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Computational analyses of human patient exomes aim to filter out
as many nonpathogenic genetic variants (NPVs) as possible, without
removing the true disease-causing mutations. This involves
comparing the patient’s exome with public databases to remove
reported variants inconsistent with disease prevalence, mode of
inheritance, or clinical penetrance. However, variants frequent in
a given exome cohort, but absent or rare in public databases, have
also been reported and treated as NPVs, without rigorous explora-
tion. We report the generation of a blacklist of variants frequent
within an in-house cohort of 3,104 exomes. This blacklist did not
remove known pathogenic mutations from the exomes of 129 pa-
tients and decreased the number of NPVs remaining in the 3,104 in-
dividual exomes by a median of 62%. We validated this approach
by testing three other independent cohorts of 400, 902, and
3,869 exomes. The blacklist generated from any given cohort re-
moved a substantial proportion of NPVs (11–65%). We analyzed
the blacklisted variants computationally and experimentally. Most
of the blacklisted variants corresponded to false signals generated
by incomplete reference genome assembly, location in low-
complexity regions, bioinformatic misprocessing, or limitations in-
herent to cohort-specific private alleles (e.g., due to sequencing kits,
and genetic ancestries). Finally, we provide our precalculated black-
lists, together with ReFiNE, a program for generating customized
blacklists from any medium-sized or large in-house cohort of exome
(or other next-generation sequencing) data via a user-friendly pub-
lic web server. This work demonstrates the power of extracting
variant blacklists from private databases as a specific in-house but
broadly applicable tool for optimizing exome analysis.
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Next-generation sequencing (NGS), particularly whole-exome
sequencing (WES) and whole-genome sequencing (WGS),

is increasingly being used for the discovery and diagnosis of
human genetic disorders (1–3). The number of new disease-
causing genetic variants logged by the Human Gene Mutation
Database (HGMD) is currently increasing at a rate of ∼10% per
annum (4). This increase has coincided with an expansion of the
use of WES and WGS (1, 2). The mean number of exonic coding
variants per individual relative to the reference human genome is
about 20,000 (2, 3), but monogenic disease in any given indi-
vidual is generally driven by at most two variants. The remaining
nonpathogenic variants (NPVs) may be real variants (rare or com-
mon, deleterious or neutral), or false/low-quality variants [sequencing
artifacts, bioinformatic misprocessing of raw sequencing data,

or resulting from limitations to the performance of current
quality control (QC) methods]. In practice, analyses of indi-
vidual exomes aim to generate a short list of high-quality can-
didate variants by filtering out as many NPVs as possible, while
minimizing the risk of false negatives (FNs) due to the removal
of true disease-causing mutations. The first step in this process
typically involves the use of public databases to identify and
remove NPVs through comparisons of their frequency in the
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general population with the prevalence of the disease consid-
ered, its proposed mode of inheritance, and its estimated clinical
penetrance. The largest public database currently available is the
Genome Aggregation Database (gnomAD), which includes
123,136 exomes and 15,496 genomes from a total of 138,632 in-
dividuals (5). For the remaining variants, including those not
reported in public databases, various variant-level and gene-level
metrics can be used to predict deleteriousness and to select a
smaller set of candidate variants for further experimental anal-
ysis (6–10).
In studies of rare genetic diseases, public databases are widely

used for the initial elimination of common variants [minor allele
frequency (MAF) > 0.01] (2, 11). However, some common var-
iants within private databases may be absent from public data-
bases, and most such variants are likely to be NPVs (2, 12). The
efficacy with which such variants are identified and used for
analyses of exomes from cohorts of patients studied by a par-
ticular research group has never been assessed in detail. An
approach for detecting false-positive signal (defined as DFS)
based on an internal cohort of 118 whole-exome sequences from
different individuals generated a shortlist of variants found to be
in Hardy–Weinberg (HW) disequilibrium due to excess hetero-
zygosity (the DFS list; 23,389 variants) (13). However, most of
these variants (68%) had already been reported in dbSNP (13).
Machine learning-based methods for removing false positives
(FPs) from sequencing data, such as variant quality score reca-
libration (VQSR), which uses a clustering score to determine
whether a called variant is true (14), can limit the number of
NPVs in exome data. However, these methods are subject to
several limitations: (i) they are computationally intensive and
time-consuming; (ii) they often require a large number of sam-
ples; (iii) parameter optimization requires extensive testing; and
(iv) the addition of new samples requires reprocessing of the
entire cohort. These methods are therefore little used by most
researchers, who have small- or medium-sized exome cohorts
and may not have access to powerful computing resources. It has
been suggested that variants common within a homogeneous
cohort and absent from public databases could be filtered out
(2), but this approach has not been validated and there are
currently no tools for the easy identification and compilation of
such variants. In this context, we sought to establish a “blacklist”
of variants too frequent in our cohort of 3,104 exomes from
patients with severe infectious diseases (15–17).

Results
Determining a Frequency Cutoff for NPVs. We observed that nu-
merous candidate variant calls (Materials and Methods) (18)
predicted to be damaging to the corresponding transcript or
protein were present in >1% of our cohort of 3,104 in-house
exomes from primary immune deficiency (PID) patients with
heterogeneous ancestral backgrounds (19) (i.e., too common to
cause PID) but absent from public databases (e.g., 1KG, ExAC,
gnomAD). These variants are poor candidates for involvement
in rare diseases but are impossible to eliminate by current
methods based on variant frequencies in public databases (2).
We therefore sought to classify and characterize these variants in
a rigorous and comprehensive manner, to enable users to remove
them from their WES/WGS analyses. First, we determined a
statistical cutoff frequency above which in-house variants should
be considered too frequent to cause rare diseases. We found that
the MAF of all experimentally validated disease-causing muta-
tions in HGMD followed a Gilbrat distribution (20). We then
calculated the 99% Gilbrat distribution confidence interval (CI)
for these frequencies and found that the upper boundary of the
CI for the frequency of known disease-causing mutations was
0.01 (1%). We therefore used this cutoff as a criterion for the
nonpathogenicity of variants (occurring in too many patients
in our database to explain a rare monogenic illness). The

MAF > 0.01 cutoff used here is an example of the blacklist ap-
proach to removing FP variants in studies of rare genetic disorders.
The cutoff can be adjusted according to the mode of inheritance
and genetic architecture, assumed penetrance, and prevalence of
the disease, and the phenotypic homogeneity of the cohort (21). For
example, assuming complete penetrance and allelic homogeneity, a
rare recessive genetic disorder with a prevalence of 1 in 100,000
could be analyzed with a MAF cutoff of 0.0033, whereas a more
common recessive genetic disorder with a prevalence of 1 in 1,000
should be analyzed with a MAF cutoff of 0.033. The assumption of
incomplete penetrance may lead to the definition of higher cutoffs,
whereas the assumption of allelic/genetic heterogeneity may lead to
the use of lower cutoffs.

