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Abstract

Advanced neuroimaging provides new opportunities to enhance head injury models, including the incorporation of white

matter (WM) structural anisotropy. Information from high-resolution neuroimaging, however, usually has to be ‘‘down-

sampled’’ to match a typically coarse brain mesh. To understand how this mesh-image resolution mismatch affects

impact simulation and subsequent response sampling, we compared three competing anisotropy implementations (using

either voxels, tractography, or a multiscale submodeling) and two response sampling strategies (element-wise or

tractography-based, using brain mesh or neuroimaging for region segmentation, respectively). Using the combination of

high resolution options as a baseline, we studied how the choice in each individual category affected the resulting injury

metrics. By simulating a recorded loss of consciousness head impact, we found that injury metrics including peak strain

and injury susceptibility in the deep WM regions based on fiber strain, but not on maximum principal strain, were

sensitive to the anisotropy implementation, response sampling, and region segmentation. Overall, it was recommended to

use tractography for anisotropy implementation and response sampling, and to employ neuroimaging for region seg-

mentation, because they led to more accurate injury metrics. Further refining mesh locally via submodeling was un-

necessary. Brain strain responses were also parametrically found to be closer to that from minimum fiber reinforcement,

consistent with the fact that the majority of WM had a rather high degree of fiber dispersion. Finally, the upgraded

Worcester Head Injury Model incorporating WM anisotropy was successfully re-validated against cadaveric impacts and

an in vivo head rotation (‘‘good’’ to ‘‘excellent’’ validation with an average Correlation Analysis score of 0.437 and 0.509,

respectively). These investigations may facilitate further continual development of head injury models to better study

traumatic brain injury.

Keywords: concussion; tractography; traumatic brain injury; white matter anisotropy; Worcester Head Injury Model

Introduction

Traumatic brain injury (TBI) is a leading cause of morbidity

and death in the world.1,2 For decades, TBI has been an active

research area where numerous efforts exist to elucidate the bio-

mechanical mechanisms to mitigate the incident rate and severity.

The recent heightened public awareness of mild TBI (mTBI), es-

pecially in sports-related concussion,3,4 has led to recommenda-

tions to address immediately the biomechanical determinants of

injury risk and to identify effective concussion diagnostic metrics

and biomarkers, among others.5

TBI, including mTBI, is caused by mechanical insult to the

brain. For historical reasons, kinematic variables such as linear and

rotational acceleration peak magnitudes, as well as their more so-

phisticated variants, have been used widely to describe impact

severity and to predict injury. These scalar injury metrics, however,

only indirectly infer brain mechanical responses such as strain and

strain rate thought to cause injury.6 Effective, they treat the whole

brain as a single unit and are unable to characterize the location or

distribution of mechanical responses within the brain.

Characterizing the location and distribution of impact-induced

brain responses is likely critical to studying the mechanisms of

mTBI, including concussion, given its widespread neuroimaging

alterations7 and a diverse spectrum of clinical signs and symp-

toms.8 Presumably, these clinical indicators of mTBI are a result

of injury to specific brain regions of interest (ROIs), functionally

important neural tracts, and/or the underlying structural and func-

tional networks of the brain.

To translate an external head impact into region-specific strain

responses within the brain, finite element (FE) models of the human

head are employed increasingly to simulate the impact biome-

chanical event using the recorded impact kinematics as input. The

resulting estimates of brain strain and strain rate provide much

richer information than simple kinematic variables. Potentially,

they allow for better correlation with advanced neuroimaging

(e.g., diffusion tensor imaging (DTI)9–11 and functional magnetic
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resonance imaging (fMRI)12,13) and cognitive findings.8,14 This

may lead to a multi-faceted understanding of the injury mechanisms

and to reinforce injury findings.7,11

The reliability of model-based brain injury studies critically

depends on the fidelity of the head injury model and impact sim-

ulation. Improving the model biofidelity has been an ongoing

process.15 After decades of development, head injury models now

have evolved from early two dimensioal versions to three dimen-

sional models, with simplified brain anatomy derived from pictorial

drawings to models with sophisticated details16 accurately con-

forming to high-resolution magnetic resonance imaging (MRI),17

even on a subject-specific basis.11

High-resolution MRI has also allowed substantial increase in

brain mesh resolution to improve model geometrical accuracy and

numerical convergence behavior. For example, the number of brain

finite elements (as opposed to that of the whole head, because other

components are irrelevant here) has increased from about 5–7 k18–20

and *30 k21 in earlier models, to *55 k11 and up to 164 k (de-

pending on the desired resolution),22 for more recent models. The

mesh resolution could even reach the level of MRI, when voxels were

directly converted into hexahedral elements (*1–2 million;17,23).

Aside from facilitating more accurate anatomical details, ad-

vanced neuroimaging, specifically, diffusion tensor imaging (DTI),

has also enabled incorporating white matter (WM) structural an-

isotropy. The reason is that the brain is known to be heterogeneous

and the WM is composed of distinctly aligned axonal fiber bundles

that present strong anisotropy in mechanical behavior.24 By mea-

suring the diffusion of water molecules in the brain in different

directions with DTI, the orientations of WM axons can be deduced

to inform brain regional anisotropy.

The significance of WM anisotropy on impact-induced brain

responses has been studied recently.18,25–27 Findings suggest it is

important for both impact-induced brain mechanical responses and

the development of more reliable injury criteria.28 One study also

suggests that the incorporation of WM anisotropy improves injury

prediction performance using the reconstructed American National

Football League impacts as a single ‘‘training dataset.’’29

To incorporate WM anisotropy, however, information regard-

ing the WM fiber orientation and dispersion (i.e., the degree of

WM fiber alignment) from high resolution DTI usually had to be

averaged to match typically coarse brain elements. For example,

up to 4096 (range of 70–4096) DTI voxels at an isotropic resolu-

tion of 1 mm3 were averaged for a typical brain element.30 In an-

other study, information from a number of DTI voxels of 2 ·
2 · 3.6 mm3 were also averaged to match a brain mesh of an esti-

mated resolution of *5 mm.31 This forced ‘‘down-sampling’’ could

lead to substantial loss of information.29 No study exists, however,

to investigate how this could affect model simulation accuracy

adversely.

Simply increasing brain mesh resolution to match that of DTI

voxels is unlikely to resolve the mesh-image resolution mismatch.

