Skip to main content
. 2019 Jan 18;19:47. doi: 10.1186/s12913-019-3892-9

Table 7.

Generalized linear regression analysis of potential factors influence medical costs

Variables Total costs Total OOP costs
β SE P-value β SE P-value
Intercept 8.944 0.286 0.000 7.359 0.411 0.000
UEBMI 0.398 0.238 0.094 0.771 0.341 0.024
URBMI 0.350 0.241 0.146 0.924 0.347 0.008
Student 0a 0a
Male 0.003 0.072 0.972 −0.041 0.103 0.691
Female 0a 0a
Mental labourer 0.281 0.229 0.220 0.473 0.330 0.151
Manual labourer 0.247 0.125 0.048 0.390 0.180 0.030
Retire 0.219 0.125 0.079 0.069 0.180 0.699
Unknown 0a 0a
New cases 0.164 0.091 0.069 0.138 0.130 0.288
Previously treated cases 0a 0a
Native 0.038 0.061 0.531 0.064 0.088 0.468
Migration in China 0a 0a
Negative cases −0.200 0.061 0.001 −0.064 0.088 0.465
Positive cases 0a 0a
Age − 0.003 0.002 0.107 −0.008 0.003 0.005
Scale 0.111b 0.013 0.229b 0.027

Dependent variable:total costs/total OOP costs

Model (intercept): health insurance, gender, occupation, patient category, residence, sputum smear test and age

a Set to zero because this parameter is redundant

b Maximum likelihood estimate