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Identifying functional enhancer elements in metazoan systems is a
major challenge. Large-scale validation of enhancers predicted by
ENCODE reveal false-positive rates of at least 70%. We used the
pregrastrula-patterning network of Drosophila melanogaster to
demonstrate that loss in accuracy in held-out data results from
heterogeneity of functional signatures in enhancer elements. We
show that at least two classes of enhancers are active during early
Drosophila embryogenesis and that by focusing on a single, rela-
tively homogeneous class of elements, greater than 98% predic-
tion accuracy can be achieved in a balanced, completely held-out
test set. The class of well-predicted elements is composed predom-
inantly of enhancers driving multistage segmentation patterns,
which we designate segmentation driving enhancers (SDE). Pre-
diction is driven by the DNA occupancy of early developmental
transcription factors, with almost no additional power derived
from histone modifications. We further show that improved accu-
racy is not a property of a particular prediction method: after
conditioning on the SDE set, naïve Bayes and logistic regression
perform as well as more sophisticated tools. Applying this method
to a genome-wide scan, we predict 1,640 SDEs that cover 1.6% of
the genome. An analysis of 32 SDEs using whole-mount embryonic
imaging of stably integrated reporter constructs chosen throughout
our prediction rank-list showed >90% drove expression patterns.
We achieved 86.7% precision on a genome-wide scan, with an
estimated recall of at least 98%, indicating high accuracy and com-
pleteness in annotating this class of functional elements.
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Enhancers are ∼100- to 1,000-bp cis-regulatory elements that
direct spatial and temporal pattern transcription in meta-

zoans. Definitive epigenetic signatures of enhancer elements
have been challenging to identify. A number of computational
tools have been developed to predict enhancer elements from
chromatin state and transcription factor in vivo DNA binding
information (1–12). Tools that attempt to measure predictive
accuracy using only indirect evidence of enhancer activity [e.g.,
enrichment in H3K27 acetylation (H3K27ac) or histone acetyl-
transferase p300 (EP300)] often display excellent accuracy by
these limited criteria (1, 3, 13, 14). When algorithms are
benchmarked on held-out in vivo tests of functional enhancer
activity, however, positive predictive power on genome-wide
scans in metazoan systems has been lower than expected. In
most cases, precision does not exceed 40% (13–15). However, by
targeting transcription factors (TF) that function in a specific
biological process, a higher precision of 56% was achieved in a
randomly selected validation sample through transient trans-
fection (16). Higher precision has also been reported when tests
were confined to the top of the prediction rank list (17), but such
numbers are unlikely to represent the precision of the prediction
set as a whole.

There are several possible explanations for the relatively low
accuracy of current enhancer prediction algorithms. The tran-
sient in vivo enhancer assays often employed to test predictions
may suffer a high false-negative rate due to the loss of local
chromatin context. Alternatively, the data provided to the pre-
diction algorithms might be insufficient. Features such as
H3K27ac and EP300 can partially distinguish active enhancers
(18, 19), but it remains unclear whether any chromatin mark or
combination of chromatin marks and EP300 uniquely identifies
enhancers among all sequences in a genome (16, 20). Indeed,
enhancers that lack H3K27ac yet have patterns of DNA hyper-
methylation are essential during early vertebrate development
(21). Hence, there may be more than a single class of genomic
element that drives patterned expression or, more precisely, the
term “enhancer” may encapsulate a mechanistically diverse class
of functional elements. TF occupancy is a better predictor of
enhancer activity than canonical chromatin marks (including
H3K27ac, H3K4me1, and H3K4me3) in mouse and humans
(16). Thus, mechanistic subtypes of functional enhancer ele-
ments may emerge from distinct patterns of TF occupancy and
chromatin context.
To test the possibility that heterogeneity among enhancers is a

major reason for the difficulty in predicting enhancers, we have
exploited the pregastrula Drosophila embryo network. A cohort
of ∼30 spatially patterned TFs drive body patterning in concert
with another 30 or so ubiquitously expressed sequence-specific
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TFs (22–32). Embryonic patterning is established along the an-
terior–posterior (A-P) axis and dorsal–ventral (D-V) axis by two
separate sets of maternally deposited TFs. Over a 90-min pe-
riod corresponding to developmental stages 4 and 5, these
proteins act in concert with zygotically expressed A-P and D-V
TFs to refine initially broad patterns of transcription into nar-
rower striped patterns that define the basic segmental body
plan of the fruit fly (33). The pregastrula fly network is thus a
particularly well-defined model system for studying the re-
lationship between TF DNA binding and spatially patterned
enhancer activity.
We have tested the utility of a wide range of data for pre-