The geometry of a brain element does not conform typically to that

of a DTI voxel, thus, necessitating information averaging, regard-

less. Converting image voxels of the brain directly into hexahedral

mesh elements17,23 would lead to a direct one-to-one, voxel-to-

element correspondence. This would, however, inevitably increase

the number of brain elements and simulation runtime, substantially,

thus, posing a significant challenge for real-world applications. In

fact, a 16-fold increase is expected when halving the element size

(23-fold increase in the number of elements, with an additional

factor of 2 resulting from halving the explicit stable time increment

in simulation32). Further, voxelized meshes could be sensitive to

the degree of boundary smoothing and surrounding tissue material

properties to avoid artificial strain/stress concentration.22,33

Besides improving model biofidelity, it is also critical to un-

derstand how best to sample the simulated brain responses. This is

important to derive response-based, region-specific injury metrics

for subsequent brain injury prediction, without which the value of

an advanced injury model and biofidelic simulation could be lost.

Unfortunately, this appears to have been largely under-appreciated

in TBI studies to date, because commonly used injury metrics

simply rely on the peak response or above-threshold volume frac-

tion of the whole brain (e.g., cumulative strain damage measure,

CSDM21). Similar to their kinematic counterparts, these response-

based scalar metrics do not inform the location or distribution of

brain strains either, thus, leading to substantial loss of information.

Extending the injury metrics to specific brain regions—e.g.,

deep WM ROIs—could mitigate the limitation.29,34 Both elements

and image voxels can be used to define a ROI and to sample the

response distribution—i.e., either to directly report responses on

coarse elements (which is the most widely used18,21,31,35,36), or on

image voxels11 or tractography sampling points in the case of WM

fiber strain.37 These response sampling approaches are related di-

rectly to deriving ROI-wise injury metrics for injury prediction.

This necessitates an investigation into how best to sample the

simulated brain responses.

Given these considerations, we conducted the following study

with three main aims. First, we explored and compared three com-

peting implementation approaches to incorporate WM anisotropy

into the Worcester Head Injury Model (WHIM) by: (1) using DTI

voxels or (2) tractography for averaging, and (3) further using sub-

modeling as a cost-effective approach to mitigating the mesh-image

resolution mismatch. Instead of uniformly refining the mesh, a multi-

scale submodeling technique uses solutions of a ‘‘global,’’ coarse

model as appropriate boundary/loading conditions to drive the re-

sponse of a locally refined submodel.32 This avoided artificial stress/

strain concentration with voxelized meshes and has been applied

to study the vertebra,38 acetabulum liner,39 and tibial cartilage,40 but

not yet the brain. This technique differs from other existing multi-

scale modeling studies in the brain that, instead, investigate the

micro- and cellular level brain responses using a representative

volume element (RVE) and a periodic boundary condition.41,42

Second, we also investigated the significance of brain response

sampling strategies and region segmentation methods on two com-

monly used injury metrics: ROI-wise peak strains and injury sus-

ceptibility measures (analogous to CSDM—i.e., above-threshold

volume fraction in a given region34). To confirm whether the higher

resolution options were preferred, we compared how injury metrics

differed when using their respective lower resolution choices.

Finally, a fresh set of model validation was also provided for the

upgraded WHIM using data from an expanded set of cadaveric

head impacts43 and an in vivo volunteer head rotation.44 Validating

the model at both ends of the impact severity spectrum may im-

prove the confidence in its simulation for the majority of real-world

concussive and subconcussive head impacts.45 Findings from this

study may provide important insight into how best to incorporate

WM anisotropy in head injury models and subsequently to sample

the simulated brain responses for TBI studies in the future.

Methods

WHIM and WM anisotropy

Details of the WHIM mesh development, mesh quality, geomet-
rical accuracy, and assignment of material properties for the various
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head components have been reported.11,46 A reduced integration
scheme was adopted (C3D8R) and hourglass was controlled to be
within 10% of the total internal energy. A layer of pia arachnoid
complex between brain and skull allowed them to slide in the tan-
gential direction.21 The hexahedral brain mesh had a resolution of
3.3 – 0.79 mm. The model has been used recently to establish a real-
time model simulation framework via pre-computation47–49 and to
integrate tractography for WM fiber strain (en) evaluation.34,37 The
previous WHIM used an isotropic Ogden material model for the entire
brain. Here, we incorporated WM anisotropy into the model (Fig. 1).

The brain WM is composed of distinctly aligned axonal fiber
bundles,50 and its anisotropy is modeled typically as a fiber-
reinforced, transversely isotropic material.24 Several anisotropic
models exist that accommodate high-rate, large deformation. They
include the Puso-Weiss model51 adopted in the University of
Strasbourg head injury model,18 quadratic reinforcing material
model52 in a two-dimensional injury model,53 and the Holzapfel-
Gasser-Ogden (HGO) model.54,55 The HGO model is the most
commonly used in TBI studies, 25–27,56 because it allows incorpo-
rating DTI-derived fiber orientation (Aa) and dispersion parameters
(j) directly into the strain energy function, U 32:

U¼ G0
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� �

, and (2)

�I4 aað Þ ¼ �C : Aa � Aað Þ: (3)

In these equations, G0 and K are the initial shear modulus and
bulk modulus, respectively; k1 and k2 are fiber stiffness parame-
ters; �Ea characterizes the deformation of the fiber bundle with a
mean direction, Aa, via strain pseudo-invariant, �I4; �C represents
deviatoric component of the right Cauchy-Green strain tensor; and
finally, j (range of 0–1/3, from fully aligned to fully dispersed)
describes the degree of fiber orientation dispersion.

The brain shear modulus contains both time-independent hy-
perelasticity and time-dependent viscoelasticity. Hyperelasticity
in an HGO anisotropic model currently is only available in the form
of a Neo-Hookean model in Abaqus.32 It is governed by either the
initial or long-term shear modulus, G0 or G1, at the user’s dis-
cretion. It may not be feasible to directly identify G0 or G1 based
on existing brain experimental data, or to derive from the previous
WHIM that employed an isotropic Odgen model because of the
added WM fiber reinforcement. In addition, the shear modulus may

still need to be adjusted, regardless, to maximize the model vali-
dation performance.17 Given these considerations, here we chose to
iteratively optimize G1 using a binary search strategy so that the
resulting brain strain was comparable in magnitudes relative to the
previous, already validated, WHIM, that adopted an isotropic
material model for the brain.11 This maximized the overall response
consistency between the two versions of WHIM.