Generating the Blacklist. We first designed the reducing FPs in
NGS elucidation (ReFiNE) software, an easy-to-use tool for
extracting blacklist variants from internal cohorts of WES or
WGS data on the basis of a user-defined frequency cutoff (see
Materials and Methods for details). ReFiNE creates a blacklist
consisting of the full set of variants occurring in >1% (or any
user-defined cutoff) of an investigated cohort, which can then be
further filtered separately by the user, using MAF cutoffs from a
population genetic database of choice. Using ReFiNE, we first
collated all variants present at a frequency >1% in our PID WES
cohort of 3,104 exomes (Materials and Methods and SI Appendix,
Fig. S1) with a depth of coverage (DP) ≥ 5 and mapping quality
(MQ) ≥ 30 (Materials and Methods) (5, 22). A large number of
multiallelic variants in our cohort were absent from gnomAD for
specific chromosomal positions. ReFiNE therefore collapsed all
variants at a unique chromosomal position and summed the total
number of patients at each of these positions. This generated a
list of 780,956 variants, defined as the blacklist. This blacklist is
the full list of variants occurring at single chromosomal positions
for which >1% of patients had an alternative allele. These var-
iants belonged to two classes: (i) biallelic, with a single alterna-
tive allele in our cohort; and (ii) multiallelic, with two or more
alternative alleles in our cohort. The blacklist includes variants
already reported in public databases, so we needed to extract the
subset of variants unique to our method for further analysis. We
thus annotated the blacklist with gnomAD, currently the most
extensive public population genetics database available (5, 23).
We found that 21.4% (167,144) of these 780,956 variants were
absent from the gnomAD full exome and genome databases. As
these 167,144 variants are not captured by the most extensive
public database available, we focused the analysis of our method
on this subset of variants, which, for simplicity, we will refer to as
blacklist-annotated (BL-A): common in-house variants absent
from gnomAD that cannot, therefore, be filtered out of analyses
based on gnomAD.

Blacklist Filtering Removes 62% of the NPVs Remaining After
Standard Public Database Filtering. We then assessed the efficacy
of BL-A for filtering out NPVs from patient exome data. We first
applied the standard procedure for rare genetic disorders, by
removing variants with a MAF > 0.01 in gnomAD from our
3,104 exomes (3, 12). This reduced the median number of vari-
ants in the patients’ exomes by 90% (Fig. 1A). Subsequent fil-
tering with BL-A removed 62% of the remaining variants that
could not be removed by other means (Fig. 1A, a median of
9,056 variants removed per exome). By comparison, the DFS list
(13) decreased the median number of these variants by only
1.8% (median of 260 variants removed per exome). BL-A fil-
tering was effective for both coding sequences [coding DNA
sequences (CDSs)], including indel, exon-deleted, non-
synonymous, synonymous, and essential splicing variants, and for
non-CDS variants, including untranslated region (UTR), non-
essential splicing, intronic, downstream, and upstream variants,
and for all three exome kits available for our cohort (37, 50, and
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71 Mb; SI Appendix, Figs. S2 and S3). We then assessed the
performance of BL-A filtering for variants absent from the
gnomAD database (i.e., variants private to the PID database),
which would be considered among the strongest candidates for a
causal role in disease. This approach decreased the number of
cohort-private variants potentially associated with PID in each
exome by 86%, versus only 2.2% for the DFS list, and was similarly
effective for CDS and non-CDS variants (Fig. 1B and SI Appendix,
Fig. S4). Thus, when used as a filtering tool, our blacklist was able to
remove variants absent from public databases and to decrease the
number of candidate variants per exome considerably.

Metric Characteristics of the Variants and Genes Included in the
Blacklist. We then explored whether the QC scores for BL-A
variants were similar to those for polymorphic variants (MAF >
0.01) reported in gnomAD. By comparing the median MQ and
DP scores for blacklisted variants and polymorphic variants from
our cohort (SI Appendix, Fig. S5), we demonstrated that none of
these QC metrics could differentiate between these two sets of
variants (especially when considering commonly used criteria for
hard filtration; seeMaterials and Methods for further details). We
then investigated whether machine learning QC metrics could
classify these variants. With VQSR, only 25% of BL-A variants
were annotated as “nonpass” (SI Appendix, Table S1). One of the
key goals of this approach is providing an efficient tool for

researchers who cannot easily perform VQSR. We therefore
retained these VQSR nonpass variants in the blacklist. We also
assessed the ability of a random forest classifier trained on poly-
morphic variants from the gnomAD dataset well-characterized by
different methods to separate true variants from FP artifacts
called by the variant-calling pipeline (5). We then used the same
method to construct a new scoring function with the gnomAD
dataset. We applied both scoring functions to the blacklist variants
and a set of variants present in both the gnomAD dataset and our
cohort, with a MAF of more than 1% in each dataset. The score
distributions obtained were almost identical (SI Appendix, Fig.
S6), demonstrating an inability of this standard classification
method to distinguish between the blacklisted variants and true-
positive (TP) variants. We then characterized the variants and
genes included in BL-A with computational damage prediction
metrics. A variant-level analysis revealed that the combined
annotation-dependent depletion (CADD) (8) scores for blacklist
variants were not significantly different from those for variants
not included in the blacklist (SI Appendix, Fig. S7). A gene-level
analysis (6) of all genes with blacklist variants (n = 13,665 genes)
showed them to have low gene damage index (GDI) values (SI
Appendix, Fig. S8). However, some genes with a high GDI have
many BL-A variants (e.g., HLA-DRB1, 658 variants; MUC16,
455 variants). Filtration methods based on QC and variant- and
gene-level damage prediction metrics would not efficiently detect
and remove the blacklist variants absent from gnomAD. These
results demonstrate the value of blacklisting as a complementary
approach to analyses based on standard public databases, in-
cluding gnomAD, QC filtering, and damage prediction metrics.