dicting enhancers, including in vivo DNA binding patterns for
22 pregastrula TFs, a variety chromatin marks, evolutionary
conservation, whole-embryo mRNA sequencing (mRNA-seq),
and RNA polymerase II (Pol II) location. Using a test set of
nearly 8,000 genomic regions whose enhancer activity had been
determined in transgenic assays in whole embryos (34, 35), we
applied supervised machine learning to identify enhancer se-
quences active in pregastrula embryos. Verified enhancers were
separated into two approximately equally sized groups based on
the reproducibility with which they were correctly predicted in
multiple runs of a random forest (RF). A model trained using
the set of enhancers that were reproducibly classified correctly
has >98% predictive accuracy when tested on a balanced set of
known enhancer positive and negative genomic regions. In
contrast, the other set of training enhancers generated models
that predicted no better than random. Subsequent analyses
revealed that the well-predicted class of enhancers are near
genes that show a strong tendency to be involved in controlling
segmentation and other developmental processes, and to be
expressed in many cells of the embryo. The poorly predicted
enhancers are without obvious ties to the control of segmenta-
tion and tend to be expressed in less than 15% of cells. By fo-
cusing on the well-predicted class of enhancers, which we term
segmentation-driving enhancers (SDEs), we find that TF DNA
binding is highly predictive, whereas histone modifications and
the remaining features tested have little or no additional predictive
power.
In a de novo, genome-wide prediction, we predict ∼1,640

SDEs in the early embryo that cover 1.6% of the euchromatic
genome. As validated by an in vivo transgenic reporter gene
assay, this set is predicted with 98% estimated recall and 95%
precision, as validated in an in vivo transgenic assay. Unlike
most previous studies, we concentrated validation away from
the top of our rank list to increase the likelihood of identifying
false-positives and to improve our power to compute accurate
error rates. Importantly, we show that our model performance
is driven by the need to treat SDEs separately from other en-
hancer elements, rather than the properties of a specific com-
putational method: naïve Bayes and logistic regression perform
as well as more complex models after conditioning on the SDE
set. This demonstrates the prediction of a specific class of en-
hancers with sufficient precision to enable their identification
genome-wide.

Results
Data, Feature, and Feature Selection. Transgenic reporter data for
enhancer activity in Drosophila embryos were combined from
two sources. Kvon et al. (34) conducted a semiautomated screen
of the reporter gene-expression patterns driven by 7,705 genomic
regions (enhancers.starklab.org/) at multiple stages throughout
embryogenesis. While this high-throughput assay allowed an
unprecedented number of genomic areas to be tested, the small
number of embryos per collection plate led to increased mis-
classifications in the data. The activity of an additional 282 ge-
nomic segments was determined by the Berkeley Drosophila
Transcription Network Project (BDTNP) (35). Altogether,

7,987 genomic regions were examined and 731 were experi-
mentally found to drive reporter gene expression in Drosophila
embryonic stages 4–6 (36) (Dataset S1). By manually comparing
the activity of overlapping genomic regions in the BDTNP da-
tabase with the larger data from Kvon et al. (34), we estimate a
10% false-negative rate in the latter.
Features used in the initial model included ChIP-chip data for

20 of the TFs that pattern transcription along the A-P and D-V
axes of the embryo (37–39), chromatin immunoprecipitation-
sequencing (ChIP-seq) data for the ubiquitous TFs Zelda
(ZLD) and Zeste (Z), 45 chromatin proteins and histone mod-
ifications (40), DNase accessibility data (41–43), and evolution-
ary conservation scores (44–46). Also considered were the
presence of: bidirectional RNA transcripts, exon and intron
coverage, distance to RNA Polymerase II ChIP-chip binding peaks,
and distance to transcription start sites. A summarized list of fea-
tures is presented in Table 1. For a full list and description, see
SI Appendix, Table S1 and Materials and Methods, respectively.
With these data we trained and tested RF, a supervised

machine-learning approach based on an ensemble of decision
trees (47–49). To reduce parameter number and prevent over-
fitting, we culled input features (Materials and Methods). We
found that TFs and histone modification data were sufficient to
minimize the error rate. We note that DNase accessibility did not
contribute to RF predictive power in the presence of TF binding
data, nor did it significantly improve performance in the presence
of histone data, and it adds only modest predictive power when it is
used as the sole feature for prediction (SI Appendix, Fig. S1).
Conservation scores (Materials and Methods) did not contribute to
the predictive power in any fitted model, and the error rate utilizing
solely conservation scores was ∼50%, suggesting that conservation is
not a distinguishing feature of enhancers in the Drosophila embryo
in the absence of other genomic context.

