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Human RIPK1 deficiency causes combined
immunodeficiency and inflammatory bowel diseases
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Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) is a critical
regulator of cell death and inflammation, but its relevance for human
disease pathogenesis remains elusive. Studies of monogenic disorders
might provide critical insights into disease mechanisms and therapeutic
targeting of RIPK1 for common diseases. Here, we report on eight
patients from six unrelated pedigrees with biallelic loss-of-function
mutations in RIPKT presenting with primary immunodeficiency and/
or intestinal inflammation. Mutations in RIPK1 were associated
with reduced NF-xB activity, defective differentiation of T and B
cells, increased inflammasome activity, and impaired response to
TNFR1-mediated cell death in intestinal epithelial cells. The charac-
terization of RIPK1-deficient patients highlights the essential role of
RIPK1 in controlling human immune and intestinal homeostasis, and
might have critical implications for therapies targeting RIPK1.

primary immunodeficiency | inflammatory bowel diseases | rare diseases

Single-gene inborn errors of immunity underlie diverse pa-
thologies such as infection, allergy, autoimmunity, auto-
inflammation, and malignancy. Until now, the discovery of more
than 350 monogenic immune disorders has opened unprecedented
insights into genes and pathways orchestrating differentiation and
function of the human immune system (1). Very early onset in-
flammatory bowel diseases (VEO-IBDs) may also result from
inborn errors of immunity, as evidenced by IL-10R deficiency (2).
Although the spectrum of monogenic disorders affecting the in-
testinal immune homeostasis has recently expanded, most patients
with VEO-IBDs lack a genetic diagnosis. It is of great therapeutic
relevance to define underlying genetic defects: Whereas disorders of
the hematopoietic system can be cured by allogeneic hematopoietic
stem cell transplantation (HSCT), intrinsic defects in epithelial or
stromal cells require other therapeutic strategies. The discovery of
patients with monogenic diseases highlights the functional relevance
of genes and pathways, provides a basis for the development of tar-
geted therapies for both rare and common diseases, and may add to a
critical appraisal of anticipated effects or side effects of therapies (3).

The receptor-interacting serine/threonine-protein kinase 1
(RIPK1) is a key signaling molecule controlling inflammation and
cell death responses through both scaffolding- and kinase-specific
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RIPK1 is a key signaling molecule controlling inflammation and cell
death. Molecular targeting of RIPK1 is considered to be an attrac-
tive therapeutic strategy for inflammatory diseases or autoimmu-
nity. However, the precise function of RIPK1 in human health and
disease remains a matter of debate. Here, we report that human
RIPK1 deficiency results in both immune and intestinal epithelial cell
dysfunctions. Our studies provide insights into the pleiotropic
functions of human RIPK1 and warrant awareness about potential
toxicities of therapeutic strategies targeting RIPK1.
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Fig. 1. Identification of biallelic RIPKT mutations in patients with combined immunodeficiency and pediatric inflammatory bowel disease. (A) Colonoscopy
showing pancolitis with ulcers and granuloma in P1 (Left). Histology of colonic biopsies from P1 revealed chronic-active inflammation (asterisk) with erosions
of the mucosal surface (arrow) (second image from Left) and epithelial degeneration. Higher magnification displays epithelial regeneration with increased
mitotic activity (arrow) and apoptotic bodies (arrowhead) within the crypt epithelium (third and fourth images from the Left). Multiple myeloma oncogene 1
immunohistochemistry indicated subtotal depletion of plasma cells (Right, double arrowhead). (B) Pedigrees of six families (A to F) with patients (P1 to P8)
presenting with primary immunodeficiencies and/or VEO-IBDs. (C) Sanger sequencing confirmed segregation of the biallelic RIPKT mutations with the disease
phenotype in available first-degree relatives. (D) Schematic illustration of the RIPK1 protein domain architecture (NM_003804.3, NP_003795.2). Alignment of
the human RIPK1 protein sequence showed that the mutated amino acids are conserved in orthologs. RHIM, RIP homotypic interaction motif. (E) Immu-
noblotting of three independent experiments revealing reduced protein expression of RIPK1 in patient-derived EBV-transformed B cells (P1, P5, P6, P7, P8) or
fibroblast cell lines (P1, P3) in contrast to healthy donors (HDs) or patients’ relatives. Truncated RIPK1 protein expression in P3 is indicated by an asterisk. (F)
Representative confocal immunofluorescence microscopy images confirming reduced expression of RIPK1 in fibroblasts from P1, compared with HDs.