Specifically, a lower and an upper bound of G1 were first de-
termined (200 Pa57 and 1000 Pa,58 respectively). At every iteration,
G1 was adjusted to the average of the lower and upper bounds
to simulate a recorded loss of consciousness (LOC) impact in
American college football.59 The resulting element-wise peak
maximum principal strains (e1), regardless of time of occurrence,
were compared with those from the previous isotropic WHIM using
a linear regression. The iteration would stop when the regression
slope was within 1.00 – 0.05; otherwise, the lower or upper bound
was adjusted accordingly to the current G1 value. Three iterations
were sufficient to yield a target G1 of 895.53 Pa, resulting in a
slope of 0.9956 in regression.

The viscoelasticity was modeled as a two-term Prony series:

gR tð Þ¼ 1�+N

i¼ 1
gi 1� e

� t
si

� �
, (4)

where the dimensionless relaxation modulus, gi, and time constants,

si, were drawn from an in vivo shearing dynamic test at a frequency

range of 5–350 Hz using corona radiata and thalmic nuclei samples.60

Only the viscoelastic Prony series were adopted here, but not the

shear modulus, G0 from this early experiment because it was overly

stiff. Nevertheless, its relatively large dynamic frequency range al-

lowed proper model validations using both the high-rate cadaveric

impact61,62 and ultra-low-rate in vivo volunteer data.44 This was

important, because validating a head injury model at both ends of

the impact severity spectrum would likely increase the confidence

in model simulation for the majority of real-world concussive and

subconcussive head impacts.45 The viscoelasticity may be further

‘‘optimized’’ in the future, by adjusting the time-varying shear

moduli most relevant to the two extreme ends of impact severity.45

The fiber stiffness parameter, k1, was determined from the ratio
of G0=k1 (of 0.105; experimentally measured at a loading rate of
25 s-1; 50). For isotropic gray matter without fiber reinforcement, k1

was set to zero,27 instead of prescribing a nonzero value to indicate
otherwise.26,31 The discontinuity in k1 and shear stiffness effec-
tively led to property heterogeneity between the gray matter and
WM. In contrast, k2 was set to 0 throughout the brain, assuming a
linear contribution of fibers to the WM stiffness.63 For each WM
element, j was determined based on the averaged fractional an-
isotropy (FA) value (details below). Table 1 summarizes the material
property parameters of the brain. Material properties of other head
components remained identical to the previous WHIM.11

FIG. 1. The exterior features (a) and intracranial components (b) of the Worcester Head Injury Model showing the 50 deep white
matter (WM) regions of interest (c) and a subset of WM tractography fibers color-coded by their fractional anisotropy values. CSF,
cerebrospinal fluid. Color image is available online at www.liebertpub.com/neu
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WM anisotropy implementation

WM anisotropy was defined on an element-wise basis. Both co-
registered DTI voxels11 and whole-brain tractography34 (isotropic
resolution of 2 mm3 and 1 mm3, respectively) could be used to
determine the averaged FA value and fiber orientation. First, the
enclosed DTI voxels or fiber sampling points were identified by
testing whether the voxel centroids or sampling points were within
the boundary of the given brain element. They were used to com-
pute a distance-weighted average FA30:

ÆFAelmæ¼
+N

i¼ 1
FAie

� di
Le

+N

i¼ 1
e�

di
Le

(5)

where N is the number of enclosed voxels (3 – 2; range 1–21) or

fiber sampling points (149 – 191; range 1–2223), FAi is the FA

value of each voxel/sampling point, di is the Euclidean distance

relative to the element centroid, while Le is one half the length of

the element diagonal.18 The resulting FAelm was used to determine

discretized j values, similarly to a previous study.25

Using the voxel- and tractography-based approaches, the
element-wise distributions of FA and j values in the entire WM are
shown (Fig. 2). With the latter approach, because tractography
tracts would terminate if the FA value was below a pre-set threshold
of 0.2,37,64 all of the identified WM elements had an average FA
above this threshold (Fig. 2c). Thus, no elements had a j of 1/3

(Fig. 2d). Regardless, with either method, most of the WM ele-
ments (68% and 71%, respectively) had a j value greater than 0.2.

The average fiber direction was similarly obtained:

Æ~uelmæ¼
+N

i¼ 1
~uie
� di

Le

+N

i¼ 1
e�

di
Le

, (6)

where~ui is the fiber direction of the enclosed voxel/sampling point.

Unlike a scalar FA value, however, a vector and its negation,~ui and

�~ui, respectively, were effectively identical in describing the same

fiber direction. It was possible that two fibers of (nearly) an identical

orientation had (almost) opposite directional vectors, however. This

would result in an incorrect ‘‘averaged’’ vector (e.g., perpendicular

relative to the true orientation; or, a null vector for two exactly

opposing vectors). To ensure consistency among the fiber directions

within a given element, it was necessary to negate ~ui if its angle

relative to a randomly selected and common reference vector was

greater than 90 degrees. In extreme cases, almost half of the voxel-

or point-wise directional vectors needed to be flipped (Fig. 3).

Global, whole-brain model validation

Revising the material properties of the brain required fresh

model validations. The previous WHIM with an isotropic Ogden

material model was validated using three cadaveric impacts along

three different directions (frontal (C383-T1), occipital (C755-T2),

and parietal (C393-T4) impacts;11,46). The evaluations were limited

to corner locations of neutral density targets (NDT) because of data

availability in the original publications.61,62 As more NDT dis-

placement data have become available in other studies, here we

reported WHIM validation performances using an expanded data-

set (additional tests included C383-T3, C383-T4, and C291-T1; 6

tests in total) for all of the available NDT locations (N = 56 in

total).43 For each selected cadaveric impact, WHIM was scaled to

match the reported head size. The resulting model-predicted brain-

skull relative displacement time histories were then compared

against those measured in experiments.
In addition to high-rate cadaveric impacts, strain data from an

in vivo head rotation44 was also used to validate at the opposite
extreme of impact severity. Radial-circumferential shear strains
were obtained from the simulation to report the above-threshold
area fractions. For all simulations, validation performances were
assessed using correlation score (CS) for consistency with the
previous work11 as well as CORrelation and Analysis (CORA65).
CS and CORA scores were reported for both the previous isotropic
WHIM (Ogden) and the current anisotropic version (HGO), using
either DTI voxels or tractography for WM anisotropy imple-
mentation.