Heterogeneity Among Enhancer Elements.With our optimal feature
set, our error rate in a single forest as defined by misclassification
was nearly 30%. The performance of the forest voting proba-
bilities as indicated by the area under the receiver operating
characteristic (ROC) curve, AUC = 0.82 (Fig. 1A), is very similar
to that in previously published work (16, 17), implying a similarly
modest success rate. However, while this overall predictive
power falls short of that required for predicting enhancers
genome-wide, we noticed that some enhancers were consistently
correctly classified while others were consistently misclassified.
Hypothesizing that the model’s poor performance may be due to
heterogeneity in the enhancer set, enhancers were separated into
two classes. Class I contained the 358 enhancer segments that
were correctly classified at least 75% of the time and class II
contained the 373 that were not. When class II enhancers were
excluded from the test sample, the single forest error rate drops
to ∼3%, and the area under the ROC curve is ∼0.99 (Fig. 1A).
When class I enhancers were excluded from the test sample in-
stead, errors of a single forest are ∼40%, and the ROC curve
indicated performance only marginally better than random
guessing (Fig. 1A). To establish that enhancer heterogeneity is
data-driven and not an artifact of our choice of method, logistic
regression and naïve Bayes models of the data were also con-
structed. In both cases the removal of the class II enhancer set
significantly improves the model’s predictive power (Fig. 1A).
Interestingly, the effect of retaining and removing class I and
class II enhancers appears to have almost identical effect on
recall regardless of the method, and indeed the ROC curves are
nearly overlapping (Fig. 1A). This is particularly noteworthy as
the underlying assumption of both models—primarily, feature
additivity and independence—are unlikely to be present in the
data, yet both perform as well as RFs, which do not require such
assumptions. Precision-recall (PR) curves also show that logistic
regression performance closely matches that of RFs, although
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naïve Bayes precision is poor (SI Appendix, Fig. S2). In all cases
accounting for heterogeneity increases precision significantly.
When a nonenhancer set is purged of a later-stage enhancer, the
PR curve for RF has an AUC > 0.95, demonstrating extremely
high sensitivity in the data.
This separation by the model can be understood by principal

component analysis (PCA) (Fig. 1C): class II enhancers are
collocated with nonenhancers while class I enhancers are sepa-
rated from both. Examination of feature space statistics of the
three groups shows that class II enhancers are indistinguishable
from nonenhancers along our entire feature space—TF DNA
binding, histone marks, conservation, and DNase accessibility—
while class I enhancers segregated from both by multiple fea-
tures. The separation is most notable in TF DNA binding and
DNase accessibility profiles (Fig. 1B and SI Appendix, Fig. S3),

where class I enhancers consistently have higher ChIP scores and
are more accessible in whole-embryo average data. This indicates
a possible reason and mechanism for the separation of the two
classes and shows that RFs can be readily used to separate
heterogeneous enhancer sets.
Excluding class II enhancers from the sampled training set

gives us unprecedented prediction accuracy. On a balanced held-
out test set, built from genome regions that prior studies sug-
gested half were enhancers and half were nonfunctional, more
than 98% of class I enhancers are discovered by our algorithm
with better than 95% precision. This model would have much
lower accuracy if used to predict enhancers genome-wide, how-
ever. As one moves away from a balanced test set by adding a
more realistic number of inactive genomic regions, the false-
positive rate in the test set will increase.
To demonstrate this point, RFs were trained on a balanced set

and then tested on a series of increasingly imbalanced test sets at
various degrees of stringency (Fig. 2A). The false-positive rate
for test sets increases sharply as either the fraction of non-
enhancers in the test set increases or as the accuracy of the
model—defined during training—increases. This can also be
seen in 2D plots of the same analysis (Fig. 2 B and C): unless the
sample is very close to a 50%/50% balance, the rise in the false-
discovery rate (FDR) in the test set is extremely sharp. Con-
versely, in genomic scans where nonenhancer regions are at least
a 100-fold more prevalent, a precision considerably better then
95% during training (measured out of bag) (Materials and
Methods) is needed to achieve a 75% FDR in the test.
In the dataset of Kvon et al. (34) there are 20 times more

annotated nonenhancers than enhancer elements. In randomly
drawn test sets with only 5% true enhancers, we find that our
fitted model recovers 90% of enhancers with 60% precision.
However, our prediction accuracy is likely considerably higher
than this analysis implies due to an abundance of false-negatives
in the high-throughput Kvon et al. (34) annotations. Manual
reexamination of their reporter gene-expression image data for
the 100 genomic regions that our method most highly predicted
to be enhancers, but which were reported as nonenhancers,
revealed that only 15 were true nonenhancers, 47 were clearly
enhancers, and the remainder could not be classified due to in-
sufficient data, specifically the lack of embryos of the appropri-
ate stage in the high-throughput images (Fig. 3C).