functions. In particular, RIPK1 is known to mediate multimodal sig-
naling downstream of TNFR1 depending on cell type and biological

absence of CASPS8 (4). The exact mechanisms controlling the
multimodal transition switches from RIPKI1-mediated cell sur-

context (4). While TNF-a—induced NF-kB nuclear translocation
promotes cell survival and inflammatory signaling, modulation of in-
tracellular signaling cascades can also induce caspase-8 (CASP8)—
mediated apoptosis or RIPK3-dependent necroptosis in the
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vival and inflammation to cell death remain largely unknown.
Mice with constitutive deletion of Ripk! die perinatally due to

hyperinflammation and increased sensitivity to TNF-o—induced

cell death and RIPK3-mediated necroptosis (5, 6). Depending on
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Fig. 2. Biallelic loss-of-function RIPK1 mutations lead to impaired NF-kB-mediated signaling. (A and B) Representative luciferase reporter assays showed

reduced NF-kB activation upon TNF-« stimulation in HCT-116 cells with RIPK1 KO or lentiviral-mediated overexpression of RIPK1 mutants, compared with WT
RIPK1. Data shown represent the mean + SD. (C) Representative immunoblotting (n = 3) of serum-starved RIPK1~'~ Jurkat cells with transgenic expression of
mutant RIPK1 variants revealed decreased phosphorylation of the NF-xB p65 subunit (Ser536) in response to TNF-a (50 ng/mL), whereas phosphorylation of
ERK1/2 was normal. (D and E) Representative EMSA (n = 3) showed reduced DNA-binding activity of the NF-xB p65 subunit in Jurkat cells overexpressing the
RIPK1 mutation Y426* (D) or fibroblasts derived from P3 (E) after TNF-a stimulation (50 ng/mL) for 30 min. n.s., nonspecific bands.

the context, murine RIPK1 deficiency might be associated
with increased sensitivity to both RIPK3-dependent nec-
roptosis and TNF-a- and/or CASP8-dependent apoptosis (5—
7). Studies on conditional Ripkl knockout (KO) mice have
demonstrated that RIPK1 plays a critical role in controlling
skin and intestinal inflammation, autoimmunity, and tissue
fibrosis (8-11). RIPK3-MLKL-dependent necroptosis has
been described as a common pathomechanism. However, the
triggers and ligands relevant for activation of the necroptotic
pathway in vivo remain poorly understood. Furthermore,
RIPK1 has also been implicated in murine hematopoiesis
(12), T and B cell homeostasis (13, 14), and inflammasome
activity (5).

A pathogenic role of RIPK1 has been previously linked to
multiple mouse models of disease, including colitis, skin in-
flammation, myocardial infarction, atherosclerosis, pancreatitis,
and viral infections, as well as liver, retinal, and renal injury (15).
Pharmacological inhibition of RIPK1 has been shown to block
necroptosis and protect from ischemic organ damage (16).
Small-molecule inhibitors of RIPK1 activity are currently being
evaluated for patients with psoriasis, rheumatoid arthritis, and
ulcerative colitis (17). Recently, RIPK1 has also been implicated
in tumorigenesis and proposed as a therapeutic target in mela-
noma (18), colon cancer (19), and leukemia (20). However, the
relevance of RIPK1 for human pathogenesis and the balance of
anticipated effects and side effects of targeting RIPK1 are still
discussed controversially.