Table 1. Summary of Holzapfel-Gasser-Ogden

Anisotropic Material Property Parameters

for the Brain White Matter

Parameter Value References

G0 (Pa) 2673.23 Determined based on G1 following
the viscoelasticity Prony series

G1 (Pa) 895.53 Iteratively optimized
(see text for details)

K (MPa) 219 References11,46,69

k1 (Pa) 25459 Based on G0=k1 from experiment50

k2 0 Reference63

j Depending
on FA values

Reference25

g1 0.6521 Determined via Abaqus material
evaluation based on published
experimental data60

g2 0.0129
s1 0.0067
s2 0.0747

FA, fractional anisotropy.
Property parameters for the gray matter are identical, except that k1 was

set to 0 as no fiber reinforcement existed in this region.

FIG. 2. Distribution histograms for (a and c) fractional anisotropy (FA) and (b and d) j values for all of the identified white matter
(WM) elements, using two competing approaches. Virtually no elements had an FA greater than 0.9, and the majority had a j greater
than 0.2, regardless of the implementation method. For the voxel-based method, elements with averaged FA <0.2 mostly occurred at the
gray matter and WM junction. These elements were treated as gray matter using the tractography-based method, because no fiber
sampling points existed with FA <0.2. DTI, diffusion tensor imaging.
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Further, we used CORA as a ranking metric43 to compare WHIM

validation performances against other recent or well-utilized

models, including ABM,17 SIMon,21 THUMS,66 GHBMC,16 and

the KTH model (with two isotropic material models and an addi-

tional anisotropic model;19,29).
Finally, validation against impact-induced brain pressure re-

sponses was not necessary for a nearly incompressible brain,1 be-

cause the pressure responses were essentially hydrostatic for blunt

impacts with a duration longer than 2 msec.67,68 They can be deter-

mined uniquely by the magnitude and directionality of linear ac-

celeration, as well as brain size and shape for a given head model.49,69

Submodels for the deep WM

With a co-registered WM atlas, the 50 deep WM ROIs were

localized in the T1-weighted MRI (isotropic resolution of 1 mm3)

of the subjected used to develop the WHIM mesh.34 The corre-

sponding voxels were then converted into hexahedral elements

(143.3 k elements and 190.0 k nodes) with a custom routine. WM

anisotropy of the resulting submodel was defined similarly based

on whole-brain tractography (average number of enclosed sam-

pling points for each element of 87 – 62, range 1–559).

Significance of WM fiber alignment

WM anisotropy has only been incorporated into head injury

models relatively recently. By parametrically decreasing the dis-

persion parameter, j, from 1/3 to 0 to incrementally induce stronger

WM fiber reinforcement in the local brainstem region, one study

reported a lower e1 in this area when simulating a sagittal head

rotation (with other brain regions assumed isotropic25). The op-

posite was found, however, when simulating a concussive impact

that had large coronal and axial rotational components,31 where

fiber reinforcement yielded higher e1 for the corpus callosum and

brainstem. In contrast, lower WM fiber strains (en) in the two re-

gions were observed, as expected.
Here, we extended the investigations further to the whole brain.

Instead of locally assigning different dispersion parameter values

based on neuroimages, we uniformly set the dispersion parameter,

j, either to its lower or its upper bounds (0 and 1/3, respectively) for

the entire WM elements. They represented two extreme conditions

in which the WM was either fully aligned to induce maximum fiber

reinforcement or fully dispersed with minimum reinforcement in

effect. The resulting responses would yield the lower and upper

bounds, and their differences would indicate the maximum effect

because of the degree of WM alignment. It must be recognized,

however, that even with j of 1/3, WM was still stiffer than gray

matter because of its nonzero k1 in this region, compared with a

value of zero in the gray matter.27 In contrast, the earlier KTH

model assumed the gray matter to be identical to an isotropic WM

instead (i.e., the same nonzero k1 was used throughout the brain31).

Impact simulation and data analysis

WHIM validation was first conducted using impact acceleration

profiles corresponding to the selected impacts as input to the rigid

skull through the head center of gravity. All simulations were

performed using Abaqus/Explicit (Version 2016; Dassault Sys-

tèmes, France). Only results from the baseline HGO model based

on tractography were reported, along with those from the previous

Ogden model, for comparison and completeness. Next, a recorded

LOC impact in American college football59 was simulated using

the two global models, with either DTI voxels or tractography to

implement WM anisotropy. Each simulation required *25 min to

complete (impact duration of *70 ms; double precision with 15

CPUs and GPU acceleration; Intel Xeon E5-2698 with 256 GB

memory, and 4 NVidia Tesla K80 GPUs with 12 GB memory). An

additional *40 min was required for the tractography-based sub-

model simulation.
For each global model, element-wise e1 and strain tensors were

obtained at every solution time point (temporal resolution of 1 ms).

Peak e1, regardless of the time of occurrence, was also determined.

Next, en was determined either on an element-wise basis (by pro-

jecting the strain tensor along the mean element-wise fiber direc-

tion) or along WM fiber sampling points within the deep WM.37

The corresponding peak en was obtained similarly by finding the

peak value over the course of impact simulation. For each indi-

vidual deep WM ROI, peak e1 and en (assessed at the 95th-

percentile level) and injury susceptibility indices based on either e1

(ue1

ROI) or en (uen

ROI) were determined. These susceptibility indices

characterized the volume fraction above a given threshold34 and

were analogous to cumulative strain damage measure (CSDM)

based on maximum principal strain.21 For illustration, ue1

ROI and

uen

ROI were assessed at a strain threshold of 0.18 and 0.09, respec-

tively, corresponding to the upper and lower bounds of a conser-

vative strain threshold.70

The ROI-wise injury metrics for the 50 deep WM regions then

served as a response group and were derived from each global

model simulation (with either DTI voxels or tractography for

anisotropy implementation). They were further compared in terms

of Pearson correlation coefficient (r) and normalized root mean

squared error (NRMSE; normalized by the response range

FIG. 3. Distribution of fiber directional vectors within a representative brain element, where virtually identical fiber orientations were
represented by almost opposite directional vectors. It is important to first ensure consistency among the directional vectors before
averaging to compute a correct main fiber orientation.
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determined from the tractography-based global model). ROI-wise

injury metrics from the submodel were similarly assessed using

tractography sampling points and were compared with those from

the corresponding tractography-based global model.
Finally, the significance of WM fiber alignment was paramet-

rically studied. By setting the FA-dependent j values uniformly to

either 1/3 or 0 for the entire WM, two extreme cases were obtained

with either the minimum or maximum fiber reinforcement. The

same LOC impact was used to generate impact-induced strains.

