Skip to main content
. 2018 Dec 24;19(1):57. doi: 10.3390/s19010057

Table 8.

The flow of the CMMD algorithm.

Center Loss with MMD
Input: Training Data [XSource, XTarget] Label YSource
   Hyperparameter λ,α,β, learning rate μt, epochs t
Output: Neural network parameter θc
1: while not converge do
2:  tt+1
3: compute total loss: Lt=Lst + LCt + Lmt
4: compute gradient: LtXit = LStXit + λ·LCtXit + β·LmtXit
5: update central points: Cjt+1=Cjtα·ΔCjt+1
6: update network parameter: θCt+1=θCtμtimLtXit·XitθCt.
7: end while