Determining the FN Rate Associated with Blacklist Use. We esti-
mated the proportion of TP disease-causing mutations removed
by the blacklist approach, by screening 129 exomes from patients
in our cohort for whom the TP mutations had been validated
experimentally. Filtering these exomes with the complete
blacklist did not remove any of the known TP mutations (0% FN
rate). Even though most variants in any patient are not patho-
genic, our analysis indicates that it is very safe to apply the
blacklist to patient exomes. We also compared the complete
blacklist with the list of 144,641 disease-causing mutations in
HGMD and noted an overlap of only 263 variants (0.18% FN
rate). These variants are listed as disease-causing in the HGMD
dataset, but 47% have a MAF > 0.01 in the gnomAD exome or
genome databases, suggesting that are unlikely to be the cause of
a rare disorder. These findings indicate that our FN rate is
probably lower than the rate of 0.18% for HGMD in the context
of rare disorders. Only eight BL-A variants were present in
HGMD (0.001% FN rate), indicating that the FN rate for our
specific BL-A list was lower than that for gnomAD. Together,
these results suggest that the FN rate is very low for this tech-
nique (SI Appendix, Table S2). We also screened 3,731,152 so-
matic cancer-causing or cancer-associated variants available
from TCGA (https://cancergenome.nih.gov). We found that
59,151 of these TCGA variants (1.5%) were present in the
complete blacklist and 2,471 (0.07%) were present in BL-A. As
our blacklist was derived from germline exome data, the pres-
ence of these blacklist variants in the TCGA database suggests
that they may be FPs that could be removed, as previously
reported (24). Together, these data indicate that the blacklist
approach results in an extremely low FN rate when applied to
patients with rare diseases, and that it is therefore safe to use this
approach to remove NPVs from patient exome data.

Practical Application of the Blacklist to the Analysis of Patients’
Exomes. We assessed the use of blacklisting for practical analyses
of patient exomes. We selected a case from our cohort with an
autosomal dominant disease-causing mutation described in a pre-
vious study (patient D2 from ref. 25). We filtered this patient’s

A

B

Fig. 1. Blacklist filtering of 3,104 PID exomes with the PID blacklist. (A) Fil-
tering of all variants in each exome by first removing those common in gno-
mAD exome and genome databases (MAF greater than 0.01). The remaining
variants were subsequently filtered with the blacklist. (B) Filtering of cohort-
specific variants in each exome with the blacklist. Filtering with the DFS list is
shown for comparison. Error bars represent the 10th to 90th percentiles.
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exome with a standard pipeline to identify disease-causing muta-
tions (SI Appendix, Fig. S9). This standard approach reduced the
number of candidate variants from 142,473 to 3,526. Taking known
mode of inheritance into account and restricting the analysis to
CDS variants (excluding synonymous alterations), the number of
candidate variants was reduced further, to 231. The inclusion of
BL-A in the pipeline decreased the final number of candidate
variants to 109 (SI Appendix, Fig. S9), with retention of the known
IKZF1 mutation. Overall, this corresponds to a 53% decrease in
the number of variants from this patient’s exome to be considered.
The remaining variants were high-quality candidates that would
probably merit rigorous analysis in exome analyses for patients
with diseases of unknown etiology. Thus, blacklisting greatly
decreases the number of candidate variants for further study in
practice, in exome analyses on individual patients.

Practical Application of Blacklisting to the Analysis of Population
Exomes. We then explored the use of our blacklist for gene
burden analysis for genetic homogeneity at the population level.
We compared the number of patients with at least one variant of
any given gene between a cohort of 202 patients suffering from
chronic mucocutaneous candidiasis (CMC) and 852 phenotypi-
cally unrelated controls (26). When standard filtering with public
databases was applied in the absence of blacklisting, the en-
richment observed for the known disease-causing gene in the
CMC cohort, STAT1 (P value = 3.32 × 10−6) was not significant
considering the corrected threshold at the genome-wide level (P
valuethreshold = 0.05 ÷ 20554 = 2.43 × 10−6; Fig. 2A). However,
following the addition of BL-A to the pipeline, STAT1 was
correctly identified as a gene displaying strong and significant
genome-wide enrichment in the disease cohort (P value = 4.63 ×
10−10; Fig. 2B). In this instance, our blacklist removed two var-
iants present in a large proportion of our PID exomes (both
cases and controls) that confounded the statistical comparison
between the CMC and control groups. Together with the pre-
vious practical example, these analyses demonstrate the power of
blacklisting for removing NPVs from patient exomes, both to
simplify candidate variant identification in patients and for other
large-scale statistical analyses of patient groups.

Characterization of Multiallelic Variants from the Blacklist. We then
characterized the PID cohort BL-A variants (n = 167,144). Most
of the variants (91.5%) in the blacklist were multiallelic (SI
Appendix, Table S3). The cohort-specific variants present in the
blacklist were therefore due to multiallelic sites displaying high
levels of variation in our cohort (SI Appendix, Table S4). We
began by hypothesizing that the multiallelic variants might lie in
low-complexity regions of the human genome, leading to sequencing
errors. The annotation of all these variants with RepeatMasker,

Simple Repeats, and GC percent tracks from University of
California, Santa Cruz (UCSC) Genome confirmed that 118,154 of
the 152,915 variants (77.3%) occurred in repetitive or GC-rich re-
gions, and that most (65,646; 56%) were located in short tandem
repeat (STR) regions (Fig. 3 and SI Appendix, Table S4).

Characterization of Biallelic Variants from the Blacklist.We analyzed
the biallelic variants, which were also found to be located in
repetitive or GC-rich regions, albeit to a lesser extent (6,711;
47.2%) (Fig. 3 and SI Appendix, Table S4). We also character-
ized these biallelic variants, focusing on those located in CDS
regions, in the 1,150 individuals of European origin according to
principal-component analysis (PCA) (19), to determine whether
these variants were under HW equilibrium. In total, 388 CDS
variants were found to be located in repetitive or GC-rich re-
gions; 339 (87.4%) of these variants were in HW equilibrium and
49 (13.6%) were in HW disequilibrium (threshold of P < 10−8; SI
Appendix, Table S5). An investigation of the biallelic variants not
present in repetitive regions (7,518; 52.8%) yielded a similar
distribution, with 209 (89.3%) and 25 (10.7%) of the 234 CDS
variants in HW equilibrium and disequilibrium, respectively.
Overall, 74 CDS variants were in HW disequilibrium, and in
39 of these variants (52.7%), the cause was an excess of homo-
zygous wild-type (14.9%) or homozygous alternative (37.8%)
genotypes (SI Appendix, Table S5). Most of these 39 variants had
low coverage (wild-type = 15.6×, alternative = 20.5×; SI Ap-
pendix, Table S5), which may have led to miscalls for a homo-
zygous genotype. Most of the variants (35; 47.3%) in HW
disequilibrium presented heterozygote excess, with high mean
coverage rates of 163× (much higher than the 42.5× coverage of
the 548 CDS variants in HW equilibrium), suggesting an excess
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Fig. 2. Application of the blacklisting approach to enrichment analysis.
Quantile–quantile plots depicting the analysis of genetic homogeneity for a
cohort of 202 patients with chronic mucocutaneous candidiasis (CMC) before
(A) and after (B) application of the blacklist. The control cohort consisted of
852 unrelated individuals. In each panel, the red arrows indicate STAT1, the
known cause of CMC in our cohort, before and after blacklist application.
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B C