Genome-Wide Analysis to Identify Active Enhancers in the Early
Embryo. Given the high accuracy of the model on our training
and held-out datasets, a genome-wide search for class I en-
hancers was feasible. RF was therefore used to predict enhancer
probability on a computationally segmented genome (Materials
and Methods). More than 82% of all segments had less than
0.01 probability of being enhancer, and more than 93% had less
than 0.1 probability (Fig. 4A). While it is challenging to see
initially as the histogram is dominated by a peak between
probabilities 0 and 0.01, the histogram is in fact bimodal (Fig. 4A,
Inset), with a secondary peak around P = 0.95. To call enhancers
a threshold of P > 0.75 was established that covers ∼1.6% of the

Table 1. Summary of features used for prediction

Category Features included

Histone and histone modifications H3, H3K18ac, H3K27ac, H3K27me3, H3K36me3, H3K4me1,
H3K4me3, H3K9ac, H4K5ac, H4K8ac

AP regulatory transcription on factors BCD, CAD, GT, HB, KNI, KR, HKB, TLL, D, FTZ, PRD, RUN, SLP
DV regulatory transcription on Factors DA, DL, MAD, MED SHN, SNA, TWI
Ubiquitous transcription on factors Z, ZLD, sum of all transcription factor scores
DNA data Conservation, DNA accessibility, distance to Pol. II, distance to TSS,

bidirectional-RNA transcription
Exon/intron data Exons, coding exons and introns coverage/presence
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Fig. 1. (A) RF ROC curves for the complete dataset of 7,987 previously validated
genomic regions (blue) shows mediocre performance, with an AUC of 0.83.
When only class I enhancers and nonenhancers are used for training, the pre-
dictive power rises sharply, AUC of 0.99 (yellow). When only class II enhancers
and nonenhancers are used, the result is close to a random guess (gray). When
predicting the class I enhancer set the ROC curves for RFs, logistic regression, and
a naïve Bayes classifier are nearly overlapping. (B) This can be explained by the
colocalization of class II enhancers and nonenhancers in a PCA projection. (C)
The separation is mainly driven by TFs as exemplified by the normalized ChiP
strength across features of 200 randomly selected class I and class II enhancers.
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genome and rediscovers de novo 98% of the training set. Of the
1,640 class I enhancers predicted, 1,174 do not overlap with
training data, 364 overlap known cis-regulatory modules identi-
fied in a database of enhancers discovered in other studies,
REDfly (50–52); and 822 are completely novel. The predic-
tion list can be viewed at genome.ucsc.edu/cgi-bin/hgTracks?
db=dm3&hubUrl=https://sina.lbl.gov/seqdata/ucsc/Enhancer-
Prediction/hub.txt (53) and Dataset S2).

Validation of Predicted Enhancer Set in New Experiments. To vali-
date the prediction precision, an in vivo reporter expression-
driving test was conducted. Five, 11, and 17 genomic regions
were selected with probability scores corresponding to estimated
(cross-validation) FDRs of 4%, 25%, and 50%, respectively. We
test down the rank list to enable estimation of the overall FDR of
the entire set of predicted enhancers, not just the top predic-
tions. Test regions were cloned into the pBPGUW expression
vector, then injected into flies using the attP integration system
(54) (SI Appendix, Table S2). All but three of the enhancers,
including all but two of those predicted to be in the 50% FDR
region, were found to be enhancers (Fig. 4 B–F and SI Appendix,
Fig. S4). We thus needed to adjust our FDR estimation; as-
suming a Poisson distribution we obtained a maximum likeli-
hood estimate (MLE) of 12.5% FDR at our previously cross-
validation–based 50% FDR threshold (Materials and Methods).
For our entire collection of 1,640 predicted class I enhancers, we
estimate an overall FDR of 13.58%.
An interesting example and validation for the use of tran-

scription factors to separate proximal enhancers (Materials and
Methods) can be seen in two predicted segments (CEP01219 and
CEP01220) proximal to the comm2 gene (Fig. 4J). comm2 en-
codes an important protein required for proper axon guidance
across the embryonic midline (55, 56). The two predicted enhancer-

combined expression patterns (Fig. 4 G and H) match the more
complicated expression pattern of comm2 (Fig. 4J).

Segmentation Driving Enhancers. We next sought to understand if
the separation of the enhancers into two classes in our feature
space is related to their biology. In a detailed quantification of
images of embryonic reporter gene-expression patterns for
85 randomly selected class I and 82 randomly selected class II
enhancers, class II enhancers tend to be expressed in a smaller
percent of nuclei. Of class II enhancers, 74% are expressed
in ≤15% of cells versus only 33% of class I (SI Appendix, Fig. S3).
While separation by this criterion is not complete, it is unlikely
that these differences in expression are due to chance (P < 10−7).
In addition, we find that class I enhancers are more likely to
remain active throughout embryogenesis and show a significant
enrichment for the expression in A-P stripes, posterior, or gap
gene-like patterns (P < 10−4). Gene ontology (GO)-term analysis
of the genes proximal to class I enhancers also showed a highly
significant enrichment of terms related to segmentation (Fig. 5),
while those of class II enhancers showed much lower enrichment
for any GO terms and no significant enrichment for any particular
pathway (Fig. 5). We therefore hypothesize that class I enhancers
are likely to drive expression patterns needed for establishing the
segmented body plan. We thus term class I and class II enhancers
SDEs and non-SDEs respectively. We note that while the differ-
ences between these two classes are significant, there is not a clear
separation in function because a minority of non-SDE direct
patterns of expression resemble those of SDEs (Fig. 3 A and B).

