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Abstract

Background: Genomic structural variation represents a source for genetic and phenotypic variation, which may be
subject to selection during the environmental adaptation and population differentiation. Here, we described a
genome-wide analysis of copy number variations (CNVs) in 16 populations of yak based on genome resequencing
data and CNV-based cluster analyses of these populations.

Results: In total, we identified 51,461 CNV events and defined 3174 copy number variation regions (CNVRs) that
covered 163.8 Mb (6.2%) of yak genome with more “loss” events than both “gain” and “both” events, and we confirmed
31 CNVRs in 36 selected yaks using quantitative PCR. Of the total 163.8 Mb CNVR coverage, a 10.8 Mb region of high-
confidence CNVRs directly overlapped with the 52.9 Mb of segmental duplications, and we confirmed their uneven
distributions across chromosomes. Furthermore, functional annotation indicated that the CNVR-harbored genes have a
considerable variety of molecular functions, including immune response, glucose metabolism, and sensory perception.
Notably, some of the identified CNVR-harbored genes associated with adaptation to hypoxia (e.g., DCC, MRPS28, GSTCD,
MOGAT2, DEXI, CIITA, and SMYDT). Additionally, cluster analysis, based on either individuals or populations, showed that

evolution and breeding.

the CNV clustering was divided into two origins, indicating that some yak CNVs are likely to arisen independently in
different populations and contribute to population difference.

Conclusions: Collectively, the results of the present study advanced our understanding of CNV as an important type of
genomic structural variation in yak, and provide a useful genomic resource to facilitate further research on yak
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Background

Copy number variation (CNV), defined as deletion or
duplication of DNA fragments larger than 50bp in
length compared with a reference genome, is a ubiqui-
tous form of genomic structural variation [1, 2], and has
pronounced effects on phenotype [3, 4] and evolutionary
adaptation [5, 6] through altering gene expression levels
or transcript structure. Many previous publications have
reported the effects of CNVs on evolution [7], popula-
tion diversity [8, 9], and various physiological
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processes(e.g., lipid metabolism [4, 10] and glucose me-
tabolism [11]) and pathological processes (e.g., cancer
related biologic processes [12] and the occurrence and
progression of many tumors [13]). Furthermore, CNV
provides the mechanisms and resources for creating new
genes [14].

Recent studies on the distribution of CNVs in the hu-
man genome have shown that more than 12% of the hu-
man genome containing CNVs [15]. Given the
ubiquitous distribution of CNVs and their importance,
advances in CNV detection have extended to livestock
and poultry species, including pigs [16], goats [17], sheep
[18], cattle [19], and chicken [20]. These animal datasets
provide a very valuable resource for evolution and gen-
etic improvement research. Interestingly, there is grow-
ing evidence for CNVs associated with production traits
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and environmental adaptation. For example, in Holsteins
cattle, 34 CNVs on 22 chromosomes have been charac-
terized as being significantly associated with milk pro-
duction traits, some of which are located within or near
known QTL for milk production traits [21]. CNVs of the
relaxin/insulin-like family peptide receptor 4 gene and
the olfactory receptor are strongly associated with re-
sidual feed intake in Holstein cattle [22], whereas the
CNV region of glycerol-3-phosphate acyltransferase 2
gene shows associations with carcass length and fatty
acid composition in backfat and intramuscular fat [23].
Furthermore, the agouti signaling protein gene CNV al-
lele has been shown to be almost entirely associated with
coat color in Tibetan sheep [24]. 9805 CNV regions
(CNVRs) are estimated to cover approximately 13.05%
of the cattle genome and overlap with 5495 genes that
are involved in environmental adaptation of Nellore cat-
tle to tropical areas [25]. Apolipophorin 3 and fatty
acid-binding protein 2, two genes involved in lipid trans-
port and metabolism, are highly duplicated in the beef
breeds [26]. These findings indicate that multiple benefi-
cial CNVs may have been naturally selected in livestock
during adaptation to different environments and could
be associated with population diversity and economic
characteristics.