Fig. 3. Characterization of the blacklisted biallelic and multiallelic variants
in low-complexity regions of the genome. Occurrence of the blacklisted
multiallelic (red) and biallelic (blue) variants in repetitive [short tandem re-
peats (STRs), Alu elements, other repetitive regions] and GC-rich regions;
percent relative to the total number of blacklisted variants (A) or the total
number of biallelic (B) or multiallelic (C) blacklisted variants.
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of reads wrongly mapped to the region (SI Appendix, Table S5).
We also studied the 548 biallelic CDS variants in HW equilib-
rium, to evaluate their distribution across ethnicities. We focused
the analysis on the four largest genetic ancestry groups in our
cohort (SI Appendix, Fig. S10): European, African, North Afri-
can, and Middle Eastern, as determined by PCA (19). In total,
200 (36.5%) of these variants were heterogeneously distributed
across genetic ancestries (threshold of P < 10−8; SI Appendix,
Table S6). The observed heterogeneous distribution was proba-
bly due to one specific genetic ancestry in 46 (23%) of the var-
iants (SI Appendix, Table S6). In 20 variants (43.5%), the
individual genetic ancestry was Middle Eastern (SI Appendix,
Table S6), which is poorly represented in public databases (27),
suggesting that these variants are true variants that are more
common in this population.

Experimental Investigation of the Blacklisted Variants. We further
investigated the features of BL-A variants. We first focused on
biallelic blacklist CDS variants in HW disequilibrium displaying
excess heterozygosity and absent from repetitive regions in in-
dividuals of European ancestry (n = 35). We found that 48.6% of
these variants (n = 17) mapped to four chromosomal regions, in
the HLA-DRB1, MUC6, OR8U1, and TAS2R43 genes with con-
secutive blacklist variants (less than 300 bp) (SI Appendix, Table
S7). Most of these regions contain flagged variants annotated in
gnomAD (47% in Exome and 65% in Genome, annotated as
AC0, RF, and/or InbreedingCoeff; SI Appendix, Table S7). For
the remaining variants (referred to as “unique”), we found that
the blacklist variants were at the same location (but with dif-
ferent genotypes) as flagged variants annotated in gnomAD, like
the consecutive variants (28% in Exome and 50% in Genome,
annotated as AC0, RF, and/or InbreedingCoeff). Integrative
genomics viewer (IGV) (28) showed that the consecutive vari-
ants in these regions belonged to the same reads, suggesting the
existence of an “alternative” sequence (referred to as a seg-
mental duplication by gnomAD or as an alternative haplotype;
SI Appendix, Figs. S11–S13). These observations strongly suggest
that some blacklist biallelic variants define alternative haplotypes
belonging to unmapped regions absent from the human refer-
ence genome. These variants were probably incorrectly mapped
to the region of the reference genome for which the best match
was obtained, leading to a mixture of wild-type and alternative
alleles in these regions, resulting in higher coverage and a final
erroneous heterozygous call. In a second analysis, we focused on
multiallelic variants. Most of these variants (77%) were located
in low-complexity regions (STRs, Alu elements, GC-rich regions,
or other repetitive regions; Fig. 3). IGV analysis of three mul-
tiallelic variants absent from these regions and common in our
cohort (MAF > 0.9) revealed that they were located in the vi-
cinity of a small stretch of repeated nucleotides (SI Appendix,
Figs. S14–S16). Extending the analysis to the 23% of multiallelic
variants not previously detected in low-complexity regions (n =
34,761), we found that 83.3% were also located close to mono-
nucleotide repeats (26,165; 75.3%) or to small repetitive
stretches (two or more nucleotides; 2,802; 8.1%). Attempts to
confirm these variants by Sanger sequencing failed, due to the
mononucleotide repeat (SI Appendix, Table S8), strongly sug-
gesting that the WES approach may have been affected by a
polymerase artifact similar to that reported in previous studies
(29, 30). This exploration of blacklist variants suggests that the
multiallelic variants probably resulted from—to a large extent—
sequencing/calling errors during WES on low-complexity regions,
whereas a proportion of the blacklist biallelic variants, particularly
those in HW disequilibrium, were due to mapping errors resulting
from the incomplete nature of the GRCh37/GRCh38 genome
assembly.

Testing the Blacklist Approach as a General Filtering Method in Three
Unrelated Cohorts. We assessed the suitability of the blacklist
approach for filtering in other private databases. We used three
unrelated independently processed exome cohorts (from DNA
preparation to VCF data): (i) 3,869 exomes from patients
suffering from neurological diseases (“Neuro”) (27); (ii)
902 exomes from patients suffering from diseases with an in-
fectious phenotype (“Infection”); and (iii) 400 exomes (100 from
Europeans and 300 from Africans) from a study on the de-
mographic history of Central Africans (“Africa”) (31). We first
generated separate blacklists for the Neuro, Infection, and
Africa cohorts, according to the pipeline described above. After
filtering on the basis of MAF > 1% (in the specific cohort) in
gnomAD, the application of the cohort-specific blacklists for the
Neuro, Infection, and Africa cohorts decreased the number of
variants retained by 35%, 57%, and 51%, respectively (a median
of 3,160, 3,462, and 7,905 variants per exome, respectively; Fig. 4
A, C, and E). Considering only cohort-private variants (i.e., those
appearing in the specific cohort but absent from gnomAD
exomes and genomes), applying the cohort-specific blacklists to
the Neuro, Infection, and Africa cohorts reduced the number of
variants in each exome by 90%, 92%, and 93%, respectively,
eliminating a median of 3,195, 3,418, and 7,861 variants per
exome, respectively (Fig. 4 B, D, and F). This filtering was ef-
fective for both CDS and non-CDS variants (SI Appendix, Fig.
S17). A comparison of the four blacklists revealed that a sub-
stantial number of variants were unique to each blacklist (SI
Appendix, Fig. S18), demonstrating the cohort specificity of the
blacklisted variants, particularly for the Africa cohort, probably
due to ancestry. Specifically, each blacklist contained 63–91% of
the unique biallelic variants (SI Appendix, Fig. S18A and Table
S3) and 46–92% of the unique multiallelic variants (SI Appendix,
Fig. S18B). A similar pattern was observed when the analysis was
restricted to biallelic and multiallelic CDS variants (SI Appendix,
Fig. S18 C and D and Table S3). Thus, the efficacy of blacklist
filtering in our PID cohort was not due to specific pipeline set-
tings or enrichment within our exomes. Instead, our results
suggest that the blacklist method should effectively remove a
substantial proportion of the NPVs not already removed by
public database analysis from any cohort of exomes considered.