Here, we report that biallelic loss-of-function mutations in
human RIPK] cause impaired innate and adaptive immunity and
predispose to VEO-IBD.

Results

Identification of Patients with Biallelic Mutations in RIPK1. Our index
patient (P)1 (A.II-1) born to Caucasian parents from Poland
presented with VEO-IBD characterized by growth failure, ab-
dominal pain, chronic mucous and bloody diarrhea, oral aph-
thous lesions, and perianal lesions at the age of 6 mo. Endoscopy
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confirmed the diagnosis of pancolitis with ulcers and granuloma
(Fig. 14, Left), esophagitis, and gastric ulcers. Histology of gastric
and colonic biopsies revealed chronic-active inflammation with
erosions (Fig. 14, second panel from Left), increased apoptotic
bodies within the cryptic bases (Fig. 14, third and fourth panels from
Left), and subtotal depletion of lamina propria plasma cells (Fig. 14,
Right). Extraintestinal manifestations included hepatosplenomegaly,
maculopapular skin and transient atopic skin lesions, recurrent fever,
and infections (pneumonia, conjunctivitis), including episodes of
deep-seated infections and sepsis in the neonatal phase. He showed
a refractory course despite amino acid-based formula, parenteral
nutrition, antibiotics, steroids, azathioprine, and ileostomy and suc-
cumbed to septicemia at the age of 4 y. To decipher the molecular
cause of disease in this patient, we have conducted whole-exome
sequencing and found a rare homozygous missense mutation in the
RIPKI gene (NM_003804.3, c.1844T>C; NP_003795.2, p.1615T)
(Fig. 1 B and C). Further screening for biallelic RIPK] mutations in
more than 1,942 patients with VEO-IBDs and/or primary immu-
nodeficiencies identified another seven patients from five unrelated
pedigrees with homozygous germ-line mutations in RIPKI (Fig. 1 B
and C). The sequence variants in RIPKI have been deposited in
the ClinVar database (21) (accession nos.: SCV000854770-
SCV000854774). While P3 (c.1278C>A, p.Y426*) and P4
(c.954delG, p.M318IfsTer194) primarily manifested with combined
immunodeficiency associated with lymphopenia, P2 (c.1934C>T,
p.T645M), PS5 (c.1934C>T, p.T645M), P6 (c.1802G>A, p.C601Y),
P7 (c.1802G>A, p.C601Y), and P8 (c.1802G>A, p.C601Y) were
primarily referred for genetic testing due to signs of VEO-IBD. All
patients suffered from recurrent bacterial and/or viral infections and
had episodes of diarrhea. Perianal disease was reported in all pa-
tients except for P3. Further clinical details for the patients are
summarized in SI Appendix, Table S1. Segregation of the RIPKI
mutations with the disease phenotype could be confirmed by Sanger
sequencing of available first-degree family members (Fig. 1C). In
silico analysis using PolyPhen (22) and SIFT (23) predicted that the
identified missense mutants in RIPKI are deleterious. These ho-
mozygous mutations have not been previously reported in the
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Genome Aggregation Database (24). Sequence homology analysis
revealed that the mutated amino acids in the death domain of
RIPK1 are evolutionarily conserved (Fig. 1D). Immuno-
blotting of EBV-transformed lymphoblastoid cell lines (EBV-
LCLs) from pedigrees A (P1), E (P5), and F (P6, P7, P8) and
primary fibroblasts from pedigrees A (P1) and C (P3) (Fig. 1E),
as well as confocal immunofluorescence microscopy of fibroblasts
from pedigree A (P1) (Fig. 1F), demonstrated a reduced protein
expression of mutated RIPK1. P3 carrying a frameshift mutation
in RIPKI showed reduced expression of a truncated protein.