Element-wise e1 and fiber sampling point-based en from the

tractography-based global model were used for this comparison.

All data analyses were performed in MATLAB (R2017b; Math-

Works, Natick, MA).

Results

Model validation. The two global models produced virtually

identical relative brain-skull displacements for the cadaveric impacts

as well as shear strains for the in vivo head rotation. Hence, only

results from the tractography-based global model were reported. For

cadaveric impacts, the anisotropic WHIM and the previous isotropic

version had an overall CS of 83.89 and 83.72, respectively, based

on the six expanded tests (details reported in Supplementary

Figs. A1–A6 and Tables A1–A7; see online supplementary material

at ftp.liebertpub.com). They were both categorized as ‘‘good’’ to

‘‘excellent’’ in validation performance according to a previously

established criterion.71

The two versions of WHIM had an overall CORA score of 0.437

and 0.421, respectively. Among head injury models that have been

validated against the five common cadaveric tests, both versions of

the WHIM ranked the highest (Table 2). Detailed validation results

are reported in the supplementary material; see online supple-

mentary material at ftp.liebertpub.com. The two versions of WHIM

had largely similar predictions of relative brain-skull displace-

ments (their CORA scores ranged from 0.66 [C383-T3] to 0.74

[C755-T2]).

Finally, validation against a live human head rotation44 is also

reported. Figure 4 shows the estimated area fractions of the radial-

circumferential shear strains above three thresholds over time.

Similarly, the time history curves were compared with the exper-

imental measurements in terms of CS and CORA. On average, the

HGO and Ogden version of WHIM had a CS of 90.01 and 89.80,

and a CORA of 0.509 and 0.448, respectively (details reported

in Supplementary Table A8; see online supplementary material

at ftp.liebertpub.com). They were categorized as ‘‘excellent’’ ac-

cording to a previous criterion.71 Figure 5 compares the estimated

shear strain patterns with the experiment.

DTI voxel- and tractography-based global models

Using coarse elements for WM ROI segmentation and brain re-

sponse sampling (i.e., e1 and en reported on an element-wise basis),

the two global models using either DTI voxels or tractography to

implement WM anisotropy had virtually identical e1 (correlation

coefficient r of 0.99, p < 0.0001; and NRMSE of 1.01%; not shown).

Their differences in en were more substantial (correlation coefficient

r dropped to 0.87 (p < 0.0001), however, and NRMSE increased to

6.56%; Fig. 6a). For ROI-wise injury metrics, peak en and uen

ROI ,

significant correlations existed between the two global models

(Fig. 6b, 6c), suggesting their concordance. Differences were also

observed, however, with r of 0.82–0.92 and NRMSE of 10.2–13.2%.

The difference was significantly correlated with their disparities in

Table 2. Summary of Worcester Head Injury Model Validation Performances Using either Anisotropic

(Holzapfel-Gasser-Ogden) or Isotropic (Ogden) Material Properties in Terms of Correlation and

Analysis Score, along with Comparisons against Five Other Head Injury Models
43

WHIM
(HGO)

WHIM
(Ogden) ABM SIMon GHBMC THUMS KTH (M-R)

KTH
(Ogden)

KTH
(HGO)

All tests Avg. 0.437
(–0.127)

0.421
(–0.096)

0.376
(–0.053)

0.354
(–0.087)

0.323
(–0.083)

0.270
(–0.052)

0.421
(–0.051)

0.374
(–0.085)

0.431
(–0.119)

Five common
tests avg.

0.411
(–0.124)

0.406
(–0.099)

0.376
(–0.053)

0.354
(–0.087)

0.323
(–0.093)

0.260
(–0.052)

N/A N/A N/A

Avg. rank 2.6 2.6 2.8 3 4.2 5.8 N/A N/A N/A

Among those having been validated against the same set of impacts (shaded), both versions of WHIM ranked the highest, although the anisotropic
version had a slightly higher average CORA score.

Note: CORA scores for ABM, SIMon, GHBMC, and THUMS were drawn from a previous study 43. For the three versions of KTH models, the scores
were calculated based on digitized reports in related publications. They were excluded in the ranking because not all of the five common tests were
selected for validation, and, for most tests, only the first 40 ms of the time history data or an incomplete set of NDTs were reported.

FIG. 4. Area fraction of the radial-circumferential shear strains exceeding three strain thresholds44 for the +2 cm axial plane shown in
Figure 5. HGO, Holzapfel-Gasser-Ogden.
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average fiber orientation (r of 0.64; p < 0.0001). This is illustrated

in Fig. 7, where an example element enclosed two DTI voxels but 158

fiber sampling points, and their resulting average fiber orientations

differed by 78.5 degrees.

In contrast, when using high-resolution MRI to define WM ROIs

and tractography (both of 1 mm3 resolution) to sample the re-

sponses, much more consistent results were obtained between the

two global models (r of nearly 1.00, p < 0.0001; all with NRMSEs

less than 2%; Fig. 8).

Tractography-based global model and submodel

Using tractography to implement WM anisotropy and to sample

the resulting responses, the submodel had largely similar en and

injury metrics compared with the global model (r of 0.98–1.00,

p < 0.0001, with NRMSE 1.81–2.31%; Fig. 9). Larger differences

in en were observed in some individual sampling points (Fig. 9a).

Significance of WM fiber alignment

The significance of WM fiber alignment was not obvious for e1,

because either the minimum or maximum fiber alignment yielded

comparable responses relative to the baseline (r of 0.99 and 0.95,

p < 0.0001, and NRMSE of 1.52% and 3.68%, respectively;

Fig. 10a, 10b). Nevertheless, the linear regression slopes of 1.01

and 0.94 for the two extreme cases, respectively, agreed with the

expected softening/stiffening effect because of the fully dispersed

or aligned WM fibers. They also suggested that the baseline model

response was closer to the fully dispersed (its corresponding re-

gression slope was closer to 1.0; Fig. 10a), which was confirmed in

the fringe plots on a resampled coronal plane (Fig. 11). This was not

surprising, because most of the WM elements had a large j value

close to its upper bound of 1/3 (Fig. 2).

