia et al., 2016) shows that performance nonetheless converges to the expected 

average response rate of 50% over a large enough number of trials (consistent with the 

number of trials performed here).

A total of 45 experimental trials were performed per scan run. An additional 5 baseline trials 

were also presented on quasi-randomly chosen trials during each scan run. On these trials, 

participants viewed short clips (3.33 s duration, 15 fps) from the video game “Snake” in 

which a moving object navigates though a 2D bordered grid. Video onsets occurred 400 ms 

into the silent period between image acquisitions. At the end of each video clip participants 

were visually cued to make a yes-no judgment indicating whether the moving object made at 

least one left-hand turn. All participants performed well on the baseline task (mean = 91% 

correct, sd = 6%, min = 82%). At the beginning of each trial, participants were visually cued 

to “listen” (experimental trials ) or “watch” (baseline trials).

Behavioral responses were generated by button-press on an MR-compatible response box. 

Button-presses in the experimental and baseline tasks were generated during the subsequent 

MR image acquisition. Prior to scanning, participants completed a short behavioral session 

outside the scanner to familiarize themselves with the stimuli and tasks. Two participants 

completed a total of 9 scan runs (405 experimental trials) and the remaining eight 

participants completed a total of 10 scan runs (450 experimental trials). For each participant, 

sentences were selected from the list of 452 source sentences without replacement in 

randomly permuted order. On any trial, the stimulus was drawn from the pool of 7684 

filtered sentences based on the selected sentence number and the number of bubbles 

(adjusted adaptively). Thus, it was possible for particular filtered sentences to be repeated 

across participants. In practice, filtered sentences were repeated on average only 1.39 times 

across participants (i.e., most items were not repeated). Auditory stimuli were amplified 

using a Dayton DTA-1 model portable amplifier and presented diotically over Sensimetrics 
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S14 piezoelectric earphones. Participants were asked to adjust the volume to a comfortable 

level slightly above that of conversational speech (~75–80 dB SPL). Visual stimuli were 

back-projected via a Christie DLV1400-DX DLP projector onto a screen at the head end of 

the magnet bore (spatial resolution: 1024×768 pixels; refresh rate: 60 Hz). Participants 

viewed the display on an angled front surface mirror mounted on the head coil with a 

viewing distance of ~ 70 cm. Stimulus presentation was controlled using the Psychophysics 

Toolbox Version 3 (Kleiner et al., 2007). A single high-resolution T1 anatomical image was 

acquired for each participant at the end of fMRI scanning.

2.4 Image acquisition

Images were acquired on a Philips Achieva 3T MRI scanner with a 32-channel sensitivity 

encoding (SENSE) head coil located at the University of California, Irvine Neuroscience 

Imaging Center. T2*-weighted images (gradient-echo EPI) were acquired using a sparse 

acquisition sequence (35 axial slices, interleaved slice order, TR = 6 s, TA = 2 s, TE = 30 

ms, flip = 90°, SENSE factor = 1.7, reconstructed voxel size = 1.875 × 1.875 × 3 mm, matrix 

= 128 × 128, no gap). Fifty-two EPI volumes were collected per scan run. A single high-

resolution, T1-weighted anatomical image was collected for each participant using a 

magnetization prepared rapid gradient echo (MPRAGE) sequence (160 axial slices, TR = 8.4 

ms, TE = 3.7 ms, flip = 8°, SENSE factor = 2.4, 1 mm isotropic voxels, matrix = 256 × 256).

2.5 Behavioral Analysis

For the experimental task, the goal was to calculate a behavioral classification image based 

on participants’ yes-no responses indicating whether each filtered sentence was judged to be 

intelligible or not. To accomplish this, the 2D bubbles filter patterns associated with each 

sentence were treated as predictors of yes-no intelligibility judgments. Specifically, for each 

participant, a weighted sum of the 2D bubbles filters across trials was performed in which 

“no” trials received a negative weight equal to the proportion of “yes” trials, pyes, and “yes” 

trials received a positive weight equal to the complement of pyes:

CImgB =
n = 1

ntrials
wi * Bubi

where i is the trial index, wi is the weight associated with the response on a given trial (pyes 

or its complement), Bubi is the 2D bubbles filter applied on a given trial, and CImgB is the 

resulting behavioral classification image showing which regions of the speech modulation 

spectrum predict a “yes” judgment (i.e., support intelligibility). Trials in which no button 

press was recorded were excluded from analysis. To form a group-level classification image, 

the behavioral classification images from each participant were summed, smoothed with a 

symmetric Gaussian filter (sigma = 5 pixels), and z-scored (Venezia et al., 2016).

2.6 MR Image Preprocessing.

Automated cortical surface reconstruction based on the T1-weighted anatomical images was 

performed in Freesurfer v5.3 (Fischl, 2012). For each participant, the inflated surface mesh 

and white matter segmentation volume were manually checked to ensure no large-scale 
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errors occurred during automated tissue segmentation. Right and left hemisphere cortical 

surface meshes were then converted to AFNI/SUMA format, co-registered to the 

participant’s native-space anatomical volume, resampled to a standard topology via linear 

icosahedral tessellation with 128 edge divides, and merged into a single surface containing 

327684 nodes using the prep_afni_surf.py function of Oosterhof’s “surfing” toolbox v0.6 

(https://github.com/nno/surfing; Oosterhof et al., 2011). The standard-topology mesh is 

nearly identical in geometry (i.e., cortical folding patterns) to the original surface but has 

been re-aligned to a template such that each surface node represents the same cortical 

location across participants (Saad and Reynolds, 2012). Group-level results are plotted on a 

surface mesh generated from the Colin 27 template brain after resampling to the same 

standard topology.

Preprocessing of the functional data was performed using AFNI v17.0.05 (Cox, 2012). 

Functional images were slice-timing corrected based on slice time offsets extracted from the 

Philips PAR files, followed by realignment (motion correction) and coregistration to the T1-

weighted anatomical image. The functional data were then mapped to the merged, standard-

topology surface mesh and smoothed to a target level of 4 mm full width at half maximum. 

An iterative procedure (AFNI SurfSmooth) was implemented in which the level of 

smoothness in the data (~ 2.5 mm intrinsic smoothness at the outset) was estimated from the 

residual time series after high-order detrending, and additional smoothing was applied in 

small increments until the target level was reached. Finally, the data from each scan run were 

scaled to have a mean of 100 across time points subject to a range of 0–200.

2.7 fMRI Beta Time Series Estimation

The onset and offset of sound energy for each experimental-stimulus sound file were 

identified based on the windowed root-mean-square amplitude of the signal (silence 

threshold = 0.0035). These measurements were used to generate a series of stimulus onsets 

and durations that defined the event timing of the experiment for each participant. The 

resulting event timing was entered as an input to the 3dDeconvolve function in AFNI using 

the stim_times_IM option with a duration-modulated BLOCK hemodynamic response 

function. This call to 3dDeconvolve produced a predicted activation time-course separately 

for each experimental trial. These predicted time-courses were at first sampled with a 

temporal resolution of 0.1 s, but were subsequently down-sampled by averaging together the 

values occurring during periods of image acquisition (i.e., the 2 s TA within each 6 s TR). 

This produced a final set of predicted activation time-courses with a temporal resolution of 2 

s, accounting for temporal discontinuities introduced by sparse sampling (Perrachione and 

Ghosh, 2013). This set of predictors along with additional baseline and third-order 

polynomial drift terms, and six regressors of no interest corresponding to motion parameters 

estimated during the realignment stage of preprocessing, all appropriately down-sampled, 

were combined to create an experimental design matrix. Baseline-task events were not 

modeled explicitly and were thus captured by the baseline term of the design matrix. The 

3dLSS function in AFNI was then used to perform “least squares-separate” (Mumford et al., 

2012) regression on the preprocessed fMRI data using the aforementioned design matrix. 

The output from 3dLSS was a beta time-series at each voxel representing the overall 

magnitude of activation for each experimental trial over the duration of the experiment. 
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Extreme (outlier) beta values were excluded based on the following formula for outlier 

detection:

C = α ∗ π 2 ∗ MAD; α = Φ−1 1 − 0.001 N

where C is the outlier cutoff, MAD is the median absolute deviation, Φis the cumulative 

normal distribution function, and N is the number of time points. Beta values for which the 

absolute deviation from the median exceeded C were excluded.

2.8 Spectrotemporal Receptive Field Estimation

Neural classification images (STRFs) were calculated just as behavioral classification 

images except that bubbles filter patterns were used to predict the estimated fMRI beta time 

series at each cortical surface node rather than participant behavior (see Fig. 2). That is, for 

each surface node (voxel-like unit) in each participant, a weighted sum of the 2D bubbles 

filters across trials was performed such that each trial received a weight equal to the z-scored 

activation magnitude on that trial:

STRF =
i = 1

ntrials
Zi ∗ Bubi

where i is the trial index, Zi is the magnitude of neural activation on a given trial (taken from 

the z-scored beta time series), Bubi is the 2D bubbles filter applied on a given trial, and 

STRF is the resulting neural classification image showing which regions of the speech 

modulation spectrum best activated a given cortical surface node1. Trials in which no 

behavioral response was given were excluded from analysis. To create a group-level STRF, 

individual-participant STRFs were smoothed with a symmetric Gaussian filter (sigma = 5 

pixels), scaled by their across-pixel standard deviation, averaged across subjects, and scaled 

pixel-wise by the between-subject standard error to produce a t-score image. This was 

performed separately for each node in the standard-topology cortical surface mesh.

The STRFs estimated in this manner may contain an intelligibility bias – that is, if the 

magnitude or variance of the neural signal at a given surface node is influenced by the 

intelligibility of the speech signal, then relatively more weight could be placed on 

intelligible compared to unintelligible trials or vice versa. In short, the STRF could reflect a 

global effect of intelligibility. Therefore, in addition to the primary STRF analysis, we 

estimated STRFs separately for intelligible and unintelligible trials as follows:

STRFIntel =
i = 1

n_intel
zi ∗ Bubi

1Note that the average number bubbles at behavioral threshold (50% “yes” responses) can vary across par ticipants, but this is not 
expected to bias STRF estimates given the number of trials performed in this study. Bias of this sort could only occur if the number of 
trials was too few to allow a comprehensive random sampling of the stimulus domain at a given average number of bubbles. The 
typical average number of bubbles in this study was ~ 50, at which point ~ 50% of the stimulus space was revealed on each trial (i.e., 
optimum sampling of the stimulus space).
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where n_intel is the number of trials judged as intelligible by the listener, i is the trial index, 

Zi is the magnitude of neural activation on a given intelligible trial, Bubi is the 2D bubbles 

filter applied on a given intelligible trial, and STRFintel is the resulting neural classification 

image for intelligible trials; and

STRFUnintel =
i = 1

n_unintel
zi ∗ Bubi

where n_unintel is the number of trials judged as unintelligible by the listener, i is the trial 

index, Zi is the magnitude of neural activation on a given unintelligible trial, Bubi is the 2D 

bubbles filter applied on a given unintelligible trial, and STRF is the resulting neural 

classification image for unintelligible trials. Crucially, neural beta time series were z-scored 

separately for intelligible and unintelligible trials, thus removing any differences in the mean 

and variance of the neural signal due to intelligibility alone. An unbiased STRF estimate was 

then generated as follows:

STRFUnbiased =
STRFIntel + STRFUnintel

2

Where STRFunbiased, is a neural classification image with the global effect of intelligibility 

removed. An unweighted average is used because the number of intelligible trials is kept 

equal to the number of unintelligible trials by the up-down staircase implemented on yes-no 

intelligibility judgments (2.3). The procedure for calculating STRFunbiased is thus equivalent 

to separately z-scoring the beta time series for intelligible and unintelligible trials, 

recombining those time series in the original order, and performing a weighted sum of 

bubbles filters across all trials as described above for uncorrected STRFs. A similar approach 

is often taken in the context of multivariate pattern analysis (MVPA), where the neural signal 

is normalized across voxels at each time point – and thus implicitly normalized across 

conditions or classes – in order to prevent decoding algorithms from predicting trial types 

based on condition-mean differences in signal amplitude as opposed to differences in multi-

voxel patterns (Coutanche, 2013). Note that STRFunbiased is still biased in the more 

straightforward sense that only (intelligible and unintelligible) speech, and no other class of 

sounds, was used as a driving stimulus. Group-level (t-scored) versions of STRFunbiased were 

calculated as described above for uncorrected STRFs. The subsequently-described analyses 

were performed only on the uncorrected STRFs, as STRFunbiased was calculated primarily as 

a basis for comparison to STRF.