P3 and P4 presented with lymphopenia affecting T and B cells
(SI Appendix, Table S2). Immunophenotyping of peripheral
blood mononuclear cells from P1, P6, P7, and P8 showed a de-
creased frequency of CD45RO"CCR7* central memory and
CD45RO*CCR7™ effector memory CD4" and CD8" T cells (ST
Appendix, Fig. S1 A and B), CD45RO*HLA-DR" memory ac-
tivated regulatory T cells (SI Appendix, Fig. S1C), and CXCR3*
CCR6™ T-helper 1 (Th1) and CXCR3"CCR6* T-helper 17 (Th17)
populations (ST Appendix, Fig. S1D), as well as IgD~CD27* class-
switched B cells (S Appendix, Fig. S1E), whereas P5 exhibited
no measurable changes in these parameters (S Appendix, Table
S3). These data suggest that RIPK1 deficiency may lead to com-
bined T and B cell dysfunction. However, T cell proliferation, ac-
tivation, and cell death in response to anti-CD3, anti-CD3/CD28, or
anti-PMA/ionomycin were normal. In addition, we could not ob-
serve a significant difference in cell death in RIPK1-deficient Jurkat
cells upon treatment with FAS ligand, TNF-a + BV6 (the second
mitochondrial activator of apoptosis mimetic), or TNF-a =+
cycloheximide in comparison with RIPK1 wild-type (WT)
reconstituted cells (SI Appendix, Fig. S2).

Defective TNF-a-Mediated NF-xB Signaling in RIPK1-Deficient Cells.
RIPK1 regulates multimodal signaling downstream of TNFR1 in
a cell- and context-dependent manner (25). To assess the conse-
quences of identified mutations for RIPK1 downstream signaling,
we engineered colon carcinoma-derived HCT-116 cells with a
CRISPR/Cas9-mediated RIPKI KO and subsequent lentiviral
overexpression of WT or mutant RIPK1 variants. NF-kB lucifer-
ase reporter assays showed that cells expressing the RIPK1 variant
1615T (identified in P1) exhibited impaired NF-kB activity in
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response to TNF-o, compared with cells with WT RIPK1 (Fig.
2A4). Similarly, we could detect reduced luciferase activity for all five
identified RIPKI mutants after TNF-o stimulation (Fig. 2B). Cor-
respondingly, immunoblotting revealed reduced phosphorylation
of the NF-«kB p65 subunit (Ser536) in Jurkat cells with RIPK]
KO or expression of mutant RIPK1 (Fig. 2C), whereas phosphor-
ylation of ERK1/2 (Thr202/Tyr204) was normal. Electrophoretic
mobility-shift assays confirmed reduced NF-xB DNA-binding ac-
tivity in Jurkat cells expressing the RIPK1 mutant Y426* (Fig. 2D)
and fibroblasts of P3 (Fig. 2F) in response to TNF-o, compared
with WT RIPK1 reconstituted Jurkat cells and healthy donor
fibroblasts, respectively. These data indicate that the identified
mutations in RIPK] are associated with impaired TNF-o—induced
NF-kB signaling.