Feature Importance Is Dominated by TFs. The RF importance
measures “mean decrease accuracy” and “mean decrease Gini”
(49) varied between bootstrap repetitions, but in all cases a small
set of TFs were found near the top of the importance ranking
list. This can be seen by the spread of the bootstrap confidence
interval of these two importance measures calculated in
50,000 trees (Fig. 6A and SI Appendix, Fig. S5A). ChIP binding
scores for several TFs (KR, MED, TWI, DL, D) were among the
most important predictors by both measures (SI Appendix, Fig.
S5B). The sum of all TF binding scores, or TFsum, was also an
important predictor. Other TFs, such as BCD and FTZ (33),
were uninformative despite their importance for embryo seg-
mentation. This can be at least partially explained by low cov-
erage in the ChIP-chip data, as there is a clear correlation (r =
0.7) between coverage and importance measure (SI Appendix,
Fig. S6A). The only histone mark to have an importance above
random noise was H3K4 monomethylation (H3K4me1). The
histone and histone modifications we measured, including
H3K27ac, which has been widely regarded as a key indicator of
enhancer regions (18, 57), were found uninformative by the
model in the presence of the TF data.

Localized Feature-Importance Measures Support Two-Class Structure.
RF’s “local importance” (49) is a third measure that provides a
detailed determination of the importance of each feature in
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Fig. 3. Examples of reporter gene-expression patterns driven by (A) class I
enhancers, (B) class II enhancers, and (C) genome regions misclassified by
Kvon et al. (34) as nonenhancers in stages 4–6. Magnification is 20× and the
embyos are 0.5 mm in length on average.
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classifying each instance, allowing a more direct understanding
on the RF decision-making process (Fig. 6 B–F). This measure
shows that the same small set of features are used to distinguish
SDE and nonenhancers (Fig. 6B) as are used to distinguish SDEs
from non-SDEs (Fig. 6C), while an attempt to separate non-
SDEs and nonenhancers (Fig. 6D) shows that no variable can
consistently be used and that many more parameters are
employed. The increase in features used and the blurring of
decision criteria is also seen when non-SDEs are presented to
RF as enhancers (Fig. 6E) rather than as nonenhancers (Fig. 6F).
Spectral clustering is a technique that relies on the eigenvectors
of the similarity matrix or the Laplacian thereof, usually followed
by k-nearest neighbors or k-means clustering (58). It is an effi-
cient way of dimension reduction, and the number of clusters in
the data can often be inferred by the eigenvalues. Applying
spectral clustering to an affinity matrix computed from the local
importance values (seventh-nearest neighbor of a Euclidian
distance matrix calculated with a Gaussian kernel) yields a good
separation of the data, however, with a sharp jump after the
second eigenvalue (SI Appendix, Fig. S6B), consistent with the
presence of a two-class structure.

Discussion
The identification of enhancer elements from genomics data has
remained a challenging problem, in part due to the relative
scarcity of enhancers in genome sequences versus nonenhancer
sequences. As illustrated in Fig. 2, even an incisive enhancer
prediction algorithm fitted on balanced training data (i.e., a
training set with nearly equal numbers of positive and negative
elements) is likely to generate high FDRs when tested on a
genome-wide scan. Hence, to accurately discover enhancer ele-
ments using in silico techniques, extremely high-fidelity models
are needed.
Although high-precision predictions were reported previously,

the validation methods and measures used in the literature
varied greatly. Many papers defined success as the colocation of
data for epigenetic marks, such as EP300 and H3K27ac, but it is
yet to be established that these marks are exclusive to enhancers
or that all enhancers possess them. Indeed, we report here a class
of H3K27ac-free enhancers (SI Appendix, Table S3). Other re-
ports tested for functional enhancer activity of genomics regions
from the top of a rank list (17), which gives a biased estimate of
the overall prediction accuracy. We suggest that precision must
be measured by testing throughout the prediction rank list to
establish a uniform, unbiased measure of success for entire
prediction sets.
We found that the prediction of enhancer elements en masse

was vexed by heterogeneity among enhancer elements. For about
half of previously validated enhancer elements, strong TF in vivo
DNA binding signals for multiple factors is indicative of en-
hancer activity. The remaining half of validated elements is
typically bound more weakly by fewer TFs (Fig. 1B and SI Ap-
pendix, Fig. S1). For this latter set, the residual TF binding signal
is only weakly associated with enhancer activity. That is, a pre-
diction engine that works extremely well on one class tends to fail
on the other. We posit that this challenge—heterogeneity in el-
ement classes—is a widespread and foundational challenge in
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genomics. For example, the emerging literature on “chromatin
priming elements” (59) demonstrates the existence of “enhancer-
like” functional elements that, while they share chromatin struc-
ture and similar patterns of TF occupancies with enhancers, do
not themselves drive patterned expression; rather, they establish
chromatin context that subsequently gives rise to enhancer activity
for proximal elements. It may be that the class of elements we
presently denote “enhancers” is in fact diverse, admitting elements
that exert regulatory effects through a variety of underlying mo-
lecular mechanisms. Indeed, it remains unclear what fraction
of enhancers require eRNAs for their activity (59), or whether
priming elements are transcribed like many enhancers.
It may also be that the non-SDEs or class II enhancers we