2.9 Quantification of Modulation Tuning

To determine whether a given cortical surface node displayed significant modulation tuning 

across participants, we tested whether the group-level STRF at that surface node 

demonstrated a statistically significant non-zero response. Specifically, a p-value was 

calculated for each pixel in the STRF based on the group-level t-score at each pixel location 

(i.e., a p-value image was generated), and the p-values were then adjusted for multiple 

comparisons across pixels using the false discovery rate (FDR) procedure (Benjamini and 
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Hochberg, 1995). Multiple comparisons across cortical surface nodes were then adjusted for 

multiple comparisons via the ‘wild bootstrap,’ a nonparametric technique that has been 

shown to provide appropriate control of false positives in most situations (Eklund et al., 

2016). Specifically, each participant’s first-level STRF was multiplied by 1 or −1, first-level 

STRFs were combined across participants (t-scoring), and this was repeated for different 

permuted sign-flip vectors. For each permutation order, the minimum FDR-corrected p-

value was computed for each second-level (t-scored) STRF, and the size of the maximum 

cluster of nodes (surface area in mm2) with a minimum p-value satisfying FDR < 0.05 was 

calculated and placed in a null distribution of maximum cluster sizes. Since we had 10 

subjects, we were able to perform all possible sign-flip permutations (210) to form a null 

distribution of 1024 maximum cluster sizes. The 95th percentile of this distribution (node-

level corrected p < 0.05) was 116 mm2. This surface area threshold was implemented 

separately for positively tuned (peak t-score is positive) and negatively tuned (peak t-score is 

negative) surface nodes. Note that the null distribution of maximum cluster sizes is identical 

for positive and negative t-scores due to the symmetry of the sign-flip orders across all 

possible permutations.

For each significantly tuned surface node surviving the area threshold, the best temporal 

modulation frequency (tBMF) and best spectral modulation frequency (sBMF) were 

calculated for each of the individual-participant STRFs at that surface node. That is, the 

pixel with the largest response magnitude was identified and the temporal modulation rate 

(Hz) and spectral modulation rate (cyc/kHz) represented by that pixel location were 

recorded. Similarly, the temporal peak modulation frequency (tPMF) and spectral peak 

modulation frequency (sPMF) were calculated from the group-level (t-score) neural STRF. 

We distinguish between BMF at the individual participant level and PMF at the group level 

because the BMF reflects the highest magnitude response per participant while the PMF 

reflects the most reliable response across participants.

2.10 Unsupervised Clustering of STRFs

Two large sets of positively tuned cortical surface nodes were identified in the left and right 

auditory cortices. To explore whether different groups of auditory-cortical surface nodes 

systematically represented different patterns of speech modulation energy, we performed 

unsupervised clustering using a Gaussian mixture model (GMM) analysis. The group-level 

STRFs at each significantly tuned auditory-cortical surface node were first down-sampled to 

4 × 8 pixels and re-scaled to the range [0 1]. This re-scaling was performed because we were 

interested in identifying differences related to the pattern of tuning rather than the overall 

magnitude of the tuned response. The re-scaled neural STRFs were then vectorized to 

produce a length-32 feature vector at each cortical surface node. The feature vectors across 

all significantly tuned surface nodes served as the input to GMM analysis. Briefly, in the 

GMM analysis the distribution of each observation is specified by a probability density 

function through a finite mixture of K 32-dimensional Gaussian distributions:

f xi; Ψ =
k = 1

k
πk f k xi; Θk ,
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where Ψ = π1, …, πK−1, θ1, …, θK are the model parameters; fk(xi; Θk) is the kth Gaussian 

distribution for observation xi with parameter vector Θk; π1, …, πK−1 are the mixing 

weights such that k = 1
k πk = 1; and K is the number of mixture components. For each 

component, fk(xi; Θk) ~ N(µk, Σk) where µk is the vector of means (i.e., representing that 

component’s average feature vector) and Σk is the covariance matrix. The GMM was fit in R 

v3.3.2 using the package mclust v5.3 (Scrucca et al., 2016). In mclust, the GMM parameters 

are estimated by maximization of the log-likelihood function using the expectation-

maximization (EM) algorithm (McLachlan and Peel, 2004). The EM algorithm is initialized 

by a model-based agglomerative clustering routine. The mclust package allows for 

specification of covariance structures of varying complexity such that the volume, shape, 

and orientation of the covariance matrix, Σk can be equal (E) or variable (V) across the K 
components (e.g., a model with equal volume, equal shape, and variable orientation would 

be coded EEV). The volume, shape, and orientation can also be set to identity (I) to generate 

simpler (non-ellipsoidal) GMMs. We implemented a model selection procedure in mclust 

where the best fitting GMM was selected from a set of models in which K varied from 2 to 

40 and ten possible covariance structures were explored for each K.

The final number of components, K, and the best-fitting covariance parameterization were 

selected by choosing the model with the largest Bayesian Information Criterion (BIC), 

defined in mclust as:

BIC = 2 ∗ ℓ Ψ; x1, …, xn − d f * log n ,

where ℓ(Ψ; x1, … , xn) is the log-likelihood, df is the number of model parameters, and n is 

the number of observations. The initial agglomerative clustering was carried out on a subset 

of observations consisting of every other cortical surface node. A conjugate prior on the 

means and covariance matrices of the components was specified using the default options in 

mclust. The model selection procedure ultimately identified a GMM with K = 18 and a 

VVV covariance structure. Each cortical surface node was assigned to the component 

(cluster) with the maximum mixing weight, πk. Cluster labels were then reassigned such 

that the correlation between µk at adjacent cluster labels was maximized. This was done by 

reordering the correlation matrix of µk’s such that large values were shifted toward the 

diagonal; reordering was performed using hierarchical clustering based on Ward’s distance. 

After label reassignment, it was clear from visual inspection that STRFs could be assigned 

to one of four “cluster groups” with similar response properties.

2.11 Intelligibility Maps

To facilitate comparison with previous work on cortical speech processing, we obtained 

surface-node-wise maps of the brain regions that responded significantly to intelligible 

speech. This was performed in two ways. First, following the classic cognitive subtraction 

approach (Petersen et al., 1989), we performed a traditional whole-brain general linear 

model analysis using a design matrix identical to that described above for beta time series 

estimation with the following exception: only two predictors of interest were included, one 

coding the predicted activation time-course for experimental trials in which the participant 
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indicated that the sentence presented on that trial was intelligible, and a second coding 

experimental trials for which the participant responded unintelligible. For each participant, a 

contrast coefficient was calculated by comparing the response on intelligible vs. 

unintelligible trials at each cortical surface node. Second-level maps were computed by 

performing one-sample t-tests on the contrast coefficients at each cortical surface node. 

Multiple comparisons were corrected for via the ‘wild bootstrap’: second-level t-tests were 

repeated after flipping the sign of first-level contrast coefficients in different permuted orders 

across participants. For each permutation order, the maximum cluster of nodes with one-

tailed (intelligible > unintelligible) p < 0.005 was calculated and placed in a null distribution 

of maximum cluster sizes. We again performed all possible sign-flip permutations (210) to 

form a null distribution of 1024 maximum cluster sizes. The 95th percentile of this 

distribution was 117 mm2.

For the second approach, intelligibility maps were obtained by examining the correlation 

between behavioral classification images and STRFs. Specifically, for each participant at 

each surface node, the pixel-by-pixel Pearson correlation of the behavioral classification 

image and the STRF at that node was calculated. The correlation values were then subjected 

to Fisher’s z transformation and the resulting z-maps were entered into a second-level 

analysis (one sample t-test). A second-level z-score was considered significant if the node-

wise p < 0.005 (one-tailed, positive z) and the cluster size exceeded 130 mm2 as determined 

by the ‘wild bootstrap’ implemented as described above for the intelligibility contrast 

coefficients.

2.12 Linear Mixed Effects Modeling

There are two significant concerns regarding the application of GMM clustering (2.10) to 

group-level STRFs: (1) cluster-level (i.e., aggregate) STRFs may not strongly reflect the 

patterns of individual STRFs at the constituent cortical surface nodes within a given cluster; 

and (2) group-level STRFs may not strongly reflect the patterns of the individual-participant 

STRFs from which the group-level data were derived. That is, aggregate STRF patterns are 

not guaranteed to be representative of the individual STRFs entered into the aggregate 

(Joosten & Neri, 2012). Therefore, individual-participant estimates of STRF-summary scalar 

metrics – tBMF, sBMF, and behaviora l-neural intelligibility correlation (z) – were entered 

as the dependent variables in separate linear mixed effects (LME) models to evaluate their 

distribution across the cortical regions defined by data-driven STRF clustering (i.e., regions 

defined by cluster group membership). For comparison, we also examined the distribution of 

these scalar metrics across anatomically defined regions. The LME models included two 

fixed effects (hemisphere and cluster/anatomical region) and their interaction. The models 

also included random effects parameterized in such a way as to approximate traditional 

repeated measures ANOVA – namely, random intercepts were included for each within-

participant error stratum implied by the fixed effects design. Models were fit in the R 

statistical computing environment using the ‘mixed’ function included in the afex package 

(Singmann and Kellen, 2017) version 0.18–0. The R model formulae were specified as 

follows: DV ∼ hemi + region + hemi:region + 1| sub + 1 | hemi:sub + 1 | region:sub
+ 1 |hemi:region:sub ,

where DV is the dependent variable (tBMF, sBMF, or z), sub is a factor variable representing 
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the identity of each participant, ‘:’ represents an interaction, and (1 | …) represents the 

random intercept for a given error stratum as specified by the variables to the right of the 

vertical bar. Crucially, models were fit to un-aggregated data such that each participant 

contributed 6403 observations, one for each significantly tuned auditory-cortical surface 

node. A significant difference in the distribution of tBMF, sBMF, or behavioral-neural 

intelligibility correlation (z) across cluster groups would provide evidence for the reliability 

of STRF patterns across the cortical surface nodes within a cluster group and across 

individual participants.