Altered Inflammasome Activity in RIPK1-Deficient Macrophages.
Previous studies have documented an altered inflammasome
activity in conditional Ripkl KO mice (5, 26). To examine effects
of the identified RIPKI mutations on inflammasome activity, we
have adapted a BLaER1 monocyte cell model with KO of
CASP4 and RIPK]1 (27) and reconstituted the patients’ mutations
by lentiviral gene transfer. In contrast to cells with reconstitution
of WT RIPKI, cells with KO of RIPKI or overexpression of the
RIPK1 mutants (M318fs, Y426*, 1615T, and T645M) showed
increased IL-1p secretion without the requirement of a second-
ary stimulus for the processing of mature IL-1p (Fig. 34). In-
creased inflammasome activity in RIPK1-deficient macrophages
was not associated with increased cytotoxicity upon LPS priming
for 3 h, as indicated by the LDH assay (Fig. 34). Of note, no
difference of IL-1p secretion could be observed upon addition of
nigericin between cells with overexpression of WT and RIPK1
mutants (Fig. 34). Immunoblotting confirmed increased release
of mature IL-1p upon treatment with LPS in RIPK1-deficient
macrophages (Fig. 3B). To test whether the altered IL-1p release
is associated with increased NLPR3 activity and/or MLKL-
dependent necroptosis in human RIPK1 deficiency, we assessed
the inflammasome activation upon treatment with small-
molecule inhibitors of NLRP3 (MCC950) and MLKL (NSA)
(Fig. 3C). The inhibitors reduced IL-1f secretion in LPS-
stimulated RIPK1-deficient macrophages, suggesting that both
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Fig. 4. RIPK1-deficient intestinal epithelial cells show altered cell death responses. (A) Representative FACS analysis of Annexin V/DAPI staining (n = 4) in HT-
29 cells expressing mutant RIPK1 upon 24 h of treatment with TNF-a + BV6 + Z-VAD-FMK. (B) Graphical representation (n = 4) showing decreased frequencies
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represent the means + SD. ME, mercaptoethanol; TSZ, TNF-a + BV6 (SMAC mimetic) + Z-VAD-FMK.

pathways might be implicated in dysregulation of proinflammatory
responses. Taken together, our results suggest that human
RIPK1 plays a critical role in regulating LPS-mediated inflam-
masome activation.

Impaired TNF-a-Mediated Cell Death Responses in RIPK1-Deficient
Epithelial Cells. RIPK1 and RIPK3 are critical regulators of cell
death (28). To study the effect of patients’ mutations on TNF-
a-mediated cell death responses in epithelial cells, we engi-
neered HT-29 colon carcinoma cells with KO of RIPKI and
lentiviral reconstitution of WT or mutant RIPK1 variants. No
alteration of cell death could be observed upon treatment with
TNF-a in RIPKI1-deficient HT-29 cells (Fig. 4 4 and B).
However, cell death responses were impaired upon treatment
with TNF-a and BV6 + the pan caspase inhibitor Z-VAD-FMK
in cells expressing mutated RIPK1 variants (M318fs, Y426%,
C601Y, and 1615T) compared with cells overexpressing WT
RIPK1 (Fig. 4 A and B). Correspondingly, immunoblotting
showed reduced MLKL oligomerization in RIPKI1-deficient
HT-29 cells in response to TNF-a, BV6, and Z-VAD-FMK,
suggesting impaired necroptosis under conditions of RIPK1
deficiency (Fig. 4C).

Discussion

The functional relevance of RIPK1 in human disease has been
controversially discussed. We report RIPK1 deficiency as a
Mendelian disorder predisposing to immunodeficiency and
severe colitis. Whereas it may appear counterintuitive at first
sight to associate immunodeficiency and hyperinflammatory
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responses, several monogenic diseases have a poorly under-
stood Janus-faced appearance, for example autoimmune lym-
phoproliferative syndrome caused by TNFRSF6 (29) and CASP10
(30) deficiency or lymphoproliferation and autoimmunity caused by
1L2RA null mutations (31).