studied here are simply regulated by cohorts of TFs we have yet

to survey. These enhancers, however, are often expressed in a
smaller fraction of the embryo than SDEs and have lower whole-
embryo average DNase I-seq and TF ChIP binding scores (SI
Appendix, Fig. S1), consistent with them being accessible in only
a small subset of cells. This would thus make non-SDEs less
amenable to interrogation through whole-animal ChIP-seq. The
differences between the two enhancer classes are statistical, al-
though not categorical. While there is a significant enrichment in
segmentation GO-terms in SDEs compared with non-SDEs,
some non-SDEs also display segmentally repeating expression
patterns similar to those of SDEs, and many (20%) show activity
above the 15% expression area threshold. Finally, 8.5% of non-
SDEs were active in as much or more of the embryo as the median
for SDEs.
Our validation assays revealed that cross-validation had led to

significant overestimation of the FDR for SDEs. We attribute
this to an abundance of false-negatives in our training set as our
analysis indicated that ∼10% of negatives are erroneously la-
beled, which would double the number of positives and explain
the significant increase in validated FDRs we observed. An al-
ternative explanation for the discrepancy is selection bias in our
training set as the genomic regions tested in the previous studies
were not selected at random. Thus, it is possible that there is a
stronger separation of features when the complete set of geno-
mic enhancers is considered. Overall, we recover 98% of the
training-set SDEs with an estimated FDR of less than 15%, in-
dicating that our genome-wide predicted catalog of these ele-
ments may be close to comprehensive. Further experiments,
particularly concentrated at high FDRs, are needed to better
assess the boundary between functional and nonfunctional ele-
ments. It will also be important to assess the impact of the
minimal promoter elements selected for these screens to study
promoter–enhancer interactions, as was recently done in Arnold
et al. (60), who found that different minimal promoters respond
differently to the same enhancer elements. It may be that many
of our remaining false-positives are in fact false-negatives in the
enhancer screens due to mismatch between the putative en-
hancer element and our minimal promoter. At this time, it ap-
pears that at least 1,600 elements, composing more than 1.6% of
the Drosophila genome, are involved in establishing early body
patterning in the blastoderm.

Materials and Methods
Data Acquisition and Processing: TF Binding Data and Pol II Data. Twenty-five
percent of FDR Transcription factor ChIP-chip data were taken from the
Drosophila TF network project (available at genome.ucsc.edu/cgi-bin/
hgTracks?db=dm3&lastVirtModeType=default&lastVirtModeExtraState=
&virtModeType=default&virtMode=0&nonVirtPosition=&position=chr2L
%3A826001-851000&hgsid=699690721_K8EWMPlLw7903qNMAaAq-
fOfBnHcn), containing data for 22 transcription factors: BCD, CAD, D,
DA, DL, FTZ, GT, H, HB, HKB, KNI, KR, MAD, MED, PRD, RUN, SHN, SLP, SNA,
TLL, TWI, Z, some with biological duplicates to give 34 tracks. Of FDR ChiP-
chip data for Pol II binding, 1% was also taken from BDTNP (37–39).

Data Acquisition and Processing: Histone Data. Histone modification and ZLD
ChIP-seq data were retrieved from the University of California, Santa Cruz
(UCSC) genome browser track provided by Li et al. (40). Histone modifications
data collected in the Zld mutant strain were not used; all other tracks were
included in the analysis.

DNase Accessibility, Conservation Scores, and Gene Annotations. DNase ac-
cessibility data and 12-fly conservation phastCons scores were obtained from
the UCSC genome browser (61, 62) and conservation scores were computed
as the maximum of the mean conservation score over 200-nt windows across
the element. Note that the study was repeated varying the window size
from 1 nt (simple maximum over the enhancer) to 300 nt (in 50-nt steps), but
our analysis was insensitive to how the conservation data were processed.
Conservation scores did not constitute an important predictor under any
scoring protocol that we attempted. FlyBase gene data for exon, coding
exons, and intron location data (63) we also downloaded from the UCSC.
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Bidirectional RNA transcript data were obtained from Nechaev et al. (64)
and analyzed as described in Andersson et al. (65). The transcription start site
(TSS) was taken as the start of the first exon in FlyBase’s mRNA data,
described above.