Application of the Blacklist to Unrelated Cohorts. We then assessed
whether the originally generated PID blacklist would effectively
filter exomes from the unrelated Neuro, Infection, and Africa
cohorts used above. We removed variants with a MAF > 0.01 in
gnomAD from the Neuro, Infection, and Africa exomes and then
applied the PID BL-A. This reduced the median number of
remaining variants in the Neuro, Infection, and Africa exomes by
8%, 41%, and 6%, respectively (median of 715, 2,487, and
947 variants per exome, respectively; Fig. 4 A, C, and E, blue
box). When the analysis was restricted to cohort-private variants
in the Neuro, Infection, and Africa exomes, the PID blacklist
decreased the number of variants in individual exomes by 19%,
65%, and 11%, respectively (median of 673, 2,439, and 957 var-
iants per exome, respectively; Fig. 4 B, D, and F, blue box). The
superior efficiency of the PID blacklist for the Infection cohort
may reflect the library preparation technique (SureSelect) and
sequencing technology (HiSeq sequencer) used. Nevertheless,
the PID blacklist was shown to be a useful filtering approach in
unrelated cohorts in which exomes were captured with different
kits and sequencing technologies (SureSelect or Nextera kits and
HiSeq 2000 or HiSeq 2500 sequencing, respectively). We also
found that filtering our PID exomes with the blacklist from the
Neuro cohort did not remove any TP variants from the 129 PID
exomes with proven disease-causing mutations. Blacklists are,
therefore, effective for filtering exomes other than those with
which they were developed and including cohort-private NPVs.
However, generating internal blacklists from the cohort under
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investigation was found to be the most effective approach to
removing NPVs.

Determining the Minimum Cohort Size and Saturation Point for the
Blacklist. We sought to determine the minimum sample size ap-
propriate for the generation of a custom blacklist for a cohort of
interest. We combined the two largest cohorts studied here—our
PID cohort (3,104) and the Neuro cohort (3,869)—and simu-
lated blacklists by randomly sampling various numbers of indi-
viduals relative to cohort size, with 30 iterations for each sample

size (SI Appendix, Fig. S19). As the Neuro cohort was captured
with the 50-Mb kit, which targets CDS, we focused this analysis
exclusively on CDS variants. The number of CDS variants in the
simulated BL-A increased rapidly with sample size between
10 and 500 individuals, whereas the number of variants increased
more slowly when sample size exceeded 500 individuals. We
therefore propose the use of samples of at least 500 heteroge-
neous unrelated individuals, to ensure the reliable capture of
common cohort-specific variants. We estimated the saturation
point for the blacklist’s CDS variants (less than one new variant
added per new individual) at a sample size of ∼2,801 individuals
(SI Appendix, Fig. S19). Thus, a blacklist generated with the
pipeline described here could be considered “saturated” for the
purpose of capturing most of the cohort-specific CDS variants
that cannot be removed by public database analysis.

Efficacy of the Combined Blacklist. Finally, we explored the efficacy
of a “universal” blacklist generated by combining the four BL-As
presented in this study. We reasoned that the aggregation of
blacklists obtained from different cohorts (and different samples/
data-processing methods) would result in a “universal blacklist”
with the number of filtered variants eventually converging. We
tested this hypothesis by aggregating either (i) the four blacklists
(PID, Neuro, Infection, and Africa blacklists) into a single
“combined blacklist”; or (ii) four combinations from the set of
blacklists (Neuro, Infection, Africa) into four combined black-
lists (i.e., Neuro–Africa, Neuro–Infection, Africa–Infection,
Neuro–Africa–Infection), and applying the combined blacklists
obtained in (i) and (ii) to the PID cohort. As the PID blacklist
was not included in the four combined blacklists in (ii), we refer
to these blacklists as “non–cohort-specific combined blacklists.”
These blacklists removed a decreasing number of variants with
increasing size of the sets making up the blacklists (Fig. 5). After
standard filtering with public databases, the “Neuro–Africa”
non–cohort-specific blacklist removed a median of 1,102 (8%)
variants, the “Neuro–Infection” non-cohort-specific blacklist
removed a median of 3,833 (26%) variants, the “Africa–
Infection” non–cohort-specific blacklist removed a median of
3,886 (27%) of variants, and the “Neuro–Africa–Infection”
non–cohort-specific blacklist removed a slightly larger number of
variants (median of 4,078, or 28% of variants). By contrast, the
PID blacklist removed a median of 9,056 variants. The “four
combined” blacklist removed a median of 25 (0.45%) additional
variants not captured by the PID blacklist alone (Fig. 5). Overall,
these findings suggest that the number of variants filtered by the
blacklist approach converges with the inclusion of blacklists from
additional cohorts, consistent with the results for blacklist satu-
ration. This universal filtering by blacklisting can be effectively
applied to other individuals/cohorts. It is most efficient when the
sequencing technology used, and the genetic ancestries of the
individuals/cohorts under analysis, are similar to the universal
blacklist (SI Appendix, Fig. S19). Moreover, the efficiency of a
cohort-specific cohort applied to a different cohort (e.g., PID and
infection cohorts) was greater for cohorts similar in terms of ethnic
background and sequencing procedure (both mostly European and
capture with similar kits), consistent with the results in Fig. 4C. Fi-
nally, although cohort-specific blacklists maximize the efficiency of
this approach, the use of non–cohort-specific combined blacklists is
nevertheless a very useful approach for filtering out a large
number of unwanted variants, reinforcing the power of blacklist
filtering even in the absence of a custom blacklist for the cohort.