The molecular mechanism underlying hypoxic adapta-
tion in highland-local-animal has aroused attention for
biological and medical research, not only because of the
evolutionary significance of high-altitude adaptation, but
also to understand human hypoxia-related diseases (e.g.,
acute mountain sickness, high-altitude pulmonary
edema, and high-altitude cerebral edema [27]). For ani-
mal migrating to or living in high-altitude regions, envir-
onmental hypoxia is a primary challenge. The yak (Bos
grunniens), a ruminant that separated from other rumi-
nants approximately 2.2 million years ago, is mainly dis-
tributed in Qinghai-Tibetan Plateau (QTP) at altitudes
ranging from 2500 to 6000 m, a region characterized by
no absolutely frost-free period. It is known that yak is
the only major livestock animal that can survive the ex-
tremely harsh environments of QTP, and are noted for
their ability to tolerate the cold and anoxic conditions
and resist the local disease threats. At present, there are
more than 16 million domestic yaks, which provide the
necessities for Tibetans and other nomadic pastoralists
in high-altitude environments. In addition, there are 18
affirmed populations of the species in China, including
the artificially breed Datong yak. It should be noted that
the domestic yak is the only large animal that still coex-
ists with its wild ancestors in similar environments [28].
Therefore, the yak provides a good framework for study-
ing effects of CNV in hypoxic adaptation in large live-
stock. In previous studies, 161 CNV regions were
detected from two vyak individuals using the
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cattle-specific Nimblegen3x720K comparative genomic
hybridization (CGH) array, and on the basis of a com-
parison between domestic and wild yak populations,
Zhang et al. identified 121 potentially selected CNV re-
gions harboring genes related to neuronal development,
reproduction, nutrition and energy metabolism [29].

To date, few studies have confirmed the genome-wide
presence of CNVs in relation to hypoxic adaptation in
yak. Here, we selected 16 yak populations from differ-
ent altitudes to conduct a genome-wide CNV analysis,
and subsequently performed cluster analysis at both
individual and population level. Initially, we con-
ducted genome-wide CNV screening of the 16 yak
populations, and thereafter performed GO enrich-
ment analysis of CNVR-harbored genes to identify
their functions. The information gained in this study
will constitute a valuable resource for different yak
populations for future studies on phenotypic variation
and breeding, and will also provide important insights
into the mechanisms underlying yak genomic
evolution.

Methods

Tissue samples

Forty-eight healthy four-year-old yaks of similar weight
were selected from 16 populations inhabiting widely dis-
tributed locations across the QTP (Additional file 1).
The 16 studied yak populations were as follows: Dingq-
ing (DQ), Shenzha (SZ), Gongbujiangda (GD), Cuona
(CN), Jinchuan (JC), Zhongdian (ZD), Sibu (SB), Leiwugqi
(LWQ), Pali (PL), Maiwa (MW), Gannan (GN), Jiulong
(JL), Tianzhu (TZ), Datong (DT), Bazhou (BZ), Jiali
(JL1). It should be noted that the Datong yak is an artifi-
cial breed, the founding male parent of which was a wild
yak. For each population, triangular skin biopsy samples
(ear notches) measuring approximately 15 mm were ob-
tained from three individuals by using a pig ear notcher,
Hemostasis at the biopsy site was accomplished by ap-
plying a spring paper clip over cotton gauze for 5 min
[30]. The samples were immediately snap-frozen in li-
quid nitrogen.

Construction of sequencing library, sequencing, and data
processing
Genomic DNA was extracted and purified following the
standard phenol/chloroform extraction procedure [31],
and subsequently quantified using an Aliglent 2100 bioa-
nalyzer (Agilent Technologies, Palo Alto, CA) and agar-
ose gel electrophoresis [29, 32]. Paired-end sequencing
libraries with an insert size of 500 bp were sequenced
using an Illumian Hiseq 2000 platform.

Low-quality reads were filtered out using PRINSEQ
(version 0.20.4) to obtain the clean reads in accordance
with previously reported criteria [33]. Briefly, the
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following reads were removed: (1) reads with210%
unidentified nucleotides; (2) reads for which more
than 60% of the read length had a Phred quality
value<7; (3) reads with more than 10bp aligned to
the adapter; (4) duplicate reads; (5) reads with three
consecutive base pairs for which Phred value was
lower than 14; (6) reads shorter than 45 bp. The clean
reads were mapped to the yak reference genome
(BosGru_v2.0) using BWA-MEM (0.7.15-r1140) with
set default parameters, and then the SAM format re-
sults were sorted and indexed into Binary Alignment
Map (BAM) format files using SAM tools. Finally,
Genome Analysis Toolkit (version 4.0.10.1) was used
to realignreads located in regions around indels to re-
duce the inaccurate alignment.