To test for a tradeoff in spectral and temporal resolution across significantly tuned STRFs, 

an additional model examining the node-by-node relationship between tBMF and sBMF was 

estimated using the following formula:

tBMF ∼ hemi + sBMF + hemi:sBMF + sBMF sub + sBMF hemi:sub ,

where tBMF is the dependent variable, sBMF is a continuous covariate, and (sBMF | …) 

represents a random intercept plus random slope of sBMF within the error stratum specified 

by the variables to the right of the vertical bar. An analogous model with sBMF as the 

dependent variable and tBMF as the continuous covariate was also estimated. For all 

models, categorical independent variables were coded using a weighted-sum-to-zero 

approach such that the mean contrast weight was equal to zero after accounting for 

imbalances in the number of observations coming from each hemisphere and/or cortical 

region. Continuous covariates were centered on zero. Statistical significance of the fixed 

effects was evaluated by F-test with Satterthwaite approximation of the denominator degrees 

of freedom (Luke, 2017) and type III sums of squares. Observations for which the z-scored 

STRF peak magnitude was less than 2 were excluded from model fitting (4.2% of the total 

observations across participants).

3. Results

3.1 Cluster analysis reveals four groups of distinct STRF patterns in human auditory 
cortex

During fMRI scanning, participants listened to 400–450 “bubble-ized” sentences and made 

yes-no intelligibility judgments for each sentence by button press. A behavioral 

classification image (Fig. 3C) showing which STMs were important for intelligibility was 

calculated from the button-press data and neural classification images (STRFs) in the STM 

domain were calculated for each node (roughly a voxel-like unit) in a standard-topology 

cortical surface model (essentially a group-level template brain that respects the gray matter 

folding patterns of each individual participant; see 2.6). Positively tuned STRFs (particular 

STMs produce an increased BOLD response, n = 6403) were considered separately from 

negatively tuned STRFs (particular STMs produce a decreased BOLD response, no 

significant nodes detected). Using these criteria, 100% of positively tuned surface nodes 

were located in the auditory cortex including the supratemporal plane and lateral superior 

temporal lobe. Of these, 58.8% were located in the left hemisphere; 97.3% were located in 

either Heschl’s gyrus/sulcus, STG, STS, or posterior Sylvian cortex, based on the Destrieux 
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(Destrieux et al., 2010) anatomical atlas in Freesurfer v5.3 (Fischl, 2012). For subsequent 

reporting of anatomical locations, the STG and STS were split into posterior and anterior 

segments by marking the midpoint of Heschl’s gyrus and drawing a plane perpendicular to 

the Sylvian fissure.

To determine whether STRF patterns were organized within the auditory cortex, we applied 

an unsupervised Gaussian mixture model (GMM) clustering algorithm. The GMM 

essentially grouped STRFs according to their functional patterns within the STM domain. 

Crucially, clusters were not constrained to include STRFs from neighboring anatomical 

locations. The best-fitting GMM identified 18 STRF clusters within the auditory cortex (Fig. 

3B). These clusters were then sorted to maximize the correlation between neighboring 

cluster-level STRFs and merged into four distinct “cluster groups” (Fi g. 3A) by visual 

inspection. The cluster groups can be described as follows: Cluster Group 1 was located 

primarily within the supratemporal plane and posterior STG and responded to STMs 

throughout the entire range of the speech MPS including “pitch” and “form ant” regions (see 

Fig. 1); Cluster Group 2 was located primarily in the posterior Sylvian region and medial 

supratemporal regions and responded to STMs with low spectral modulation rates and 

relatively high temporal modulation rates; Cluster Groups 3 and 4 were located primarily in 

the lateral STG and STS and responded to STMs important for intelligibility, based on 

comparison to the group-level behavioral classification image for intelligibility (Fig. 3C). 

Cluster Group 3 responded most reliably to temporal modulations about one-half octave 

higher than Cluster Group 4. To summarize, an STRF was derived empirically for each 

node. We then defined 18 clusters of nodes based on STRF similarity, each with its own 

cluster-level STRF. Finally, groups of clusters were formed by sorting the cluster-level 

STRFs to maximize the similarity between neighboring STRFs, and then manually 

identifying groups based on visually apparent, characteristic STRF profiles.

The exact distribution of the four cluster groups within different anatomical regions, defined 

using the Destrieux atlas (Destrieux et al., 2010) as described above, is shown in Fig. 3D. A 

multinomial regression model showed significant main effects of hemisphere (analysis of 

deviance, type III SS; χ2(3) = 174.6, p < 0.001) and anatomical region (χ2 (15) = 1528.1, p 

< 0.001), and a significant two-way interaction (χ2 (15) = 229.6, p < 0.001). The simple 

main effect of anatomical region remained significant within each hemisphere (left: χ2 (15) 

= 1528.1, p < 0.001; right: χ2 (15) = 1429.8, p < 0.001). In both hemispheres, a majority of 

the nodes in Heschl’s gyrus/sulcus belonged to Cluster Group 1 (Fig. 3D, ‘Heschl’), while 

the other three cluster groups each accounted for about 5–20% of the nodes. A similar 

pattern was observed in the left hemisphere posterior STG (Fig. 3D, ‘pSTG’) with Cluster 

Group 1 dominating (> 60%), while in the right hemisphere Cluster Groups 1–3 each 

accounted for 20–40% of nodes. The posterior STS (Fig. 3D, ‘pSTS’) had a m ixed profile 

in the left hemisphere, with Cluster Groups 3 and 4 together accounting 65% of the nodes, 

and Cluster Group 1 accounting for 25% of the nodes. Most nodes on the dorsal bank of the 

pSTS bordering the STG belonged to Cluster Groups 1 and 2, though a small group of nodes 

in the dorsal mid-posterior STS belonged to Cluster Group 4. A group of nodes in the 

ventral pSTS bordering the middle temporal gyrus belonged to Cluster Groups 3 and 4. In 

other words, the anatomically-defined pSTS in the left hemisphere seemed to encompass 

multiple functionally distinct subregions. In the right hemisphere, the pSTS was dominated 
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by Cluster Groups 3 and 4 (~ 70%), but there were very few significantly tuned nodes in the 

right pSTS overall. The anterior STG (Fig. 3D, ‘aSTG’) in the left hemisphere was do 

minated by Cluster Group 3 (~ 55%), followed by Cluster Groups 1 (~ 35%) and 4 (~ 10%). 

A similar pattern was observed in the right aSTG. The anterior STS was dominated by 

Cluster Groups 3 and 4 in both hemispheres, though both hemispheres also had a non-trivial 

contribution from Cluster Group 1. The posterior Sylvian region was dominated by Cluster 

Group 2 in both hemispheres (Fig. 3D, ‘pSyl’).

To summarize, Cluster Groups 1 and 2 were located in supratemporal regions and the 

posterodorsal lateral temporal lobe, and a transition to Cluster Groups 3 and 4 occurred 

moving laterally (e.g., STG to STS) and anteriorly (e.g., pSTG to aSTG). The posterior- and 

anterior-most regions of the ventral STS were dominated by Cluster Groups 3 and 4, and 

thus likely represent the highest levels of processing in the auditory cortex. It is important to 

note, again, that clusters and cluster groups were defined entirely on a functional basis – that 

is, the assignment of surface nodes to a cluster or cluster group was made entirely based on 

STRF patterns, with no restrictions based on anatomical location. The anatomical 

organization of clusters and cluster groups emerged naturally from their functional 

similarity. Though some amount of spatial correlation is expected due to both intrinsic and 

extrinsic spatial smoothing of the fMRI data (Hagler Jr. et al., 2006) – which increases the 

likelihood that neighboring nodes will demonstrate similar STRF profiles – the level of 

smoothness in our data (4 mm FWHM) does not account for the large-scale functional-

anatomic organization of STRFs observed.

3.2 Effect of intelligibility on STRFs

As described in the Methods (2.8), it is possible that STRFs estimated from the full dataset 

(intelligible and unintelligible trials) were biased due to a global effect of intelligibility (see, 

e.g., Fig. 8A below). Therefore, we obtained STRFs with the effect of intelligibility removed 

(STRFunbiased) by calculating separate STRFs for intelligible (STRFintel) and unintelligible 

(STRFunintel) trials and averaging them. Crucially, the neural signal was normalized prior to 

this calculation to remove differences in the trial-by-trial mean and variance of intelligible 

and unintelligible trials, respectively (as is commonly done in pre-processing for MVPA; 

Coutanche, 2013). For each of the 18 STRF clusters identified by GMM clustering (3.1), we 

calculated cluster-level estimates of STRFunbiased. The overall patterns of cluster-level 

STRFs estimated from the full dataset (Fig. 3B) were maintained for cluster-level estimates 

of STRFunbiased (Fig. 4). Indeed, the mean cluster-by-cluster correlation between the original 

cluster-level STRFs and the cluster-level estimates of STRFunbiased was r = 0.89 (± 0.01 

SEM). However, the mean cluster-by-cluster correlation between the original cluster-level 

STRFs and the behavioral classification image for intelligibility (Fig. 3C) was r = 0.72 

(± 0.05 SEM), while the mean value of this correlation was only r = 0.39 (± 0.05 SEM) for 

STRFunbiased and the difference between these correlations was significant (t17 =14.1, p < 

0.001). This suggests that the global effect of intelligibility was effectively removed from 

STRFunbiased. The primary difference between the original STRFs and the unbiased STRFs 

was a relatively enhanced representation of pitch-related STMs compared intelligibility-

related STMs in the unbiased STRFs (compare Fig. 4 to Fig. 3B). Of note, STRFintel and 
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STRFunintel were not examined individually because the stimulus space was not randomly 

sampled by bubbles within each class of trials (intelligible, unintelligible; Fig. 3C).

3.3 STRF peak modulation tuning

Cluster-level STRFs represent the mean response across all cortical surface nodes included 

in that cluster. Because clusters and cluster groups are defined based on the similarity of 

responses among their constituent nodes, we might expect little variability in STM tuning 

within a given cluster group. On the other hand, it is possible that STRFs within a cluster 

group are bound by some general feature but still vary in terms of the specific information 

encoded at each cortical node. To examine STRF variability within and between cluster 

groups, we estimated temporal and spectral peak modulation frequencies (tPMF and sPMF, 

respectively) from the group-level STRF of each positively tuned auditory-cortical surface 

node. The predominant tPMFs were between ~2–8 Hz and this range was distributed 

throughout the auditory cortex (Fig. 5A, tPMF). There was no clear evidence of spatially 

organized topographic gradients of tPMF within individual cortical regions. However, a clear 

pattern emerged that respected the defining characteristics of the cluster group STRFs as 

observed in Fig. 3B – i.e., a broad range of tP MFs was represented in Cluster Group 1, 

high-rate tPMFs (> 6 Hz) were preferentially represented in Cluster Group 2, and Cluster 

Groups 3 and 4 were distinguished by a relative shift toward higher tPMFs in Cluster Group 

3 (Fig. 5B, top; see interquartile ranges). This pattern was similar across the left and right 

hemispheres. The range of spectral modulations represented was more restricted, with 

predominantly low sPMFs (< 1.5 cyc/kHz) found throughout the auditory cortex (Fig. 5A, 

sPMF). High sPMFs (4–6 cyc/kHz, vocal pitch range) were restricted primarily to the 

supratemporal plane and Heschl’s gyrus. Indeed, the distribution of sPMFs (Fig 5B, bottom) 

was overwhelmingly weighted toward low sPMFs in Cluster Groups 2–4, but the distribution 

in Cluster Group 1 had considerably more weight on higher sPMFs (Fig. 5B, bottom; see 

interquartile ranges). This again paralleled the pattern of cluster group STRFs observed in 

Fig. 3B. The left and right hemispheres were again similar. Overall, STRFs within each 

cluster group responded to a range of STMs, but the groups were clearly distinguishable 

based on the distributions of STMs represented.