Discussion
An essential step in the analysis of exomes from patients with
rare genetic disorders is the removal of NPVs common in public
databases (such as gnomAD, Bravo, and TopMed) at frequen-
cies inconsistent with the prevalence, mode of inheritance, and
penetrance of the disease (11). In principle, variants found to be
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common in a private cohort but absent from public databases
should also be filtered out. However, only one other previous
study has explored the generation of filtering lists based on in-
ternal cohorts (13). Moreover, there are currently no tools
available for filtering based on allele frequencies in internal
cohorts. We report here the identification of in-house variants
too common to cause rare monogenic illnesses (typically with a
population prevalence of <10−4) in a cohort of 3,104 exomes. We
assembled these variants into a blacklist and subsequently ex-
plored the use of this blacklist for filtering NPVs from exome
sequencing data, using the subset of variants that makes our ap-
proach unique (BL-A: those that are absent from public data-
bases). These variants had high-quality metrics and 75% of them
would not be captured by the rigorous application of available
software, such as VQSR. We further validated this approach in
three other independently processed and unrelated cohorts,
demonstrating that our blacklist approach is generally, and
perhaps universally, effective for filtering variants, and that the
generation of blacklists specific to a given cohort significantly
increases the number of variants filtered out. We provide a
computational tool (ReFiNE) for automatically generating in-
house cohort-specific blacklists. We show that our blacklist can
be used in synergy with standard public database filtering, to
remove variants displaying disproportionate enrichment in an
internal cohort.
Public databases such as gnomAD, which represent major

population groups (about half of individuals are of European
ancestry and the others are a mixture of Admixed Americans,
Africans/African Americans, South Asians, East Asians, and
Others), are an invaluable resource for estimating the frequency
of variants in the general population and in different genetic
ancestry groups. However, cohort-specific exomes may contain
common variants (e.g., >1%) that are absent from or rare in
public databases, partly because they are population-specific
variants less represented in gnomAD [as observed for African
(31) and Middle Eastern individuals (27)]. Moreover, public
databases, such as gnomAD, make considerable efforts to ensure
the rigorous removal of FP variants to ensure that they provide
high-quality, high-stringency information about variants. How-
ever, these public databases do not provide a list of filtered FP
variants and their summary statistics for filtration purposes. We
demonstrated this with 113 1KG genomes generated by our in-
house pipeline, showing that 23% of the variants were absent
from the public 1KG database, highlighting discrepancies be-
tween the analyzed and released data due to different bio-
informatic procedures. Moreover, resources such as dbSNP are
difficult to use for FP filtering because their FP variant rate is

high (32). Therefore, even when using the latest versions of public
databases and gene-level filtration (6, 7), ReFiNE is an effective
tool for collecting data independently from external resources.
The technology associated with the NGS analyses (sequencing

platform, targeting procedures, and software) is strongly associ-
ated with the calling of the variants. We and others have
previously observed biases specific for WES and WGS (18) or
variant-calling pipelines (33). Differences in technology can
therefore lead to the misannotation of variants in a given cohort.
The main sources of misannotation are as follows: (i) variants in
gnomAD collected by different technologies (PCR for WES and
PCR-free plus PCR for WGS) apply rigorous QC cutoffs based
on high-quality technologies, resulting in higher proportions of
variants from lower-quality technologies being removed; (ii)
despite the presence of 15,496 genomes in gnomAD, some
genomic regions remain poorly covered or not covered at all,
whereas these regions are covered by our cohort and contain
variants (2% of our BL-A); (iii) a recent comparative studied
revealed strong discrepancies between the variant callers used in
NGS analyses (34); these discrepancies have been highlighted by
the differences between the gnomAD and ExAC databases
(https://macarthurlab.org/2017/02/27/the-genome-aggregation-
database-gnomad/); and (iv) the annotation of NGS variants in
multiallelic positions is often problematic (35) because current
annotation software [SNPeff (36), VEP (37), ANNOVAR (38)]
cannot identify these variants efficiently. Indeed, 91.5% of our
blacklist variants were located at multiallelic sites according to
gnomAD’s genome annotation. Each cohort is unique (in terms
of technology, quality, ethnicities). Our blacklisting resource is
intended to fill this gap, particularly for researchers without the
large exome or genome databases required for filtering with
computationally intensive methods, such as VQSR. ReFiNE can,
thus, overcome anomalies in sequence alignment or variant-
calling processes, such as large indel events (39).
We show here that analyses of variant frequency within in-

ternal cohorts constitute an additional method for filtering out
variants too common to cause rare disease. The blacklists gen-
erated by ReFiNE are easy to use and rapidly identify NPVs that
may confound the dissection of patient exomes. As WES and
WGS are increasingly widely used for the investigation of genetic
disorders in patients, it will be possible to apply the blacklisting
approach described here and ReFiNE software to larger cohorts
of patients, facilitating the effective identification of NPVs in
these cohorts. However, caution is required when generating
blacklists with ReFiNE from phenotypically homogeneous co-
horts, particularly if of the same underrepresented ethnic origin,
as this approach may remove TP variants in such conditions.
Finally, such extensive, rapidly generated blacklists (1 h for
3,104 exomes) should increase the efficiency of NPV elimination
from exomes and genomes, without the need for the large
computer clusters required by current machine-learning algo-
rithms, such as VQSR (a month for 3,104 exomes). As exome
capture kits become increasingly efficient, and with the wide-
spread adoption of WGS, the blacklists generated by ReFiNE will
facilitate efficient noise reduction in NGS data, independently of the
technology used, making it easy to find the needles in increasingly
large haystacks of genetic variants in patients.

Materials and Methods
Website Resource. ReFiNE and precalculated blacklists are available on
GitLab (40).

Patient Cohort. The 3,104 individuals studied here were selected from samples
of diverse ancestral origins obtained by our laboratories and recruited with
the help of clinicians. This sample was not random, but cohort-specific effects
should not have biased the results, as the individuals included had a wide
range of different infectious diseases and immune deficiency phenotypes. All
study participants provided written informed consent for the use of their
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DNA in studies aiming to identify genetic risk variants for disease. IRB ap-
proval was obtained from The Rockefeller University and Necker Hospital for
Sick Children, along with a number of collaborating institutions. The exomes
of 3,869 individuals suffering from neurological disease were obtained from
the Greater Middle East (GME) Consortium, with recruitment according to a
similar protocol (27). The exomes of 902 individuals suffering from severe
infectious diseases (Infection cohort) were obtained from patients enrolled
in studies coordinated by the laboratory of J.F. at École Polytechnique
Fédérale de Lausanne (Lausanne, Switzerland). The exomes of 400 individ-
uals in the Africa cohort were provided by the laboratory of L.Q.-M. at the
Pasteur Institute (Paris, France).