CNV identification and CNVR determination

The software CNVnator (v0.3.2), which is better
adapted than other similar softwares with respect to the
accuracy of the copy number estimation [34], was used
for realigned BAM file processing. The parameters were
selected following the recommendations of the author.
After setting the sliding window to a fixed value of 100
bp, the following steps were run to calculate the num-
ber of reads in the interior and both sides of the win-
dow: CNVnator—tree, CNVnator—his, CNVnator—stat,
CNVnator—partition, and CNVnator-cal. Thereafter,
comparison of the average depth of re-sequencing data
and the reference genome was used for further correc-
tion, thereby identifying the occurrence of CNV in the
preset window.

To avoid bias caused by different coverage, the exist-
ence of undefined nucleotide (N) in the genome se-
quence, and false positives results of the CNVnator
software, the CNVs obtained from previous steps were
used for subsequent analysis. The average coverage
depth for each sample and CNV, and the ratio of non-N
bases for each CNV were calculated. For the deletion
type of CNVs, the CNVs were selected as clean CNVs,
which should satisfy the following conditions: (1) a ratio
of non-N bases greater than 0.4 and the covered bases
more than 50% of non-N bases; (2) an average coverage
depth less than 60% of that in the sample. Condition for
selection of the duplication type of CNVs were as fol-
lows: (1) a ratio of non-N bases greater than 0.9, with
covered bases representing more than 90% of non-N
bases; (2) an average coverage depth greater than 140%
of that in the sample. Those CNVs satisfying the respect-
ive two conditions were selected as clean CNVs. In
addition, we only retained the CNVs longer than 1.5kb
for further analysis.

The CNV region is defined as a combined region of
overlapping CNVs on the yak genome. CNVRs are
merged from different individuals with any amount of
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overlap by extending the boundaries of the overlapping
CNVs. Here, Perl script was used for defining the
CNVRs. Only CNVRs present in more than three indi-
viduals were used for subsequent functional and com-
parative analysis.

Quantitative PCR (qPCR) and resequencing data

validation

Quantitative PCR analysis was performed to validate the
accuracy of the CNV assignments. 12 CNVRs that
encompassed functional genes were selected for valid-
ation in 24 randomly-selected individuals. The bovine
basic transcription factor 3 (BTF3) gene, for which no
CNVs or segmental duplications (SDs) were detected in
our analysis and in previous studies [29, 33], was se-
lected as a reference location for qPCR validation. The
M-Value and V-value for BTF3 were 0.25 and 0.11, re-
spectively, and thus the gene is considered to be very
stable, and the normalization factor is reliable according
to the thresholds suggested by Vandesompele et al. (i.e.,
<1.5 for M-value and<0.15 for V-value) [35]. The
primers used for qPCR amplification were designed
using Primer Premier 5.0 (Premier, Canada) software
and synthesized by Invitrogen (Shanghai, China). These
primers are listed in Additional file 2.

Real time qPCR assays were performed using SYBR
Premix Ex Taq II(Perfect Real Time, Takara, Japan) ac-
cording to the manufactures’ instructions. Gene expres-
sion was normalized to that of the reference BTF3 gene.
All real-time reactions, including controls with no tem-
plates, were carried out using a Bio-Rad CFX96
real-time PCR detection system (Bio-Rad, USA). Relative
expression was calculated using the 24" method.
Mean expression levels and standard deviations were ob-
tained from three independent experiments.

SDs detection and association with the distribution of CNV
Using yak BosGru v2.0 genome assembly, a
whole-genome assembly comparison approach was ap-
plied to detect putative SDs. Briefly, sequence identified
as SDs should fulfil the conditions that the sequence is
larger than 1kb in length and has identity greater than
90%. The overlap between the SDs and CNVR was cal-
culated using custom Perl script. Chi-square analysis of
SD distribution in the genome and in CNVRs was then
performed using the Chitest package in R (version
3.3.1). In addition, using previously published Per! script
[36], the association between CNVs and SDs was exam-
ined via random simulations.

Gene annotation and ontology

To assess the gene in each CNVR, the coordinates of
each CNVR in the yak genome assembly were deter-
mined and gene annotation was performed. For this
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analysis, we used those genes comprising more than 50%
CNVR. Gene ontology (GO) enrichment analysis was
performed using the online tool DAVID (https://david.n
cifcrf.gov/). P values were adjusted by false-discovery
rate (FDR). GO terms associated with CNVRs and whole
genome background were plotted using WEGO online
software [37] (http://wego.genomics.org.cn/).