In addition to qualitatively describing the distribution of group-level PMFs, we wanted to 

test quantitatively whether STRF peak modulation frequencies were reliably organized by 

cluster group across subjects and cortical surface nodes, and whether such organization 

varied by hemisphere. To accomplish this, we calculated the best temporal and spectral 

modulation frequencies (tBMF and sBMF, respectively) of individual-participant STRFs at 

each significantly tuned auditory-cortical surface node. For a given participant, the tBMF 

and sBMF at a given cortical surface node were selected jointly by identifying the 2D peak 

of the individual-participant STRF. The un-aggregated estimates of tBMF and sBMF across 

all surface nodes and all participants were transformed to an octave scale and entered as the 

dependent variables in separate linear mixed effects (LME) analyses with hemisphere (left, 

right), cluster group (1–4, as defined on the group data), and their interaction included as 

fixed factors, and participant included as a random factor (see 2.12 for a comprehensive 

description of the random effects structure). For tBMF, there was a significant main effect of 

cluster group (F3,26.7 = 9.98, p < 0.001) but no significant main effect of hemisphere (F1,9.0 
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= 2.29, p = 0.16) and no significant interaction (F3,25.1 = 1.49, p = 0.24). Crucially, the 

pattern of cluster-group differences matched the characteristics of the aggregate STRFs for 

each cluster group (see 2.12 and 4.2 for a discussion of the importance of this finding): the 

highest tBMFs were found in Cluster Group 2, followed by Cluster Group 3, and Cluster 

Groups 1 and 4 had the lowest tBMFs (Figure 5A, top). The right hemisphere had higher 

tBMFs overall, particularly in Cluster Group 2, although this effect was not statistically 

significant. For sBMF, there was a significant main effect of cluster group (F3,26.8 = 3.72, p 
< 0.05) and a significant cluster group x hemisphere interaction (F3,26.0 = 4.99, p < 0.01), 

but no significant effect of hemisphere (F1,9.1 = 0.55, p = 0.48). The simple main effect of 

cluster group remained significant in the right hemisphere (F3,26.7 = 5.37, p < 0.01) and at 

the trend level in the left hemisphere (F3,26.6 = 2.73, p = 0.06). Again, the pattern of cluster-

group differences matched the characteristics of the aggregate STRFs for each cluster group 

(see 2.12 and 4.2 for a discussion of importance): the highest sBMFs were found in Cluster 

Group 1 (Fig. 5A, bottom). In the left hemisphere, sBMFs decreased progressively from 

Cluster Group 2 to 4, but in the right hemisphere sBMFs were relatively higher in Cluster 

Groups 3 and 4 compared to Cluster Group 2.

To test for a systematic relationship between tBMF and sBMF across cortical surface node 

locations and hemispheres, we conducted an additional LME analysis with tBMF as the 

dependent variable and fixed effects of hemisphere, sBMF (continuous covariate), and the 

interaction of sBMF by hemisphere. Participant was included as a random factor including a 

within-participant random slope term for sBMF (see 2.12 for a comprehensive description of 

the random effects structure). An analogous model with sBMF as the dependent variable and 

tBMF as the covariate was also estimated. BMFs were again transformed to an octave scale 

prior to analysis. Prominent models of speech processing advocated by Zatorre (Zatorre et 

al., 2002) and Poeppel (2003) predict: (i) a tradeoff in spectral and temporal resolution such 

that fast temporal modulations are encoded by neural populations that with poor spectral 

resolution and vice versa (i.e., a negative relationship between tBMF and sBMF); and (ii) a 

hemispheric asymmetry in which greater temporal resolution is achieved by the left 

hemisphere (i.e., higher tBMFs are encoded in the left hemisphere and, by extension, higher 

sBMFs are encoded in the right hemisphere). In fact, with tBMF as the dependent variable, 

we observed a trend-level linear relation with sBMF in which a one-octave increase in sBMF 

predicted a 0.09 octave decrease in tBMF (beta = −0.09; F1,9.0 = 4.83, p = 0.06). We also 

found a trend-level effect of hemisphere in which tBMFs were, on average, 0.54 of an octave 

higher in the right hemisphere (beta = 0.54, F1,9.0 = 4.84, p = 0.06), but no significant 

interaction in the effect of sBMF by hemisphere (F1,9.0 = 1.05, p = 0.33). With sBMF as the 

dependent variable, there was a significant negative linear relation with tBMF (beta = −0.15, 

F1,9.0 = 5.14, p < 0.05), but there was no significant effect of hemisphere (beta = 0.25, F1,9.0 

= 0.87, p = 0.37) and no interaction in the effect of tBMF by hemisphere (F1,9.0 = 1.28, p = 

0.29). We then restricted the analysis to surface nodes belonging to Cluster Group 1 (Fig. 

6B) because this cluster encompasses the lowest levels of auditory processing and represents 

the greatest range of BMFs. Within Cluster Group 1 (Fig. 6B), the negative linear relation 

between tBMF and sBMF was significant and became stronger (DV = tBMF: beta = −0.14, 

F1,9.0 = 6.0, p < 0.05; DV = sBMF: beta = −0.25, F1,8.8 = 13.3, p < 0.01). The effect of 

hemisphere (DV = tBMF: beta = 0.53, F1,16.0 = 4.61, p < 0.05; DV = sBMF: beta = 0.27, 
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F1,9.0 = 0.63, p = 0.45) and the two-way interaction (DV = tBMF: F1,10.7 = 0.04, p = 0.85; 

DV = sBMF: F1,8.5 = 0.01, p = 0.91) patterned just as with the full dataset. Overall, we 

observed a significant negative relation between tBMF and sBMF as predicted, but this 

relation was not driven by hemispheric asymmetries. In fact, both tBMF and sBMF were, if 

anything, higher in the right hemisphere on average. Therefore, finer temporal resolution 

was not observed in the left hemisphere and no interhemispheric tradeoff in spectral and 

temporal resolution was revealed.

3.4 Processing specializations within cluster groups

The preceding sections 3.1 and 3.3 have shown that: (a) speech-driven STRFs in the auditory 

cortex are organized in a manner consistent with a hierarchical interpretation, as revealed by 

data-driven clustering; (b) cluster groups can be distinguished based on broad differences in 

their STM tuning; and (c) significant variability in peak STM tuning is nonetheless present 

within each cluster group. This raises the possibility that subsets of STRFs within a given 

level of the cortical hierarchy are specialized for processing specific speech information. 

Indeed, Fig. 3B demonstrates that individual clusters within a given cluster group can vary 

considerably even while maintaining the defining characteristics of that cluster group. Here, 

we focus on three individual clusters from within the cluster groups plotted in Fig. 3B that 

are strongly suggestive of processing specializations within levels of the functionally defined 

cortical speech hierarchy.

Within Cluster Group 1, the defining feature of STRFs was a broad response spanning both 

pitch and formant regions of the speech MPS. However, certain clusters within Group 1 

were tuned relatively more selectively to pitch STMs compared to formant STMs. The single 

cluster with the largest relative pitch response (i.e., largest relative t-score for STMs above 4 

cyc/kHz) was located primarily in lateral Heschl’s gyrus and the immediately neighboring 

STG, bilaterally (Fig. 7A). This region has been implicated previously in human pitch 

processing (Griffiths, 2003). Within Cluster Group 2, the defining feature of STRFs was an 

increased response to high temporal modulation rates (> 6 Hz). One cluster among these 

showed a relatively selective response to these high rates. This cluster was located 

exclusively in regions of the right auditory cortex (Fig. 7B). This suggests some degree of 

hemispheric lateralization for temporal processing (Poeppel, 2003). Finally, within Cluster 

Group 4, the defining feature of STRFs was a very strong correlation with the behavioral 

classification image for intelligibility (per-cluster Pearson r of 0.83–0.96). However, among 

these, one cluster responded particularly well to low temporal modulation rates (essentially 

low pass in the temporal modulation domain). This cluster was located primarily in the 

anterior STS bilaterally, with particularly strong representation in the left hemisphere (Fig. 

7C). The anterior temporal lobe has been implicated in several functions relevant to the 

analysis of intelligible speech at long time scales including prosodic, syntactic, and 

combinatorial semantic analysis (Humphries et al., 2005; Rogalsky and Hickok, 2008; 

Wilson et al., 2014). Overall, these results suggest that processing specializations occur 

within levels of the auditory cortical hierarchy. Crucially, the hierarchy is described 

presently in terms of neural tuning within an acoustic domain (i.e., the STM domain), and 

such tuning appears to underlie processing specializations within low (e.g. Cluster Groups 1 

and 2) and high (e.g., Cluster Group 4) levels of the hierarchy.
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3.5 Cortical Maps of Speech Intelligibility

To determine the extent to which different brain regions were involved in processing 

intelligible speech, correlations between behavioral classification images and neural STRFs 

were calculated at each cortical surface node separately for each participant. These 

correlations described the degree to which a cortical surface node was activated most 

strongly when the speech information most important to behavioral intelligibility was 

present in the stimulus. In addition, to facilitate direct comparison to previous studies using 

standard subtraction contrast methods, trials were sorted according to button press responses 

in the yes-no intelligibility judgment task (i.e., into “intelligible” and “unintelligible” trials) 

and a mean activation contrast value (intelligible vs. unintelligible) was calculated at each 

node. Second-level correlation and contrast intelligibility maps were calculated (one-sample 

t-test; corrected p < 0.05) and compared.

Cortical maps of intelligibility based on activation contrast (Fig. 8A) and STRF-based 

correlation (Fig. 8B) were broadly similar. Each map primarily emphasized the STG/STS 

and Heschl’s sulcus bilaterally. In the contrast maps, the largest differences were observed in 

Heschl’s sulcus and the mid-anterior STG/S, and the magnitude of activation differences 

was similar across the left and right hemispheres. In the correlation maps, the largest 

correlations were observed in Heschl’s sulcus, all along the STG, and in the anterior STS; 

the magnitude of correlations was larger in the left hemisphere. There were 5465 significant 

nodes in the contrast map (48.0% left hemisphere) and 5225 significant nodes in the 

correlation map (54.1% left hemisphere). The correlation map overlapped 63.4% with the 

contrast map. The contrast map overlapped 65.6%, and the correlation map overlapped 

74.6%, with the map of significantly tuned STRFs in the auditory cortex. Neither the 

contrast nor the correlation map contained nodes outside the temporal lobe.