WES.A summary of the technologies and pipelines used for the analysis of the
different cohorts is provided in SI Appendix, Table S9.
Rockefeller PID exome sequences. Genomic DNA from peripheral blood
mononuclear cells was extracted and sheared with a Covaris S2 Ultra-
sonicator. An adaptor-ligated library (Illumina) was generated, and exome
capture was performed with SureSelect Human All Exon 37-, 50-, or 71-Mb
kits (Agilent Technologies). Massively parallel WES was performed on a
HiSeq 2000 or 2500 machine (Illumina), generating 72-, 100-, or 125-base
reads. Quality controls were applied at the lane and fastq levels. Specifi-
cally, the cutoff used for a successful lane is Pass Filter > 90%, with over 250M
reads for the high-output mode. The fraction of reads in each lane assigned
to each sample (no set value) and the fraction of bases with a quality score >
Q30 for read 1 and read 2 (above 80% expected for each) were also checked.
In addition, the FASTQC tool kit (www.bioinformatics.babraham.ac.uk/
projects/fastqc/) was used to review base quality distribution, representa-
tion of the four nucleotides of particular k-mer sequences (adaptor contami-
nation). We used the Genome Analysis Software Kit (GATK) (version 3.4–46)
best-practice pipeline to analyze our WES data (14). Reads were aligned with
the human reference genome (hg19), using the maximum exact matches al-
gorithm in Burrows–Wheeler Aligner (BWA) (41). PCR duplicates were removed
with Picard tools (picard.sourceforge.net/). The GATK base quality score
recalibrator was applied to correct sequencing artifacts. GATK HaplotypeCaller
was used to identify variant calls. DP ≥ 5 and MQ ≥ 30 were used as standard
hard filtering criteria (22). Variants were annotated with SnpEff (snpeff.
sourceforge.net/). Exomes were annotated for PASS and non-PASS variants
in gnomAD r2.0.2 (Exome Aggregation Consortium, Broad Institute) and the
1000 Genomes Project Phase 3 (www.internationalgenome.org/) databases.
Joint genotyping followed by VQSR filtering was not used because there
have been reports of fractions of variants unique to individual samples being
missed (https://gatkforums.broadinstitute.org/gatk/discussion/4150/should-i-
analyze-my-samples-alone-or-together), rendering this approach unsuitable
for our studies. For the purpose of comparison between the blacklist and
VQSR approaches, VQSR was calculated with VariantRecalibrator and
ApplyRecalibration for both SNPs and indels, with ts_filter_level set to
99.0 and other settings as specified by GATK recommendations. We did not
use the InbreedingCoeff as this is discouraged in situations in which the
cohort includes members of the same family, as in our cohort. Similarly, we
did not include DP among the parameters of the VQSR, as it is not suitable
for targeted exome sequencing samples.
GME Consortium neurological exome sequences. WES for the GME Consortium
was performed as previously described (27). Briefly, genomic DNA was
extracted from peripheral blood mononuclear cells with Qiagen reagents
and captured with the Agilent SureSelect Human All Exome 50-Mb kit. WES
was performed on an Illumina HiSeq 2000. The GATK best-practice pipelines
were used to analyze WES data (14). BWA was used to align reads with hu-
man reference genome NCBI Build 37 (41). The variant-call format files gen-
erated were annotated with the Rockefeller pipeline, as described above.
Africa exome sequences. Whole-exome sequences were obtained for 300 Af-
rican samples (31), and these data were processed together with those for
100 European individuals (42). All samples were sequenced with the Nextera
Rapid Capture Expanded Exome kit, which delivers 62 Mb of genomic con-
tent per individual, including exons, UTRs, and microRNAs. Using the GATK
Best Practice recommendations (43), we first mapped read-pairs onto the
human reference genome (GRCh37) with BWA, version 0.7.7 (41), and reads
duplicating the start position of another read were marked as duplicates
with Picard Tools, version 1.94 (picard.sourceforge.net/). GATK, version 3.5
(14), was then used for base quality score recalibration (“BaseRecalibrator”),
insertion/deletion (indel) realignment (“IndelRealigner”), and SNP and indel
discovery for each sample (“Haplotype Caller”).
Infection exome sequences. WES for the Infection cohort was performed as
previously described (44, 45). In brief, genomic DNA was extracted from
whole blood with the QIAamp DNA blood kit and captured with the Agilent
SureSelect Human All Exome 50-Mb kit (Agilent SureSelect Human all exon

V4 or V5) or Illumina Truseq 65-Mb enrichment kit. WES was performed on
an Illumina HiSeq 2000 or Illumina HiSeq 2500 machine. BWA-MEM was used
to map reads onto the human reference genome hg19 decoy, and GATK,
version 3.8 (or an earlier version of this software), was used for data pro-
cessing and analysis, according to GATK best practice.

Blacklist Creation. The blacklists used in and provided with this manuscript
were created by first collecting unique variants from 3,104 patient exomes
and counting the occurrence of each variant (the number of patients
reported to have the variant). The QC criteria used to collect these variants
were equivalent to those used in gnomAD (MQ ≥ 30). However, we used a
lower DP (DP ≥ 5), compatible with research approaches in which investi-
gators want to retain as much information as possible. These criteria cor-
respond to a high degree of QC despite low coverage, but may allow the
discovery of true disease-causing variants, as illustrated by the example of
the deletion of ISG15, which was initially identified by exome analysis de-
spite a low DP of 4 (46). We did not use the QD value as a QC criterion due to
the erroneous calls for some variants (https://gatkforums.broadinstitute.org/
gatk/discussion/8912/most-variants-called). We explored the FN rate of the
blacklists in the HGMD database and excluded variants that were present in
the set of true disease-causing variants in HGMD according to further
analyses (47). The measurement of variation at multiallelic sites was ren-
dered more effective by separating variants into biallelic and multiallelic
variant groups. Multiallelic variants represent a very specific challenge for
the elimination of NPVs from exomes, as variants at multiallelic positions
may occur individually in a small number of samples. Collectively, however,
these variants may occur in a large proportion of the members of the cohort
(i.e., many individuals may contain one of a number of variants at the po-
sition). The variants at multiallelic sites are often similar (e.g., G in the ref-
erence and an alternative of GA, GAA, GAAA, GAAAA, GAAAAA, etc.) but
have remained resistant to removal from exomes by bioinformatic methods.
For the capture of these variants, we collapsed all variants at multiallelic sites
to a single value by calculating the total number of patients with any variant
at the multiallelic position. When this number exceeded 1% of our cohort,
all variants at the position concerned were included in the full blacklist. This
procedure can thus identify variants present in only a few individuals but
nevertheless occurring at positions with a high cumulative burden of vari-
ation in a cohort. We then considered biallelic variants. If the number of
patients with any individual biallelic variant exceeded 1% of our cohort, the
variant concerned was included in the full blacklist. For a schematic diagram
of this pipeline, see SI Appendix, Fig. S1.