Constitutive Ripkl KO mice appear to exhibit no develop-
mental defects but show perinatal mortality associated with sys-
temic multiorgan inflammation and apoptosis in lymphoid and
adipose tissues (32). A potential role of RIPK1 in pathogene-
sis has been documented in several models of inflammation
and tissue damage (16). In particular, conditional ablation of
Ripkl has been reported to result in severe intestinal and skin
inflammation associated with FADD-CASP8-dependent apo-
ptosis of intestinal epithelial cells and ZBP1-RIPK3-MLKL-
dependent necroptosis of keratinocytes, respectively (8, 11).
Our patients with homozygous mutations in RIPKI showed no
obvious developmental defects, and predominantly presented with
immunodeficiency and diarrhea or colitis. Whereas children with
complete loss of function of RIPK1 (P3, stop-gain mutation; P4,
frameshift mutation) primarily manifested with combined immu-
nodeficiency and diarrhea, patients with missense mutations in
the death domain of RIPK1 were referred for genetic testing due
to IBD-like conditions. Differences in clinical manifestation
might be reflective of genotype—phenotype correlations and in-
complete penetrance, or may be due to secondary factors such as
genetic modifiers, infections, and treatment. Emerging evidence
suggests that kinase-independent RIPK1 functions are critical
in controlling intestinal epithelial homeostasis (5, 6, 8, 11).
None of our identified patients had mutations directly affecting the
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kinase domain of RIPKI, but the identified mutations perturbed
total protein expression. Therefore, our study cannot unequivocally
define whether the abrogated kinase activity is critical in mediating
intestinal inflammation in our patients.

Mice with Ripk! KO in intestinal epithelial cells develop colitis
accompanied by disrupted tissue architecture and increased ap-
optosis (8, 11). In parallel investigations, Cuchet-Lourenco et al.
(33) identified four patients with loss-of-function mutations in
RIPK]1 causing combined immunodeficiency and intestinal in-
flammation due to altered cytokine secretion and necroptosis of
immune cells. Whereas these authors concluded that allogeneic
HSCT may constitute a curative therapy, our studies suggest
that RIPK1 plays a critical role in controlling cell death of the
intestinal epithelium, and thus warrant awareness that HSCT
might dampen intestinal inflammation but not rescue intrinsic
intestinal phenotypes of human RIPKI1 deficiency, similar to
NF-kappa-B essential modulator deficiency (34). The exact
triggers perturbing epithelial integrity in RIPK1 deficiency
could not be fully determined in our studies or mouse models
yet. Further studies are required to shed light on cell- and
context-dependent functions of RIPK1 in controlling intesti-
nal inflammation in vivo.

Necroptosis has been previously linked to the pathogenesis in
various disease models such as atherosclerosis, myocardial in-
farction, ischemic brain injury, systemic inflammation, liver in-
jury, and neurodegeneration (16). Targeting RIPK1 and RIPK3
represents an attractive therapeutic strategy for diseases with
increased necroptotic activity. Necrostatin-1 allosterically in-
hibits RIPK1 activity and has been shown to block necroptosis in
mouse models of ischemia (16). Recently, a small molecule
(GSK2982772) has been developed as an inhibitor of RIPK1
to treat plaque-type psoriasis, rheumatoid arthritis, and ulcerative
colitis in phase 2a clinical studies (17). The beneficial effects of
this therapeutic strategy in patients still remain unclear. Inhibition
of RIPKI1 activity might be considered in patients with severe or
refractory inflammatory or autoinflammatory diseases. Our study
on RIPK1-deficient patients highlights that human RIPK1 has
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pleiotropic cell- and context-specific functions and thus warrants
awareness about potential toxicities of targeting RIPK1.

Taken together, we report that patients with biallelic RIPK1
deficiency present with life-threatening combined immunodefi-
ciency and/or intestinal inflammation associated with impaired
lymphocyte functions, increased inflammasome activity, and al-
tered TNF-o—mediated epithelial cell death responses. Thus, our
study highlights the central role of RIPK1 in controlling human
immunity and intestinal homeostasis.

Materials and Methods

Patients. Peripheral blood and skin biopsies from patients, first-degree
family members, and healthy donors were acquired upon written con-
sent. The study was approved by the respective institutional review boards
of the University of Ulm, Necker Medical School, and University Hospital,
LMU Munich and conducted in accordance with current ethical and legal
frameworks.

Genetic, Inmunologic, and Biochemical Analyses. Methods of genetic analyses,
immunological studies, and biochemical and cell biological assays as well as
statistics are described in S/ Appendix.
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