Defining Predictors. Although 80% of the DNA segments in the training set
were between 2- and 2.5-kb long, segment sizes varied from 100 bp to 4.5 kb
in the set, and the percent of enhancer region contained by each segment is
unknown, making averages a biased estimator. Thus, the maximum of ChiP
data were calculated over every segment in the training set and the seg-
mented genome using bedtools and the UCSC genome browser utilities for TF
data, histones, conservation score, and DNase accessibility. In addition, the
sum of TF biological replicas and the sum of all TF tracks was also calculated
and included as features in the model. In addition to the maximum score, for
ZLD higher-resolution ChiP-seq data and for the conservation phastCons
conservation scores we also calculated the average over the segment,
maximal score over a sliding window of 200, 500, and 1000 bp, and the
longest continuous stretch of scores above the 0.85 quantile. For the gene
data, bedtools coverage was used to calculate percent of segment covered by
exons, coding exons, or introns and three binary tracks indicate the presence
or absence of intron and exons. Bedtools was used to calculate distance to
the closest TSS and to pol II binding peak.

Modeling. RFs were modeled in R (66) using RandomForest (48). Initial
feature-set culling was done through error rates average of 1,000 forests of
500 trees when excluding/adding one feature at a time. Our training data
are highly unbalanced, with only 10% of segments being enhancers. To
improve RF performance, balanced samples were used as a training set. To
improve stability of the prediction, and counteract the sampling process
employed by balancing the training set, we relied on forest voting. One-
thousand forests of 50 trees each were trained on randomly selected sets of
300 enhancer and 300 nonenhancers with 10% of the data held out of the
samples and used as test sets. Then we estimated the probability that a given
segment will function as an enhancer in our assay as the fraction of trees
predicting that the segment is an enhancer. This was repeated until such
score was computed for each segment in the set. The same sampling and
testing scheme was employed for logistic regression and naïve Bayes (67).

Importance measures varied from sample to sample and averages required
10,000 forests of 50 trees to converge. To increase stability of the importance
measure, the average of 50,000 RFs mean decrease in accuracy and mean de-
crease in Gini index were used to find the importance RF confidence intervals.
For local importance calculations, we used a single forest of 50,000 trees pro-
duced using all enhancers and a balanced nonenhancer subsample.

Analyses. ROC curve areas were calculated with R package PRROC (68). PCA
was done using prcomp (66). GO term analysis used bedtools (69) to find
FlyBase genes located inside training enhancer regions, or to identify the
closest genes if none are overlapping. The DAVID bioinformatics resource
(70, 71) was used to find and quantify GO term and GO-term enrichment,
with the full set of ∼8,000 genomic regions as the genomic background. To
find the Affinity matrix of the data, we converted Euclidian distance into a
similarity matrix, and calculated seven nearest neighbors for each segment.
Spectral clustering and eigenvalue extraction was done using kknn (72) with
default settings. We used a masked strategy to assess expression size and
pattern on an unannotated randomly ordered set of both enhancer classes.

Genome-Wide Prediction. A sliding window of 1,000 bp with 100-bp distance
was used to create overlapping bins across the entire Drosophila genome. As
above, we used an ensemble of RFs (1,000 forests each composed of
500 trees) trained on SDE and nonenhancers only. As above, training sets
included a random sample of 300 SDEs and 300 nonenhancers. We then
generated genome-wide predictions as follows: for each 1,000-bp segment
in the genome, we computed the percent trees (across all forests) identifying
the segment as an SDE, a number that we interpret as an estimate of the
probability that the given segment is an SDE. Note that each 100-bp seg-
ment in the genome occurs in nine 1,000-bp windows. Hence, for each 100-bp
segment in the genome, we have nine predicted probabilities corresponding
to each of the 1,000-bp windows in which it is included. We define our es-
timate of the probability that a given 100-bp segment is part of an SDE as
the mean of the estimated SDE probabilities for each of the overlapping
1,000-bp windows. We defined a threshold of 0.75 for 100-bp segments; all
segments with predicted probabilities greater than 0.75 were labeled as part
of enhancers, and all other segments were labeled as nonenhancer regions.
Adjacent 100-bp windows above this threshold were merged into larger
enhancer elements. For predicted SDEs longer than 1.5 kb, we attempted to

refine our resolution by leveraging the TF binding data. Specifically, we
looked for distinct peaks in the TFsum predictor as follows: the mean of the
TFsum track was calculated for each 100-bp window; we then computed the
numerical second derivative along the SDE to find extremum points and thus
call peaks in the data. Peaks below noise threshold were removed, and peaks
closer than 200 bp were merged. If more than one peak remained, the
minimum between adjacent peaks was used to separate the longer pre-
dicted enhancers. We call this set of elements our “preliminary predicted
SDE” (PPSDE) set. Finally, we reran the ensemble of RFs across all PPSDEs and
computed estimates of the probability that each PPSDE is an SDE. To esti-
mate a new FDR MLE and confidence interval, we considered the probability
of being an enhancer calculated on our training set. By considering the FDR
in each of several short probability threshold regions in the training set, and
assuming a Poisson distribution for the false discovery, we calculated the
MLE of FDR in those regions. The center of the probability threshold region
points was taken to have that FDR, and we further considered 100% FDR at
0 probability as an additional data point. A second-order polynomial was
fitted to these data points, so that an FDR can be calculated at each prob-
ability level. The 1,640 predicted enhancers were fitted to the polynomial,
with the average taken as the predicted and confidence interval FDR score.