ReFiNE Generation and Usage. ReFiNE and subsequent analyses were per-
formed in Python programming language (version 2.7.14; https://www.
python.org/) and R, using both default and publicly available libraries. The
Python Tkinter module was used to design and implement the graphical
interface for ReFiNE. ReFiNE is available as a graphical interface program
(including a command-line option) that can be run on a standard laptop and
is compatible with comma-separated (CSV) files. ReFiNE can also generate
blacklists from WGS data, although this application has yet to be extensively
tested. ReFiNE includes an optional parameter for the exclusion of a list of
variants from the blacklist regardless of their frequency in the in-house
database. This option can be used to remove a small number of known
true disease-causing HGMD variants, for example. We also provide pre-
calculated blacklists generated from our cohort of 3,104 PID exomes with
cutoffs of 1%, 3%, 5%, and 10%. These blacklists can be used for small
cohorts for which it may not be possible to generate custom blacklists. We
also provide the PID, Neuro, Infection, Africa, and combined blacklists used
in this manuscript, annotated with gnomAD MAFs. Finally, we have con-
structed a public server (lab.rockefeller.edu/casanova/BL) containing all of
the supplemental files, the ReFiNE program, and a user-friendly online tool
that can be used to query whether a variant is included in our blacklist or to
annotate lists of variants in a similar manner.

Statistics and Figures. The Scipy library (https://www.scipy.org/) was used for
statistical analyses performed in Python. Seaborn (seaborn.pydata.org/) was
used to generate figures in Python, together with matplotlib (https://matplotlib.
org). Venn diagrams were generated with jvenn software (48). Wordclouds
were generated with the WordCloud library (https://github.com/amueller/
word_cloud). Prism (GraphPad) was also used for figure generation and
statistical analysis.
Simulating minimum sample size and sample size saturation for blacklists. We de-
termined the minimum number of samples required for the creation of safe
blacklists by generating random blacklists based on 10, 50, 100, 250, 500,
1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000, 4,500, 5,000, 5,500, 6,000, or
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6,500 individuals from the PID and Neuro cohorts. We weighted the random
selection of individuals for the blacklists by project size (i.e., for a sample size
of 10, we picked 4 individuals at random from the PID cohort and 6 at random
from the Neuro cohort). The selection of individuals for each sample size was
repeated 30 times, and full blacklists for each iteration were generated with
ReFiNE. The median number of BL-A variants and a 99% CI based on a normal
distribution were calculated for each sample size and plotted (SI Appendix,
Fig. S18). The number of samples required to reach saturation for blacklist
variants was predicted by fitting a logarithmic trendline to the blacklist
dataset based on the coefficient of determination (R2). The equation for this
line was as follows:

y = 2,801.1× lnðxÞ+3,466.3,

where R2 = 0.7088 (SI Appendix, Fig. S18). We defined saturation as the
number of samples for which less than one cohort-specific variant was added
to the blacklist per new exome. Based on the best-fit equation, we calcu-
lated the saturation point as 2,801 individuals.
Characterization of blacklisted variants by HW equilibrium/disequilibrium, occurrence
in low-complexity regions, and allelic distribution across genetic ancestries. HW
disequilibriumwas calculated for the blacklisted variants found to be present
in the European population (n = 1,150), which constituted the largest pop-
ulation of the PID cohort. χ2 tests were used to assess HW equilibrium. Given
the large number of tests performed and the heterogeneity of European
origins in our European cohort, a stringent threshold of 10−8 for significance
was used for significance. A total of 106 variants with a P value below 10−8

were considered to be in HW disequilibrium and were stratified by excess
genotype as follows: excess of heterozygotes (observed no. of heterozy-
gotes > expected no. of heterozygotes, 57 variants), excess wild-type ho-
mozygotes (observed no. of wild-type homozygotes > expected no. of wild-
type homozygotes, and χ2 for the wild-type homozygote > χ2 for the al-
ternative homozygote, 13 variants), excess alternative homozygotes
(observed no. of alternative homozygotes > expected no. of alternative
homozygotes, and χ2 for alternative homozygotes > χ2 for wild-type
homozygotes, 36 variants).

The occurrence of the variants in low-complexity regions was assessed with
the following tracks from the UCSC Genome Browser: RepeatMasker and
Simple Repeats (group: Repeats), and GC percent (group: Mapping and Se-
quencing). RepeatMasker was created from the RepeatMasker program,
which screens DNA sequences for interspersed repeats and low-complexity
DNA sequences; Simple Repeats reports simple tandem repeats located by

Tandem Repeats Finder (TRF), which was designed especially for this purpose.
Variants were considered to occur in GC-rich regions in which the G+C
content exceeded 80%.

The heterogeneity of ethnicity was assessed in the four largest genetic
ancestry groups in our cohort (European, African, North African, and Middle
Eastern), for the variants found to be in HW equilibrium in the European
population. χ2 tests were used to test the allelic distribution. In total,
203 variants with a P value below 10−8 were considered to be heterogeneous
across ancestries. The ancestry driving heterogeneity was unequivocally
determined for 67 variants, by testing the allelic distributions of four com-
binations of three populations from those mentioned above and deter-
mining the data for the missing population in the combination from the
four that did not reach significance.
Sanger sequencing. DNA was extracted from 10 SV40-fibroblast cell lines
from patients included in our cohort. PCR amplification was performed
with Hot-Start Taq Blue DNA Polymerase (Denville Scientific), 85 ng of
template genomic DNA, and the primers listed in SI Appendix, Table S10.
Sanger sequencing was performed with the BigDye Terminator kit
(Perkin-Elmer).
Analysis of variation in patient exomes. We identified the disease-causing mu-
tation in patient D2 from a previous study (25), using a standard filtration
pipeline. In brief, we removed variants with low-quality metrics (DP < 4,
MQ < 40, QD < 2) that were common in public databases (variant frequency
in gnomAD < 0.0001), variants of high-GDI genes (6), and variants with
CADD scores below their gene-specific mutation significance cutoff (9). Gene
burden was analyzed in our CMC cohort by first filtering each exome, as
described above. We then compared the numbers of individuals with at least
one variant for each mutated gene in the patient group between the pa-
tient (n = 208) and control (n = 960) groups in a one-tailed Fisher’s exact test.
The resulting P values were used to rank genes, to identify those with the
highest levels of enrichment in patients.
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