In general, the correlation procedure yields a value that is more easily interpretable than the 

contrast procedure – i.e., rather than a mean difference in activation magnitude between two 

conditions, the correlation map shows the degree to which a cortical surface node responds 

selectively to acoustic patterns that are relevant to behavioral intelligibility. Thus, to examine 

how the representation of intelligible speech relates to STRF-cluster-based vs. anatomically-

based organization of the auditory cortex, correlations measured at individual cortical 

surface nodes within individual participants were entered as the dependent variable in two 

second-level LME models: (1) a cluster group model with hemisphere (left, right) and 

cluster group (1–4, as defined on the group data), and their interaction as fixed effects, and 

participant as a random effect (see 2.12 for comprehensive random effects structure); and (2) 

an anatomical model with hemisphere (left, right) and anatomical region (Heschl’s gyrus/

sulcus, posterior STG, posterior STS, anterior STG, anterior STS, and posterior Sylvian 

cortex), and their interaction as fixed effects, and participant as a random effect (see 2.12 for 

comprehensive random effects structure). The LME analysis was restricted to auditory-

cortical nodes with that were significantly tuned in the group-level STRF analysis. 

Correlation values were not aggregated across cortical surface nodes within a given region.

For the cluster group model, there was a significant main effect of cluster group (F3,27.0 = 

4.55, p < 0.05), but no significant main effect of hemisphere (F1,9.0 = 1.09, p = 0.32) and no 

significant interaction (F3,26.6 = 0.19, p = 0.90). Like the LMEs carried out on tBMF and 
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sBMF, the pattern of cluster-group differences matched the characteristics of the aggregate 

STRFs for each cluster group (see 2.12 and 4.2 for a discussion of importance): 

intelligibility correlations were largest in Cluster Group 4, followed by Cluster Groups 3, 1 

and 2 in that order (Fig. 8C, top). There appeared to be a trend toward larger correlations in 

the left hemisphere, although this effect was not statistically significant. For the anatomical 

model, there was no significant effect of region (F5,44.9 = 1.71, p = 0.15), hemisphere (F1,9.0 

= 1.20, p = 0.30) or their interaction (F5,44.8 = 0.69, p = 0.63). The pattern of correlations 

across anatomical regions (Fig. 8C, bottom) should be interpreted with caution due to the 

lack of a significant effect. Indeed, organization by cluster group appeared to provide a 

better characterization of the data than organization by anatomical region. A post-hoc LME 

model containing fixed and random effects of both cluster group and anatomical region 

showed that removal of the fixed effect of cluster group had a greater effect on model fit 

(likelihood ratio = 9.13) than removal of the fixed effect of anatomical region (likelihood 

ratio = 6.14), despite the fixed effect of cluster group accounting for fewer degrees of 

freedom (3 df) than the fixed effect of anatomical region (5 df). This demonstrates that, 

although the cluster groups are significantly associated with particular anatomical regions 

(Fig. 3D), this association is not perfect. In other words, certain anatomical regions (e.g., the 

left pSTS) are mixed with respect to the distribution of cluster groups, and these regions 

therefore encompass multiple hierarchical levels of processing or, at least, process a broader 

range of speech information.

4. Discussion

In the present fMRI study, a classification image procedure (“bubbles”) was used to estimate 

speech-driven STRFs in the modulation-power-spectrum domain from single-trial BOLD 

response amplitudes. These STRFs were estimated for a group of healthy, normal-hearing 

participants at each node in a standard-topology cortical surface model. Data-driven 

clustering was used to define groups of STRFs with similar response properties. The 

clustering procedure recovered an organization consistent with hierarchical interpretations of 

cortical speech processing. Specifically, STRF clusters representing a broad range of 

spectrotemporal features were located in early auditory regions of the supratemporal plane, 

while STRF clusters representing the spectrotemporal features most important for 

intelligibility were located in later auditory regions of the lateral temporal lobe. Although 

clusters were defined at the group-level using a “t-score” approach, an LME analysis of 

individual-participant STRF scalar metrics (Joosten and Neri, 2012), e.g., best modulation 

frequency, showed that the STRF-tuning patterns of group-defined clusters were reliable 

across individual participants and cortical surface nodes.

The notion of a cortical hierarchy for processing auditory speech is not new, but our method 

is unique in that it reveals precisely what acoustic information is processed within and 

between levels of the hierarchy. For example, we find that among later (intelligibility-

focused) regions, faster temporal modulations corresponding roughly to syllable or phoneme 

length units are processed primarily in the anterior STG and posterior STS, while slower 

temporal modulations corresponding roughly to suprasegmental units are processed 

primarily in the anterior STS. Moreover, we find specializations for processing pitch in 

lateral Heschl’s gyrus, and at least a qualitative hemispheric preference for processing fast 
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temporal modulation rates in the right hemisphere and slow temporal modulations essential 

for intelligibility in the left hemisphere. Overall, these results provide a much more nuanced 

characterization of the cortical speech hierarchy compared to existing data. In the sections 

below (4.1–4.5), we discuss these and other major findings and their theoretical 

implications.

4.1 Hierarchical organization of speech-driven STRFs in the auditory cortex

Data-driven analysis identified four groups of STRF clusters defined by their similar within-

group functional properties. We envision these cluster groups as capturing different levels of 

processing within a feed-forward cortical speech hierarchy that progresses from detailed 

spectrotemporal processing (Cluster Groups 1 and 2) to more abstracted processing of 

acoustic patterns specific to speech (Cluster Groups 3 and 4). As we will describe, different 

STRF patterns corresponding to different acoustic (vocal harmonics vs. formants; transient 

vs. sustained events) or linguistic (phonemes vs. syllables/words) speech cues are 

represented separately within different hierarchical levels.

The lowest-level group of STRF clusters, Cluster Group 1, represented a broad range of 

spectrotemporal modulations spanning both the “pitc h” and “formant” regions of the speech 

MPS (Fig. 1A). Cluster Group 1 was located primarily in Heschl’s gyrus/sulcus and the 

immediately neighboring posterior STG (Fig. 3A/D). In the aggregate, the STRFs in Cluster 

Group 1 appeared to behave as a simple “energy detector” (Fig. 3B, CG1), i.e., they 

responded to modulation energy in the speech signal regardless of the particular pattern 

presented to the listener (see also, Santoro et al., 2017). However, examination of node-wise 

peak modulation frequencies revealed that STRFs in Cluster Group 1 were individually 

tuned to particular temporal and spectral modulation rates spanning a wide range (Fig. 5B). 

Moreover, certain individual STRF clusters within Cluster Group 1 were tuned relatively 

more selectively to the pitch or formant regions of the MPS. Therefore, the data suggest that 

the broad representation of spectrotemporal features in Cluster Group 1 reflects the 

integrated activity of neuronal subpopulations tuned to relatively narrow patterns within the 

speech MPS. Indeed, bandpass modulation tuning across a range of best modulation 

frequencies has been observed in early auditory-cortical regions in a number of species, 

particularly for temporal modulations (Bieser and Müller-Preuss, 1996; Liang et al., 2002; 

Mi ller et al., 2002; Schreiner and Urbas, 1988; Scott et al., 2011; Woolley et al., 2005). 

Thus, our finding is consistent with the view that early auditory cortex is essentially an STM 

filterbank (Chi et al., 1999; Chi et al., 2005).

The next, perhaps intermediate, group of STRF clusters was Cluster Group 2, which was 

defined primarily by an increased response to high temporal modulation rates (Fig. 3B, 

CG2; Fig. 5B). Cluster Group 2 was located primarily in posteromedial aspects of the 

supratemporal plane bordering the outer edges of Cluster Group 1 (Fig. 3A). The vast 

majority of cortical surface nodes in the posterior Sylvian region were contained in Cluster 

Group 2 (Fig. 3D). Both human and animal data support the notion of a posterior to anterior 

temporal processing gradient in which cells with the shortest temporal integration windows 

are located in the posterior temporal lobe (Bendor and Wang, 2008a; Hullett et al., 2016). 

The posterior Sylvian region, in particular, has been implicated in the processing of temporal 
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order and in sound sequencing (Bernasconi et al., 2010; Bernasconi et al., 2011; Hickok et 

al., 2011), potentially necessitating a need to represent speech features on a relatively short 

time scale. This may be particularly important for extracting information relevant for 

accessing the phonological form of the speech signal at a relatively fine temporal scale.

Cluster Groups 3 and 4 correspond to the highest level of the presumed cortical speech 

hierarchy. The STRF clusters in these groups responded selectively to the MPS region most 

important for speech intelligibility (Fig. 3B/C). Cluster Groups 3 and 4 accounted for a 

majority of the cortical surface nodes in the posterior STS, anterior STG, and anterior STS 

(Fig. 3D), regions implicated previously in high-level processing of intelligible speech 

(Evans et al., 2014; Narain et al., 2003; Okada et al., 2010; Scott et al., 2000). Functionally, 

Cluster Groups 3 and 4 were distinguished by a fairly substantial difference in STRF tuning 

in the left hemisphere – namely, the temporal modulation tuning of STRFs in Cluster Group 

3 was shifted up roughly an octave compared to STRFs in Cluster Group 4 (median = 3.0 vs. 

6.1, respectively; interquartile range = 1.6 – 4.4 vs. 4.4 – 7.0, respectively); the shift was also 

present in the right hemisphere but was somewhat more modest (median: 4.0 vs. 5.8, 

interquartile range: 2.3 – 5.1 vs. 4.4 – 8.0). Translated to speech units, the shift in the left 

hemisphere corresponds roughly to the timescale of phonemes versus syllables/words or 

even short phrases. It is tempting to hypothesize a correspondence between Cluster Group 3 

STRFs as playing a role in processing shorter duration phonological information on the 

order of phonemes to syllables and a correspondence between Cluster Group 4 and 

processing higher-order linguistic chunks from words to phrases. Anatomically, in the left 

hemisphere Cluster Group 3 was represented most prominently in the anterior dorsal STG 

and posterior STS while Cluster Group 4 was represented most prominently in the anterior 

STS and ventral posterior STS. In the right hemisphere, Cluster Group 3 was represented in 

the anterior and posterior dorsal and lateral STG; Cluster Group 4 was represented in the 

both anterior and posterior STS. This result may account for differences in existing 

hierarchical models of speech processing that place relatively more emphasis on posterior 

versus anterior temporal lobe regions, or vice versa (Bernstein and Liebenthal, 2014; Hickok 

and Poeppel, 2007; Rauschecker and Scott, 2009). That is, both anterior and posterior 

STG/STS regions play an important role in extracting intelligible information from speech, 

but at different levels of analysis. The STRFs in Cluster Group 4 correlated most strongly 

with the group-level behavioral classification image for intelligibility and were located most 

prominently in the anterior temporal lobe and the ventral-most aspect of the left posterior 

STS (i.e., abutting the middle temporal gyrus); this makes sense if Cluster Group 4 

represents the top of the processing hierarchy either acoustically or linguistically.