PCR of Fragments from Genomic DNA and Cloning into the Gateway Vector.
PfuUltra High-Fidelity DNA Polymerase (Stratagene) or EASYA DNA poly-
merase (Agilent) was used to amplify selected fragments (see above) by
using isogenic genomic DNA from y; cn bw sp (73) as a template. The PCR
products were confirmed by agarose gel analysis, purified by using the QIA-
quick PCR Purification Kit (Qiagen). PCR fragment cloning was performed by
adding three A-overhangs to the PCR products produced using the PfuUltra
High-Fidelity DNA Polymerase (A-overhangs were not added to the products
produced using the EasyA DNA Polymerase) with the addition of dATP and
Taq polymerase in a 10-min incubation at 72 °C before Qiagen purification.
The products (9.5 μL of each) were used in a TA TOPO cloning reaction with
pCR8/GW/TOPO, as described by the manufacturer (Invitrogen). Cloning re-
actions were allowed to proceed for 30 min at room temperature, and then
2 μL of each reaction was used to transform Mach1 cells (Invitrogen). For
each cloning reaction, two isolates were picked, purified, and confirmed by
sequence verification.

Sequence Verification of Clones. Two Gateway clones were picked for each
enhancer fragment, for a total of 78 processed clones. Sequencing primers
M13 forward -20 (5′ GTAAAACGACGGCCA 3′; Invitrogen) and M13 reverse
(5′ GGAAACAGCTATGACCATG 3′; Invitrogen) were used to generate sequences
to verify targets. One clone was identified and selected for future studies.

Transfer of Gateway Clones into Integration Vectors. Thirty-seven nanograms
of thedestination vector, pBPGUw,were combinedwith 37.5 ngofDNAcarrying
a PCR fragment cloned in the Gateway vector in a LR reaction (Invitrogen) and
incubated overnight at room temperature. TAM1 cells (Invitrogen) were
transformed with 2.5 μL of the LR reaction and plated. A single isolate from
each reaction was picked into a 96-well Beckman Deepwell block, allowed to
grow overnight at 37 °C, and DNA was prepared by using the PerfectPrep kit (5
PRIME). The constructs were verified by analysis of restriction enzyme digests. A
second isolate was picked in cases where there was a discrepancy between the
observed and expected results. DNA for injection was prepared from 7 mL of
overnight culture for production of transgenic flies.

Drosophila Genetics. DNA constructs (100–200 ng/μL) were microinjected into
embryos derived from parents homozygous for both the attP2 integration
site (74) and a fusion gene encoding the PhiC31 integrase under the control
of the nanos promoter (nos–integ), which provides a maternal source of
integrase (75). Single males derived from these embryos were crossed to y w;
Sco/CyO females, and males carrying the inserted construct (identified by
their w+ eye color) were selected; integrase is removed in this step. These
males were crossed tow[1118]/Dp(1;Y)y[+]; TM2/TM6C, Sb[1] (Bl stock #5906)
females to establish balanced, homozygous stocks. We obtained 48 trans-
genic lines containing predicted enhancer elements, called CEPs.

Verification of Insertion Site and Fragment Identity by Genomic PCR. To verify
the identity of transformant flies and to confirm that all integration events
occurred at the attP2 site, we performed genomic PCR on DNA isolated from
homozygous transformant flies. Twenty flies were homogenized and ge-
nomic DNA isolated by using the ZR Genomic DNA II Kit (Zymo Research). To
assay proper integration in the attP2 landing site, PCR was performed
by using a primer from the y gene marker in the attP2 genomic docking
site (TCATGACTTTGTTGCCTTAGA) and a reverse primer from the w gene
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(CGAAAGAGACGGC- GATATT) carried in the constructs. Only proper in-
tegration events yield a product of 1,839 bp, because y and w lie more than
2 Mb away in the Drosophila genome. Fragment identity was confirmed by
using a vector-specific primer (ACAAGTTTGTACAAAAAAGCAGGCT) and a
reverse primer specific to the cloned fragment being tested for enhancer
activity; the position of the fragment-specific primer was chosen so as to
yield a PCR product of 350–400 bp.

Embryo Whole-Mount in Situ Hybridizations. Embryos were collected directly
from the homozygous stock. Embryonic whole-mount in situ RNA hybrid-

izations were performed as described previously (76). A summary is shown in
SI Appendix, Fig. S6.
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