Greater differences in en were observed (Fig. 10c, 10d), where

linear regression slopes against the baseline HGO model for the two

extreme cases were 1.09 and 0.81, respectively. Again, the resulting

FIG. 5. The experimentally measured radial-circumferential shear strains at 228 msec when reaching peak on four axial planes (top) in
comparison with those estimated by using the anisotropic (middle) and isotropic (bottom) versions of the Worcester Head Injury Model.
Shear strains were scaled to (-0.1, 0.1). HGO, Holzapfel-Gasser-Ogden. Color image is available online at www.liebertpub.com/neu

FIG. 6. When using coarse elements to sample and to segment the deep white matter regions of interest (ROI)s, the two global models
differed in (a) element-wise en distribution, (b) ROI-wise peak en, and (c) uen

ROI . The arrow in (a) identifies the element illustrated in
Figure 7. The identified fornix (FX) and corticospinal tract right (CST-R) had large differences in uen

ROI (0.65 vs. 0 and 0.97 vs. 0.75,
respectively). NRMSE, normalized root mean squared error; DTI. Diffusion tensor imaging.
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slopes were as expected, where lower or higher degree of WM fiber

alignment led to larger or smaller en, respectively. The fully aligned

case with the maximum fiber reinforcement lowered en in regions

with highly aligned fiber bundles such as the corpus callosum,

superior longitudinal fasciculus, and corticospinal tract right (ar-

rows in Fig. 12).

Discussion

The ultimate use of a head injury model is to facilitate reliable

prediction of brain injury in the real world. This requires accurate

model simulation as well as response sampling. While the former

is well recognized throughout the continual model development,15

the importance of the latter appeared to have been largely under-

appreciated. This is critical, nevertheless, because without accurate

response sampling, the advantage of a biofidelic model simulation

would be significantly undermined.

With the advent of advanced neuroimaging, new opportunities

emerge to further improve model biofidelity (e.g., by incorporating

WM anisotropy28) and to enhance the accuracy in response sam-

pling. In this study, we compared three competing approaches for

WM anisotropy implementation and two strategies for response

sampling. Response from the combination of higher resolution

options was treated as the baseline against which results from lower

resolution choices were compared. With one real-world LOC head

impact simulations,72 we found that the recommended imple-

mentation, sampling, and segmentation choices depended on the

response variable of interest.

For isotropic maximum principal strain (e1), injury metrics in-

cluding peak e1 and ue1

ROI were not sensitive to how WM anisotropy

was implemented, because they were virtually identical. In con-

trast, injury metrics based on direction-sensitive WM fiber strains

(en) could indeed depend on the choice of using either DTI voxels

or tractography for WM anisotropy implementation. The depen-

dency also relied, however, on how responses were sampled and

how each ROI was segmented.

Using coarse brain elements for ROI segmentation and response

sampling on an element-wise basis (element resolution of 3.3 –
0.79 mm), peak en and uen

ROI could differ significantly between the

two anisotropy implementations (NRMSE of 10.26–13.26%;

Fig. 6). This was especially true for uen

ROI , because some ROI-wise

injury metrics could differ rather significantly (e.g., 0.65 vs. 0 in the

fornix and 0.97 vs. 0.75 in the corticospinal tract right, between the

two methods). This highlighted the aggregated errors because of

finite discretization. Their differences were mainly because of the

disparities in the averaged WM fiber direction (Fig. 7), where the

FIG. 7. A representative brain element in the white region enclosing (a) two diffusion tensor imaging (DTI) voxels and (b) 158
tractography fiber sampling points, respectively. They had a substantial disparity in average fiber orientation (differed by 78.5 degrees)
that led to a large difference in en as shown in Figure 6.

FIG. 8. When using high resolution magnetic resonance imaging and tractography for response sampling, the two global models
yielded largely comparable (a) en distributions as well as (b) region of interest (ROI)-wise peak en and (c) uen

ROI in the 50 deep white
matter (WM) ROIs. Some larger differences in en occurred in the WM pontine crossing tract (PCT). The reason was that some elements
(circled in [a]) were smaller than DTI voxels and they were incorrectly treated as gray matter in the voxel-based global model (hence,
larger en magnitudes because of a reduced modulus in this area). This problem was avoided when using tractography to implement WM
anisotropy. NRMSE, normalized root mean squared error.
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substantial ‘‘down-sampling’’ with DTI voxels led to a significant

loss of information. Because en depended significantly on the fiber

orientation, the resulting injury metrics also differed significantly,

as expected.

When using higher resolution MRI voxels (isotropic resolution

of 1 mm3) to define ROIs and tractography (neighboring point pair

distance of 1 mm along the same tract) to sample the simulated

brain responses, however, the two injury metrics obtained from the

two WM anisotropy implementations became largely similar

(NRMSE was reduced to below 2%; Fig. 8). This suggested that a

higher resolution response sampling scheme was able to compen-

sate for the discretization errors resulting from coarse mesh ele-

ments in WM anisotropy implementation.

Nevertheless, tractography outperformed voxels in WM an-

isotropy implementation in local brain regions that had a refined

mesh smaller than that of the isotropic DTI voxels. For example,

20.8% (10 of 48 elements) of the WM PCT (minimum element

edge of 1.01 mm) was misclassified as gray matter by DTI voxels

(2 mm3 resolution; Fig. 8a; albeit, the two injury metrics in this

region did not differ considerably). Refining the brain mesh via

submodeling could induce relatively large differences in en pairs

(Fig. 9a). This approach, however, did not significantly affect the

two injury metrics of interest relative to the tractography-based

global model (Fig. 9b, 9c).

These observations confirmed that the mesh-image resolution

mismatch played an important role not only in the incorporation of

WM anisotropy, but also in response sampling. The observed dif-

ferences were likely to be even more substantial for other head

injury models with coarser brain meshes (e.g., *5 mm 29 and up

to 7.73 mm 18, vs. 3.3 mm here) because of a greater resolution

mismatch. Regardless, our findings suggested that a tractography-

based global model may be preferred for WM anisotropy im-

plementation to ensure correct identification of WM ROIs and to

assign their material properties accordingly. In addition, more ac-

curate injury metrics were also obtained when using neuroimages

to segment ROIs and tractography to sample brain responses.