In addition to evidence suggesting a hierarchical organization of cluster groups, there was 

evidence for processing specializations (i.e., differences in STRF patterns) within each 

cluster group (Fig. 7). As mentioned, STRFs in Cluster Group 1 showed varying degrees of 

selectivity for spectrotemporal modulations in the pitch region of the MPS, with a cluster in 

lateral Heschl’s gyrus/STG demonstrating maximum selectivity for pitch. Both animal and 

human studies have identified a similar “pitch region” just lateral to primary auditory cortex 

(Bendor and Wang, 2006; Griffiths, 2003; Penagos et al., 2004). In Cluster Group 2, STRFs 

showed varying amounts of selectivity for high temporal modulation rates, with a cluster in 

the right auditory cortex demonstrating this selectivity most clearly. In general, we observed 

Venezia et al. Page 23

Neuroimage. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a tendency for right hemisphere regions to respond to slightly higher temporal modulation 

rates (Fig. 6A, top).

We cannot be certain whether the observed STRF properties reflect sensitivity to particular 

acoustic patterns or the higher-level processing of information extracted from those patterns. 

For example, we would expect the operation of linguistic computations (e.g., syntax and 

semantics) to be correlated with the acoustic patterns feeding into those mechanisms. This is 

particularly true in the context of the bubbles technique where linguistic processes fail to 

engage when the acoustic patterns that support intelligibility are filtered from the signal. A 

recent study (de Heer et al., 2017) compared fMRI-encoding models based on 

spectrotemporal, articulartory-phonological, and semantic features using a variance 

partitioning scheme to estimate which model best accounted for activation patterns during 

continuous listening to narrative speech. In fact, the spectrotemporal model best accounted 

for activation patterns only in a restricted region of the early auditory cortex, which would 

be circumscribed by Cluster Group 1 as measured here. Activity in later regions comparable 

to Cluster Groups 3 and 4 was best described by the articulatory-phonological and semantic 

models. This finding is in agreement with Schönwiesner and Zatorre’s (2009) data, which 

show that only regions in the primary and secondary auditory cortices respond to synthetic 

STM stimuli. However, there is reason to believe that, even at high levels of processing, 

tuning to particular spectrotemporal patterns remains an important organizational principle 

of the auditory cortex. Recent work by Chang and colleagues shows that high-level 

information about phonetic features, pitch contour, and talker identity is encoded and 

intermixed within neuronal populations of the STG that are also topographically organized 

in terms of spectrotemporal modulation tuning (Hullett et al., 2016; Mesgarani et al., 2014; 

Tang et al., 2017). Work by Poeppel and colleagues shows that temporal lobe regions up to 

and including the STS respond to speech-specific temporal patterns even when stimuli are 

unintelligible (Boemio et al., 2005; Overath et al., 2015). In the present study, we observed a 

range of spectrotemporal modulation tuning patterns even at the highest levels of the 

presumed auditory cortical hierarchy (Cluster Groups 3 and 4; Figs. 3B/5B), which suggests 

that a partially abstracted “acoustic trace” is maintained at these later processing stages. We 

also found similar STRF patterns after correcting for global effects of intelligibility (Fig. 4). 

Together, these findings suggest that the organization observed here for speech may also 

apply to cortical-acoustic analysis of other (non-speech) sounds, a notion supported by 

recent fMRI encoding studies showing similar patterns of organization – broad responses in 

early auditory regions, sensitivity to specific features in STG/S, pitch regions in lateral HG, 

etc. – for non-speech natural sounds (De Angelis et al., 2017; Moerel et al., 2012; Santoro et 

al., 2017). However, Santoro et al. (2017) show that STRFs estimated from a wide range of 

natural sounds including speech are different when speech stimuli are left out of the STRF 

computation. This suggests that cortical-acoustic analyses shift when processing occurs in a 

linguistic context, but even if one were inclined to argue that higher-order STRFs were 

driven by linguistic computation, the fact that particular ranges of STMs are represented in 

different groups of STRFs would provide rather compelling evidence regarding the level of 

linguistic computation being carried out by each group.
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4.2 Consistency of STRF Cluster Organization Across Participants and Surface Nodes

Clustering analysis was performed on auditory-cortical STRFs after averaging across 

participants at each node of a standard topology cortical surface model. Moreover, the 

STRFs representing each cluster (Fig. 3) reflect an aggregate pattern across many 

constituent cortical surface nodes. Some degree of inter-participant and inter-node variability 

should be expected, so it was important to determine whether the group-level data were 

representative of the STRF patterns observed at individual cortical surface nodes in 

individual participants. Neri and colleagues (Joosten and Neri, 2012; Neri, 2010; Neri and 

Levi, 2008) caution against drawing strong conclusions from qualitative inspection of 

aggregate classification images (e.g., STRFs) because, in cases where significant individual 

variability is present, the aggregate patterns may not be representative of any given 

individual. Rather, they suggest conclusions should be drawn from quantitative analysis of 

individual classification images, namely by extracting a scalar metric that summarizes the 

shape of the classification image and analyzing the metric statistically. This approach is what 

motivated our decision to analyze STRFs at the group level by calculating a “t-score” 

version of the STRF at each cortical surface node. The t-scoring procedure allowed us to 

identify aggregate STRFs for which at least a subset of STRF features was consistent across 

participants. Only such STRFs were entered in the GMM clustering analysis.

However, the t-scoring procedure alone did not ensure that wholesale STRF patterns 

observed at the cluster-group level (Fig. 3) would reflect the underlying STRF patterns in 

individual participants or surface nodes. Therefore, we adopted Neri and colleagues’ 

approach of extracting scalar metrics from individual STRFs and analyzing them 

quantitatively. Linear mixed effects (LME) models were constructed with individual-

participant STRF scalar metrics – tBMF, sBMF, and behavioral-neural intelligibility 

correlation – as the dependent vari ables to determine if these metrics would pattern 

according to the definitional features of Cluster Groups 1–4 as defined at the group level. In 

fact, all three scalar metrics behaved as predicted: tBMF was highest in Cluster Group 2 

(Fig. 5A), sBMF was highest in Cluster Group 1 (Fig. 5A), and the behavioral-neural 

intelligibility correlation was highest in Cluster Group 4 (Fig. 8C). Cluster group 3 was 

intermediate in terms of tBMF and the behavioral-neural intelligibility correlation. The 

difference across cluster groups was statistically significant in all cases. Crucially, the inputs 

to the LME models were the un-aggregated scalar metrics from every auditory-cortical node 

across every participant, and participant-level variance was explicitly accounted for by 

including the appropriate random effects terms in the LME models (2.12). Thus, we can be 

reasonably confident in the reliability of STRF patterns across participants and cortical 

surface nodes. While this does not guarantee or even suggest that similar clusters of STRFs 

would be identified if we analyzed the data of each participant separately, it provides 

evidence that the large-scale STRF organization determined from the group data did not 

arise spuriously from the aggregation of highly-variable and/or disorganized STRFs across 

participants and surface nodes. However, since STRF clusters were identified from the same 

data used in LME modeling, we cannot make strong claims regarding the likelihood of these 

findings to generalize beyond the present study.
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To examine whether analyzing each participant separately would produce qualitatively 

similar results to analysis of the group data, we repeated the clustering analysis on each 

individual participant using the cluster model that provided the best description of the group 

data (K = 18 clusters, “VVV” covariance structure; see 2.10). Since cluster labels are 

arbitrarily assigned, the individual participant clusters were relabeled to maximize the 

cluster-by-cluster correlation with the group data (Kuhn, 1955), and then partitioned into 

four cluster groups using the same mapping as for the group data. Crucially, this procedure 

did not ensure that a similar number of cortical surface nodes would be assigned to each 

cluster group in individual participants compared to the group, nor did it ensure that the 

cluster groups would be assigned to similar anatomical regions in individual participants 

compared to the group. Yet, we found a remarkably similar anatomical distribution of 

Cluster Groups 1–4 when defined on individual participant data (Fig. 9) compared to the 

group data (Fig. 3). The average node-by-node percent agreement of cluster group 

assignments when comparing individual participants to the group was 49.1 % (± 2.0 % 

SEM).

4.3 Cortical Maps of STRF Peak Modulation Frequencies

We observed a broad trend in which STRFs tuned to relatively fast temporal modulation 

rates (6–10 Hz) were located in posteromedial auditory regions (Cluster Group 2), while 

STRFs tuned to relatively slow temporal modulation rates (1–4 Hz) were located in 

anterolateral auditory regions (Cluster Group 4). However, examination of node-wise 

cortical maps of tPMF (Fig. 5A, top) did not reveal an organized high-to-low gradient 

moving from posterior to anterior regions. Rather, there was a range of tPMFs within each 

cluster group (Fig. 5B, top), with hierarchical distinctions suggested by differing 

distributions of temporal modulations by cluster group. The lack of a within-hierarchical-

level spatial gradient stands in apparent contrast to a previous finding (Barton et al., 2012), 

although in that work identification of topographic mapping was performed for core and belt 

subfields using individual-participant data and multiple maps were identified. We simply 

may not have the spatial resolution to resolve such internal structure.

In contrast to the temporal modulation maps, we found a clear organization for spectral 

modulations in which high spectral modulation rates (4–6 cyc/kHz) were represented most 

prominently in early regions of the supratemporal plane, and later auditory regions became 

increasingly “low-pass” (< 2 cyc/kHz) in their representation of spectral modulations (Fig. 

5B, bottom). This pattern was essentially born out in node-wise maps of sBMF (Fig. 5A, 

bottom), although there was evidence for some additional representation of high spectral 

modulation rates in the mid and posterior STG.

Together, these results agree strongly with data based on responses to synthetic STM sounds 

(Schönwiesner & Zatorre, 2009), and they broadly co mport with an existing model of 

auditory cortical organization based on non-human primate data in which temporal 

integration windows increase along a gradient from caudal to rostral auditory areas, and 

spectral integration windows increase along a gradient from medial to lateral auditory areas 

(Bendor and Wang, 2008b). A similar organization was revealed by a recent fMRI study of 

human natural sound processing, which, using a modulation-based encoding model, 
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characterized the organization of auditory cortex in terms of a tradeoff between spectral and 

temporal resolution – namely, regions posterior and lateral to Heschl’s gyrus encoded 

relatively coarse spectral information (low spectral modulation rates) and fine temporal 

information (high temporal modulation rates), while regions located on and immediately 

anteroventral to Heschl’s gyrus encoded fine spectral information with and coarse temporal 

information (Santoro et al., 2014). Indeed, we found a strong negative correlation between 

the best temporal modulation rate and best spectral modulation rate of cortical nodes in these 

early auditory regions (Fig. 6; but, see 4.4 below). A recent human ECoG study derived 

speech-driven STRFs from electrodes placed throughout the STG and found that electrodes 

in the posterior STG responded best to high temporal modulation rates and low spectral 

modulation rates, while electrodes in the anterior STG responded best to high spectral 

modulation rates and low temporal modulation rates (Hullett et al., 2016).

4.4 Relation to Hemispheric Lateralization of Cortical Speech Processing: The Spectral-
Temporal and Asymmetric Sampling in Time Models

There is a fairly entrenched notion that speech is processed preferentially in the left 

hemisphere while pitch and prosody (e.g., music) are processed preferentially in the right 

hemisphere (cf., Price et al., 2005). Zatorre and colleagues (Zatorre and Belin, 2001; Zatorre 

et al., 2002) suggest that such asymmetries arise from differences in early spectrotemporal 

processing of sound features in the auditory cortex. Their spectral-temporal model asserts 

that temporal features are processed predominantly in the left hemisphere, while spectral 

features are processed predominantly in the right hemisphere. A related speech-centric 

model – Poeppel’s asymmetric samplin g in time (AST) model (Poeppel, 2003) – suggests 

that hemispheric asymmetries arise as a consequence of the way auditory representations are 

analyzed in the time domain. According to AST, the left hemisphere extracts information 

preferentially from a short time window (25–50 ms or 20–40 Hz), lending itself to analysis 

on a scale appropriate for detecting rapid formant transitions, while the right hemisphere 

extracts information from a longer time window (125–300 ms or 3–8 Hz), lending itself to 

analysis on a syllabic scale. Poeppel further suggests that right hemisphere specializations 

for processing spectral information can be explained in terms of that hemisphere’s longer 

analysis window – that is, grea ter spectral resolution is achieved with an increasing 

integration time constant. Thus, both the spectral-temporal and AST models provide two 

predictions in the context of the present study: (1) speech-driven STRFs tuned to high 

temporal modulation rates (fine temporal resolution) will also be tuned to low spectral 

modulation rates (poor spectral resolution), and vice versa; (2) a greater preponderance of 

STRFs tuned to high temporal modulation rates will be located in the left hemisphere and 

STRFs tuned to low temporal modulation rates (and high spectral modulation rates) will be 

located in the right hemisphere.

We tested these predictions directly by examining the relation between best temporal and 

best spectral modulation frequency (tBMF and sBMF, respectively) across all significantly 

tuned auditory-cortical surface nodes and across hemispheres. In fact, there was a significant 

negative linear relation (i.e., in the predicted direction) between tBMF and sBMF within 

Cluster Group 1 (Fig. 6B), and there was no difference in the strength of this relation 

between hemispheres. There was also a significant main effect of hemisphere on tBMF, but 
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it was in the opposite direction of that predicted by lateralization models – namely, higher 

temporal modulation rates t ended to be represented in the right hemisphere. Therefore, 

while tBMF and sBMF are related within each hemisphere, we find, if anything, the 

opposite between-hemisphere relation as that predicted by lateralization models.

A rather simple explanation appears to account for the significant (within-hemisphere) 

relation between tBMF and sBMF within Cluster Group 1. Recall that Cluster Group 1 

responds essentially like an STM filterbank, and it is the only cluster group that responds 

significantly to high spectral modulation rates (pitch). Figure 1A (left panel) displays the 

boundary containing 80% of the power in the speech modulation spectrum. This boundary 

reveals that speech energy at high spectral modulation rates tends to be located at low 

temporal modulation rates and vice versa. Indeed, this relation holds for many animal 

vocalizations including human speech (Elliott and Theunissen, 2009). We therefore suggest 

that the natural modulation statistics of speech are reflected straightforwardly in the outputs 

of spectrotemporal modulation filters in Cluster Group 1. Zatorre and colleagues (Zatorre et 

al., 2002) describe an ‘acoustic uncertainty principle’ in which there is a tradeoff between 

the precision that can be achieved in the time and frequency domains when analyzing an 

acoustic event. We cannot rule out the notion that this spectral-temporal tradeoff reflects an 

intrinsic organizing principle of the auditory cortex, in which case it is possible that the 

human vocal apparatus and its associated motor control circuits have adapted to shape 

speech acoustics to match this pattern (Giraud et al., 2007).

Regarding the possible right hemisphere preference for processing faster temporal 

modulation rates, it is unclear whether this might reflect a right hemisphere specialization 

for processing (slightly) more fine-grained temporal features, or a left hemisphere 

specialization for processing high-level components of intelligible speech (e.g. words, 

phrases; Peelle, 2012; Specht, 2013), which tend to come across at relatively slower rates. 

While we found clear evidence for specialized processing of slow rates in a STRF cluster 

from Cluster Group 4 (Fig. 7C), this cluster was localized to the STS bilaterally. In fact, the 

broad organization of STRF clusters was remarkably similar across the hemispheres (Fig. 

3A), as were node-wise maps of STRF peak modulation frequencies (Fig. 5A). Therefore, 

we assert that our data do not support the existence of broad hemispheric differences in 

spectrotemporal processing. We should note that we did not test for hemispheric differences 

in temporal processing above 20 Hz. This is because there is very little speech modulation 

energy above 20 Hz (Fig. 1A), so the bubbles technique was unlikely to identify consistent 

responses at such high modulation rates. However, one of the critical windows in AST is 20–

40 Hz, so we necessarily failed to detect any differences within that range. 

Electrophysiological recording techniques capable of detecting synchronized or phase-

locked neuronal activity on a fine time scale are perhaps better suited to exploring speech 

processing in that time window.

4.5 Cortical Maps of Speech Intelligibility: Left-Right and Anterior-Posterior Asymmetries

Previous imaging studies using standard subtraction-contrast and multivariate analysis 

methods have yielded somewhat conflicting interpretations of the cortical organization for 

processing intelligible speech. Two early studies localized processing of intelligible speech 
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to the left anterior temporal lobe (Scott et al., 2000; Scott and Johnsrude, 2003), while more 

recent studies have observed bilateral activation to intelligible speech in the STG/S with a 

greater extent of activation in the left hemisphere, particularly in posterior temporal lobe 

regions (Davis and Johnsrude, 2003; Evans et al., 2014; McGettigan et al., 2012; Okada et 

al., 2010; Scott et al., 2006). Multivariate analysis of activation patterns within these 

bilateral regions suggests that patterns in the left hemisphere are maximally informative 

regarding the distinction between intelligible and unintelligible speech (Evans et al., 2014; 

McGettigan et al., 2012; Okada et al., 2010), yet these studies disagree on the relative 

contributions of posterior (Okada et al., 2010) versus anterior (Evans et al., 2014) temporal 

lobe regions. It should be noted that all of these studies used continuous speech (i.e., 

sentences) as stimuli, so “intelligibili ty” encompasses acoustic, phonetic, lexical-semantic, 

and syntactic/combinatorial semantic processing. However, studies using sublexical stimuli 

(i.e., comparing “phonetic” to “surface acoustic” processing ) find similar patterns: a mix of 

left-lateralized (Liebenthal et al., 2005; Specht et al., 2009) and bilateral (Evans and Davis, 

2015; Vaden et al., 2010) effects in the STG/S, with a left hemisphere bias when effects were 

bilateral, and some disagreement over the relative contributions of posterior (Vaden et al., 

2010) versus anterior (Liebenthal et al., 2005; Specht et al., 2009) superior temporal lobe 

regions.

Here, we assessed processing of intelligible speech in two ways: (1) using the standard 

subtraction contrast method (i.e., testing for a mean activation difference on intelligible vs. 

unintelligible trials); and (2) by testing directly for a correlation between STRFs estimated at 

each cortical surface node and the behavioral classification images for intelligibility (i.e, 

“behavioral STRFs”) estimated for each participant. Both methods (Fig. 8A/B) revealed 

essentially bilateral activation of superior temporal lobe regions (STG/S): 48.0% and 54.1% 

of significant nodes were located in the left hemisphere for methods 1 and 2, respectively. 

An examination of the strength of the neural-behavioral correlations from method 2 turned 

up somewhat subtle (i.e., qualitative) evidence of hemispheric asymmetries with the left 

hemisphere yielding higher overall correlation values than the right (Fig. 8B). Within the left 

hemisphere, the largest relative correlations were observed in the anterior STG, mid-

posterior STG, and Heschl’s sulcus. Strong correlations were also observed in the left 

posterior STS. Within the right hemisphere, the largest relative correlations were observed in 

the mid-anterior STG/S.

Thus, while the overwhelming tendency in the present data is for intelligible speech to be 

processed and represented bilaterally (Figs. 3, 5, 8), and for both posterior and anterior 

regions of the STG/S to process speech at a relatively high (abstracted) level (Figs. 3D, 8C), 

there are modest biases favoring anterior over posterior regions and left over right 

hemisphere. In a sense, these intelligibility biases fall out naturally from the organization of 

the cortical speech hierarchy. Regions at the top level of the hierarchy (e.g., those coding 

word- or phrase-level information) depend on accurate encoding of speech information at 

lower processing levels (e.g., those regions coding syllables, phonemes, or their underlying 

spectrotemporal patterns). A failure to extract intelligible speech information at any level of 

processing will propagate up to the highest level and, therefore, lead to a near-perfect 

readout of intelligibility failures (and successes) in the activation patterns of regions like the 

anterior STG/S. Activation in potentially lower-level regions (posterior STG/S) will reflect a 
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partial readout of intelligibility failures, yielding the apparent gradients in the intelligibility 

correlations.

One early auditory region, at least anatomically speaking, that showed a strong intelligibility 

response was a portion of left Heschl’s sulcus (Fig. 8B). This region was classified as 

belonging to Cluster Group 4 – the highest-level cluster from a functional standpoint – as 

was a small group of analogous cortical surface nodes in right Heschl’s sulcus (Fig. 3A). 

Presumably, processing in this region reflects a strictly acoustic representation of the MPS 

features that support intelligible speech. This conclusion is supported by previous work 

suggesting that Heschl’s sulcus plays a role in error correction during speech production. 

These studies show that Heschl’s sulcus responds selectively to sublexical speech sounds 

(Formisano et al., 2008; Jäncke et al., 2002), activates during monitoring of overt speech 

feedback during production (van de Ven et al., 2009), and is suppressed when the likelihood 

of making a speech production error is reduced (Christoffels et al., 2011). Thus, the 

suggestion is that Heshcl’s sulcus hosts the high-level acoustic targets (Guenther, 2006; 

Hickok, 2012) for speech production. Alternatively, it is possible that this region is 

processing a different slow modulation rate linguistic cue, namely prosody and/or stress 

patterns, that impact intelligibility. This is a topic for future work.

5. Conclusions

Data-driven clustering of speech-driven STRFs recovered a hierarchy of cortical speech 

processing in which early auditory areas in the supratemporal plane faithfully reconstructed 

the speech signal while later areas in the lateral temporal lobe gradually abstracted over 

earlier representations to emphasize the speech features important for intelligibility. 