Further increasing the brain mesh resolution via submodeling was

not necessary for the two injury metrics analyzed here.

Multi-scale submodeling

A submodeling approach was used to refine locally the brain

mesh in the deep WM regions by directly converting image voxels

into hexahedral elements. This did not cause a substantial increase

in computational cost (*40 min for 50 deep WM ROIs for a

70 msec impact simulation), compared with other globally re-

fined meshes.17,23 This approach did not significantly affect the

two injury metrics (Fig. 9). Nevertheless, the technique may be

useful to provide localized strain response state to drive a multi-

scale modeling framework to study injury mechanisms at the

micro-41,42,73 or even nano-scale.74 There, axonal geometries can

be explicitly meshed to represent the anatomical details at the ap-

propriate length scales. In addition, material properties of the dif-

ferent axonal components could also be modeled separately to

study axonal damages in the WM region. In this case, the submodel

response would provide a link between the global, macroscopic

response and the microscopic or nanoscale behavior of the axonal

composite structure. While this was not the intention of our current

study, the utility of this technique will be explored further in the

future.

Significance of WM alignment

Conflicting findings were reported on the significance of WM

alignment on regional e1 by the same group.25,31 Here, we extended

FIG. 9. Using tractography for response sampling, the global model and submodel yielded largely similar (a) en responses and the
differences further diminished for (b) peak en and (c) uen

ROI in the 50 deep white matter regions of interest. NRMSE, normalized root
mean squared error.

FIG. 10. Comparison of response distribution for element-wise
e1 in the whole white matter (WM) (a, b) and pointwise en in the
entire WM (c, d) with respect to those from the baseline, by
setting WM fiber dispersion parameter, j to either 1/3 (minimum
fiber reinforcement; a, c) or 0 (maximum reinforcement; b, d).
NRMSE, normalized root mean squared error; HGO, Holzapfel-
Gasser-Ogden.
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the earlier studies by uniformly setting j of the entire WM to two

extreme values, 1/3 and 0. Globally considering the entire WM, the

variation in j only generated subtle changes in e1 relative to the

baseline (r of 0.92–0.98 and NRMSE of 3.18–5.98%; Fig. 10 and

Fig. 11). Smaller differences were observed with the minimum fiber

alignment, suggesting that the baseline model was closer to the case of

fully dispersed WM fibers. On an element-wise basis, however, larger

or smaller e1 was both possible (points existed on both sides of the

diagonal line; Fig. 10a, 10b), suggesting the alteration in e1 magnitude

distribution because of the variation in j. Nevertheless, a direct

comparison with the previous findings was not feasible, because they

used peak strains in an element for comparison25,31 (which may ex-

plain their conflicting findings), rather than e1 distribution here.

Larger differences existed in en because of the variation in j
(Fig. 10c, 10d). Similarly, the baseline responses in en were closer to

the fully dispersed scenario when considering the entire WM. The

variation in j mostly affected ROIs with highly aligned fiber bundles

of low j values (Fig. 12), however. For example, peak en in the

corpus callosum decreased by 28.6% (from 0.21 to 0.15) when j
varied from 1/3 to 0 (minimum and maximum reinforcement, re-

spectively). Overall, these parametric investigations indeed demon-

strated the stiffening effect because of highly aligned WM fibers, as

expected. On a global scale, however, baseline e1 and en responses

were more similar to the fully dispersed cases than the other extreme

with fully aligned fibers, because the majority of WM elements had

a rather dispersed distribution with a large j value (>0.2; Fig. 2).

Model validation

Model validation is important to assess the confidence in real-

world impact simulations. Using an expanded dataset of cadaveric

head impacts43 and all of the available NDT relative displace-

ments (N = 56), both versions of the WHIM with either HGO or

Ogden material properties were categorized as ‘‘good’’ to ‘‘ex-

cellent’’ in validation according to CS.66 Using the CORA metric,

both versions of the WHIM ranked higher over SIMon, GHBMC,

THUMS, and the recent ABM that optimized the material prop-

erties to maximize CORA.43 Their CORA scores were also

comparable to those from the KTH models that limited their

evaluation to the first 50 ms in impact (vs. 100–120 ms duration

for others).

It was tempting to rank the performances of head injury models.

As recognized,43 however, the CORA scores and ranks should be

interpreted as a guideline to assess model performance, rather than

a reliable approach to pick the ‘‘best’’ model. This was important,

because a good validation against sparsely measured NDT dis-

placement time histories was not sufficient to ensure the perfor-

mance in validation against strain responses that were most

relevant to brain injury. For example, consider two perfectly

aligned sine wave displacement time histories for two hypothetical

locations alone a line. A zero strain was expected because they had

no relative displacement over time. A slight misalignment in their

phase, however, could lead to a substantial non-zero relative mo-

tion or strain. By default, the phase component of the CORA rating

had a rather low weighting factor of 0.125 (or 1/3, as re-

commended75). Therefore, the phase change could lead to a rather

high CORA score (because their magnitudes and shapes were

identical) that would erroneously suggest an excellent validation

performance.

The notion that the earlier cadaveric tests were not ‘‘totally sui-

ted’’ or ‘‘designed’’ for head injury model validation was not new, as

suggested by the same research group where cadaveric impact tests

FIG. 11. Resampled e1 on a coronal plane (a) j = 1/3 with minimum fiber alignment; (b) baseline; (c) j = 0 with maximum alignment.
e1 reports were scaled to (0, 0.5). HGO, Holzapfel-Gasser-Ogden. Color image is available online at www.liebertpub.com/neu

FIG. 12. Comparison of en in a coronal plane. (a) j = 1/3 with minimum fiber reinforcement; (b) baseline; (c) j = 0 with maximum
reinforcement. HGO, Holzapfel-Gasser-Ogden; CC, corpus callosum; SLF, superior longitudinal fasciculus; CST, corticospinal tract.
Color image is available online at www.liebertpub.com/neu
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were conducted.15 Therefore, a recent piglet brain injury study chose

to use strain, rather than displacement, for material property opti-

mization and model validation.76

For this reason, we further compared WHIM-estimated radial-

circumferential shear strains with the measurements from an in vivo

head rotation test (peak rotational acceleration of *300 rad/s2;44),

similarly to other studies.11,26,27 The above-threshold strain mag-

nitudes and strain patterns for both WHIM versions were similar to

those measured, suggesting satisfactory validation performance.

Admittedly, the in vivo data were measured far from injurious

levels. They were likely relevant, however, to subconcussive head

impacts on the sports field (e.g., 25th percentile subconcussive

rotational acceleration peak 531–682 rad/s2 in collegiate foot-

ball,77 which was on the same order of the in vivo data). There-

fore, validating a head injury model at both ends of the head

impact severity spectrum may improve the confidence of model

performance in a range of head impacts relevant to concussion

and sub-concussion.45 This was important, given the growing

concern on the cumulative effects from repeated subconcussive

head impacts.13,78

Averaged brain strains do exist for high-rate cadaveric impacts,68

which were used to validate the KTH model.29 They were calculated

based on a triad using the measured brain-skull displacements as

input via finite element modeling. The reported strain magnitudes

(mostly *2% in maximum principal strain and shear strain) were

similar to the in vivo shear strains44). The two sets of experiments,

however, differed greatly in peak rotational acceleration (7.0–

26.3 krad/s2 vs. *300 krad/s2). Therefore, their similar strain levels,

in fact, suggested substantial inconsistencies between the two data-

sets. For this reason, the regional average strain data from cadaveric

impacts were not used for validation in our study.

Model sophistication vs. validation and injury prediction
performances

With the ever-growing sophistication in head injury models, it is

desirable that this is accompanied by improved model validation

and/or injury prediction performances as well. An objective con-

clusion may not be trivial, however. For model validation, the

current experimental data from the cadaveric impacts and in vivo

brain biomechanics may not be sufficient to discriminate two head

injury models (as similarly found in other work18,29), particularly

given their inherent limitations in model validation as noted re-

cently.45 The two versions of the WHIM (i.e., isotropic and the

HGO material properties of the brain, respectively) had largely

comparable CORA scores based on the cadaveric impacts (Table 2)

and similar patterns and magnitudes of shear strains when simu-

lating in vivo head rotation (Fig. 5). It was difficult to ascertain

which one was more ‘‘biofidelic,’’ despite some observed differ-

ences (Supplementary Figs. A1-A6 and Fig. 4).

Because the validation performance metric alone is likely in-

sufficient to reliably evaluate the quality of a head injury model, it

is necessary to assess the injury prediction performance as a sep-

arate measure to justify the increased model sophistication. Based

on the reconstructed American National Football League head

impacts,79 one study suggests that fiber strain, after incorporating

WM anisotropy, improves injury prediction performance.29 Similar

to others,19,35,36 however, this study only reported a ‘‘training’’

rather than a ‘‘cross-validation’’ performance.34 This prevented an

objective evaluation. Further, the injury dataset is known to have

significantly undersampled the noninjury cases and may not reflect

the actual distribution of head impacts in the real world (e.g., col-

legiate football head impacts on the sports field77,80). Finally, only

one impact was reconstructed for each selected athlete, and no

cumulative effects from repeated head impacts were considered

that are now thought to be important.13,78.

Thus, although WM anisotropy was important to brain re-

sponses,18,25–27 no objective conclusion could be made here that the

added model sophistication indeed improved validation and/or in-

jury prediction performances. This requires further work and

better-quality datasets for an objective evaluation.45 Nevertheless,

the recommended approaches identified here for WM anisotropy

implementation, subsequent response sampling, and region seg-

mentation may facilitate future investigations along this line of

research.

Other limitations and further thoughts

Because WM structural anisotropy was only integrated into head

injury models relatively recently, there were other limitations

worthy of note. For the HGO model adopted here, its hyper-

elasticity was limited to a Neo-Hookean model in Abaqus, which

may not provide reliable nonlinear behavior along the transverse

direction.81 In addition, its viscoelasticity was also limited to

isotropy.32 The voxel- and tractography-based approaches treated

elements near the gray and white matter junction (with FA <0.2)

differently—either as WM or as gray matter because of the way

tractography was created37,64 (Fig. 2). It was unclear, however,

which approach was more ‘‘biofidelic.’’

There were other inconsistencies in how WM anisotropy was

implemented. For example, using the HGO model, the fiber rein-

forcement parameter, k1, was chosen here according to a high-rate

study (25 s-1; G0=k1 of 0.10550), because this was related to ‘‘mild

injury.’’25,63 Other studies26,27 relied on a low-rate study (0.01 s-1;82),

however, where the much higher ratio of G1=k1 (value of 2.36

according to26) suggested little fiber reinforcement (confirmed, but

not shown here). In contrast, using a Puso-Weiss model, another

study determined fiber stiffness in large and small strains using both

tests accordingly.83 In addition, some studies assigned a nonzero k1

to the gray matter,26,31 which would artificially induce reinforce-

ment in this well-known isotropic region. Hence, we chose to set k1

to zero in the gray matter instead.27 Similarly, some studies used a

continuous, FA-dependent dispersion parameter, j,26,27 while oth-

ers,25 including our work here, discretized its values (which led to a

significant reduction in simulation runtime). Most studies also in-

corporated j by nonlinearly fitting the FA values, while one study

directly multiplied FA values into the constitutive equation without

fitting.18 Further, we showed that it was important to ensure fiber

orientation consistency before averaging (Fig. 3), which appears to

have been neglected in previous studies.

Finally, our current implementation of WM anisotropy relies

on discretization of information from WM fiber tracts. However,

it is possible to maintain continuous fiber tracts in the model via

an embedded method 84 or the submodeling technique presented

here. This will be explored in the future.

These limitations and implementation inconsistencies may pose

challenges in comparing injury findings across head injury mod-

els.85 Nevertheless, by using consistent approaches, it reduces in-

consistency and would facilitate future brain injury studies.

Conclusion

Based on results from one recorded LOC head impact, we found

that using tractography was preferred to implement WM anisotropy

and response sampling to maximize model simulation accuracy.
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Considering the entire WM regions, the brain is closer to fully

dispersed (vs. aligned) WM fiber bundles. Both the previous

WHIM and the current version incorporating WM anisotropy had

comparable model validation performances, because both were

categorized as ‘‘good’’ to ‘‘excellent’’ in validation against ca-

daveric impacts and in vivo brain biomechanics data. Further work

and better-quality datasets are still necessary, however, to conclude

that the incorporation of WM anisotropy indeed improves model

validation and/or injury prediction performances.
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