Crucially, unlike previous imaging work, STRF-based analysis revealed the precise nature of 

speech representations throughout the cortical hierarchy, including evidence of processing 

specializations within and between different hierarchical levels. Particular cortical regions 

were specialized for processing different subsets of acoustic speech information within or 

outside the range of features that support intelligibility. A general trend was observed in 

which posteromedial regions of the supratemporal plane processed fine temporal 

information, while anterolateral regions of the temporal lobe processed coarse temporal 

information. Similarly, medial supratemporal regions processed fine spectral information 

while lateral temporal regions processed coarse spectral information. This broad 

organization was nearly identical between the left and right hemispheres, though the left 

hemisphere showed a slight preference for processing the slow spectrotemporal modulations 

associated with intelligible speech. The left hemisphere also showed somewhat stronger 

correlations between STRF patterns the behaviorally-determined pattern of spectrotemporal 

modulations that underlie speech intelligibility. These correlations also tended to be 

somewhat stronger in anterior than posterior temporal lobe regions. Overall these findings 

are consistent with a bilateral but modestly asymmetric model of cortical speech processing 

with posterior-lateral regions preferentially processing phonological level information and 

anterior-lateral regions preferentially processing speech at the word and phrase level. No 

significant STRF tuning was observed outside the auditory cortex.
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Highlights

• A new method, “auditory bubbles”, is developed to estimate speech-driven 

spectrotemporal receptive fields (STRFs) using fMRI

• STRFs are estimated at locations throughout the auditory cortex

• Groups of STRFs with similar functional properties are identified using an 

unsupervised clustering algorithm

• Results support an interpretation in which STRFs are hierarchically organized 

and specialized within hierarchical levels

• Early auditory areas encode vocalic information (pitch)

• Posterior and anterior superior-temporal regions encode phonetic information 

on temporal scales associated with phonemes/syllables and words/phrases, 

respectively
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Figure 1. 
(A) Speech Modulation Power Spectrum. Left: Average MPS of 452 sentences spoken by 

a single female talker. The MPS describes speech as a weighted sum of spectrotemporal 

ripples containing energy at a unique combination of temporal (Hz; abscissa) and spectral 

(cycles/kHz; ordinate) modulation rate. Modulation energy (dB, arb. ref; color scale) clusters 

into two discrete regions: a high-spectral-modulation-rate region corresponding to finely 

spaced harmonics of the fundamental (a “pitch region”) and a low-spectral-modulation-rate 

region corresponding to coarsely spaced resonant frequencies of the vocal tract (a “formant 
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region”). The black contour line indicates the modulations accounting for 80% of the total 

modulation power. A spectrogram of an example spectrotemporal ripple (2 Hz, 4 cyc/kHz) is 

shown beneath. Right: Coefficient of variation across the 452 sentences (sd/mean), 

expressed as a percentage (color scale). Plotted on the same axes as the MPS. There is 

relatively little variation across utterances (maximum CV ~7%). (B) Bubbles Procedure. 

Bubbles (middle) are applied to an image of a face (left) and the MPS of an individual 

sentence (right). In either case, bubbles reduce the information in the stimulus. Different 

random bubble patterns are applied across trials of an experiment. For auditory bubbles, we 

in practice use a binary masker with bubbles that are larger than those shown in the example.
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Figure 2. Bubbles Analysis Schematic.
A BOLD activation time-course from a single voxel in left Heschl’s gyrus of a 

representative subject is shown (blue line). The time-course plots the z-scored time-series of 

single-trial activation magnitudes (beta; ordinate) evoked by “bubble-ized” sentences 

(Sentence No., abscissa). Example bubble patterns (black-and-white panels) associated with 

sentences that evoked relatively large (top) and small (bottom) activations are plotted and 

identified by their sentence number. Z-scored activation magnitudes associated with these 

examples are shown next to the corresponding point in the activation time-course. Bubbles 

are applied to the MPS of each sentence as shown in Fig. 1. White pixels show regions of the 

MPS that are transmitted to the listener, while black pixels show regions of the MPS that are 

removed. Each bubble pattern is multiplied by its associated z-score, and the series of bubble 

patterns is summed pixel-by-pixel. The resulting summed image is then blurred (Gaussian 

filter with sigma = 5 pixels) and scaled by the across-pixel standard deviation (sdpx). The 

result is a STRF (top right) showing which regions of the MPS best activated this voxel. The 

STRF color scale is in across-pixel standard deviation units, where large positive values 

(yellow-red) correspond to regions of the MPS that evoked relatively large activations.
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Figure 3. 
(A) Maps of STRF Cluster Groups in Auditory Cortex. Cluster Groups are plotted by 

color on cortical surface renderings of the left and right hemispheres. Zoomed renderings of 

the temporal lobe are shown beneath whole-brain plots. Cluster Group 1 (CG1, blue) is 

located primarily in the supratemporal plane and posterior STG. Cluster Group 2 (CG2, 

cyan) is located primarily in medial supratemporal reigons. Cluster Groups 3 and 4 (CG3/4, 

yellow/red) are located primarily in the posterior and anterior STG/STS. (B) STRF-Cluster 
Patterns. For each of the 18 STRF clusters identified by GMM analysis, the cluster-average 

group-level (t-score) STRF is plotted. STRF magnitudes have been normalized to the range 

[0, 1]. Larger values are associated with STMs that produced relatively more BOLD 

activation. STRFs are organized by Cluster Group (CG1–4) in columns running from left to 

right. STRFs associated with CG1 respond to a broad range of STMs. STRFs associated 

with CG2 respond especially to high temporal modulation rates. STRFs associated with 
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CG3/4 respond to STMs important for intelligibility (see C). (C) Behavioral Classification 
Image for Intelligibility Judgments. This plot is essentially a ‘behavioral STRF’, derived 

entirel y from button-press responses (yes-no intelligibility judgments) rather than neural 

activity. The z-scored group-level behavioral classification image is shown. Larger values 

are associated with STMs that contribute relatively more to intelligibility. Temporal 

modulations from 2–7 Hz and spectral modulations less than 1 cyc/kHZ contribute 

maximally.(D) Distribution of Cluster Groups within Anatomically Defined Regions. 
The proportion of cortical surface nodes belonging to CG1–4 is plotted for six anatomical 

regions of interest in the left (LH) and right (RH) hemispheres: Heschl = Heschl’s gyrus/

sulcus, pSTG/S = posterior STG/S, aSTG/S = anterior STG/S, pSyl = posterior Sylvian 

cortex. Colored boxes beneath region labels correspond to the colors of the anatomical 

regions plotted on zoomed cortical surface renderings at right. Only significantly tuned 

cortical surface nodes are labeled.
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Figure 4. Cluster level STRFs with the global effect of intelligibility removed (STRFUnbiased).
For each of the 18 STRF clusters identified by GMM analysis, the cluster-average group-

level (t-score) STRFUnbiased is plotted. STRF magnitudes have been normalized to the range 

[0, 1]. Larger values are associated with STMs that produced relatively more BOLD 

activation. STRFs are organized by Cluster Group (CG1–4) in columns running from left to 

right. Compare to Fig. 3B.
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Figure 5. 
(A) Cortical Maps of Peak Modulation Frequencies. Node-wise maps of temporal peak 

modulation frequency (tPMF, Hz) and spectral peak modulation frequency (sPMF, cyc/kHz) 

are displayed on inflated cortical surface renderings of the left and right temporal lobes. The 

renderings have been zoomed in as indicated by the red boxes at the top of the figure. Color 

scales are logarithmic. (B) Probability Density of tPMF and sPMF Within Cluster 
Groups. Empirical cumulative distribution functions (eCDFs; Kaplan-Meier method) for 

tPMF (Hz, top) and sPMF (cyc/kHz, bottom) were generated. Empirical probability density 

functions (ePDFs) were obtained by taking the derivative of the eCDFs. The ePDFs are 

plotted for each cluster group (colored lines, see legend) separately for the left (LH) and 

right (RH) hemispheres. The interquartile ranges (25th percentile – 75th percentile) of each 

distribution are indicated at the top right of each panel (IQR). The ordinate is the estimated 

probability density.
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Figure 6. Linear Mixed Effects Models: Best Modulation Frequency.
(A) Effect of Cluster Region. The mean of the fitted values produced by the LME model 

for temporal (tBMF, top) and spectral (sBMF, bottom) best modulation frequencies (octave 

scale, ordinate) are plotted for Cluster Groups 1–4 (abscissa) in the left (blue) and right (red) 

hemispheres. Error bars reflect ± 1 SEM. Spectral BMFs are negative because nodes with an 

sBMF of 0, of which there were many, were set to 0.01 (−6.6 on the octave scale). (B) 
Covariation between tBMF and sBMF. Results of linear mixed effects regression of sBMF 

on tBMF (top) and tBMF on sBMF (bottom) by hemisphere are plotted as fitted lines (bold 

blue) with 95% confidence regions (light blue shading). BMFs have been mean-centered and 

transformed to the octave scale (i.e., axes show distance from the mean t/sBMF in octaves). 

Ticks above the abscissa indicate the values of the covariate at which data were actually 

observed.
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Figure 7. Evidence of STRF Specializations Within Cluster Groups.
Individual clusters of interest (A–C) are plotted on inflated cortical surface renderings of the 

left and right hemispheres (figure left). Zoomed surface renderings of the temporal lobes are 

shown beneath the whole-brain plots. The cluster-average group-level (t-score) STRFs are 

also plotted with magnitudes normalized to the range [0, 1] (figure right). (A, blue) From 

Cluster Group 1, this cluster on lateral Heschl’s Gyrus and the neighboring STG responds 

best to STMs at high cyc/kHz (“pitch” STMs). (B, Green) From Cluster Group 2, this 

cluster located entirely in the right auditory cortex responds best to STMS at high temporal 

modulation rates (Hz). (C, Red) From Cluster Group 4, this cluster located prominently in 

the left anterior temporal lobe responds best to STMs important for intelligibility, 

particularly at very low temporal modulation rates (< 3 Hz).
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Figure 8. 
(A) Contrast Map of Speech Intelligibility. The group mean contrast beta (intelligible 

trials vs. unintelligible trials) is plotted on cortical surface renderings of the left and right 

hemispheres. Whole-brain analysis, wild-bootstrap-corrected p < 0.05. (B) Correlation 
Map of Speech Intelligibility. The group mean Fisher z-transformed correlation, z(r), 

between behavioral classification images for intelligibility and neural STRFs is plotted on 

cortical surface renderings of the left and right hemispheres. Whole-brain analysis, wild-

bootstrap-corrected p < 0.05. (C) Linear Mixed Effects Analysis of Intelligibility 
Correlation Values. The mean of the LME-fitted values of the Fisher z-transformed 

correlation, z(r), between behavioral classification images for intelligibility and neural 

STRFs is plotted across cluster regions (top) and anatomical regions (bottom) in the left 

(blue) and right (red) hemispheres. Error bars reflect ± 1 SEM.
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Figure 9. 
(A) Cluster-Group Maps at the Group Level and in Representative Individual 
Participants. Cluster Groups are plotted by color on cortical surface renderings of the left 

and right hemispheres. Separate maps are shown for the group-level data (GRP), and for the 

two individual participants with the lowest (S2) and highest (S3) percent agreement with the 

group. (B) Distribution of Individual-Participant Cluster Groups within Anatomically 
Defined Regions. The across-participant average proportion of cortical surface nodes 

belonging to Cluster Group 1–4 is plotted for six anatomical regions of interest in the left 

(LH) and right (RH) hemispheres: Heschl = Heschl’s gyrus/sulcus, pSTG/S = posterior 

STG/S, aSTG/S = anterior STG/S, pSyl = posterior Sylvian cortex. Error bars = ± 1 SEM. 

Compare to Fig. 3D for group-level distributions.
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