Heatmap analysis

Heatmap analysis was performed based on the sequencing
depth obtained for each individual. Using the “depth”
command in SAM TOOLS, the depth of each base was
computed for each sample. The ratio of the average depth
of each window to the effective depth for each individual
was calculated as the estimated copy number. The esti-
mated copy number values for all samples were then plot-
ted using the heatmap function in the R package.

Cluster analysis between different populations based on CNV
To identify CNV genes with high differentiation among
the 16 populations surveyed in this study, the status of
each CNV in each sample was defined as follows:
deletion-type CNVs were designated -1 and the
amplification-type CNVs were designated 1. If no CNV
were detected, this condition was designated 0. Using
these values, we constructed a CNV matrix for each
sample for clustering. Subsequently, we integrated the
values obtained for three individuals in each population,
and reconstructed a matrix for cluster analysis among
populations. The metric formula used in this analysis
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Statistics

The R package g-value (version 3.3.1) was used to calcu-
late the FDR, and threshold for significant associations
was set at a g-value of <0.05.

Results

Genome-wide identification of CNVs

A total of 0.98 Tbp sequences with an average depth of
8.1 x was obtained from the 48 individuals examined
(Additional file 1). Aligning these sequences to the yak
reference genome revealed that reads from single indi-
vidual covered at least 67.5% of the genome and, on
average, 75.69% of the reference genome was covered,
indicating that the data are sufficient and of sufficiently
high quality for CNV detection.

The SNP distribution of the 48 individuals was ob-
tained via comparing the detected genotype to poly-
morphism sites in the reference sequence. In total, we
detected 247,811,300 SNP events among the 48 individ-
uals, with an average number of 5,162,735 SNPs per in-
dividual (Additional file 3). Using CNVnator software
based on the RD method [34], we detected a total of
51,461 CNV events (with an average of 24,729 gain and
26,732 loss events) from the 48 individuals (Fig. 1,
Additional file 4), the average number of CNVs per indi-
vidual was 1072 with an average of 557 gain and 515 loss
events, and the average number of specific CNV events
per individual was 107. The size of the CNVs identified
varied from 1.5kb to 1460.6 kb, with an average size of
12.26 kb. Details of the identified CNVs and location
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Additional file 5. In addition, we found that CNVs were
distributed in a non-random way and their contents vary
across chromosomes.

A total of 3154 CNVRs were defined by merging all
overlapping calls across multiple individuals into unique
regions and filtering out those that were present in fewer
than three individuals (Additional file 6). These CNVRs
occupied 163.8 Mb or 6.2% of the yak genome (Fig. 2).
Furthermore, 28 CNVRs were found to be common to
all 48 individuals. The detected CNVRs were divided
into three categories according type: 1077 gain, 1776
loss, and 301 gain and loss (Additional file 6).

qPCR analysis was performed to evaluate the accuracy
of individual CNVs predicted [38]. We accordingly
found that 12 CNVRs overlapped functional genes and
24 different individuals were randomly selected for valid-
ation. The results showed that 89% of the CNVs (32/36)
had an accurate copy number (Additional file 2).

SDs detection and comparison with CNVRs

On the basis of whole-genome assembly comparison
(WGAC) methods [39], we initially identified 27,705 pu-
tative SD events (Table 1). In this regard, it is interesting
to note that of the 163.8 Mb CNVRs distributed across
the yak genome, 10.8 Mb of high-confidence CNVRs dir-
ectly overlapped with 52.9 Mb SDs.

Functional analysis of CNV-harbored genes

In total, 1374 protein-coding genes within or partially
encompassed by the 3154 identified CNVRs were re-
trieved from the current yak genome (Additional file 7).
In order to obtain insight into the biological functions of
the CNVR-harbored genes, GO enrichment was per-
formed using the DAVID bioinformatics resource. GO
analysis annotated 765 of the 1374 genes in three main
GO categories: molecular function, cellular component
and biological process (Table 2). Genes in all categories
were mainly involved in 23 processes, including trans-
membrane transporter activity [e.g., deleted in colorectal
cancer (DCC)], guanyl ribonucleotide binding [mito-
chondrial ribosomal protein s28 (MRPS28)], purine me-
tabolism, glucose metabolism [e.g., mono-acylglycerol
O-acyltransferase 2 (MOGAT2)], immune response [e.g.,
dexi homolog (DEXI), class II major histocompatibility
complex transactivator (CIITA), and SET and MYND
domain containing 1(SMYDI)], sensory perception of
chemical stimulus (e.g., dopamine receptor D3), and sen-
sory perception (e.g., solute carrier family 26 member 4
gene). This set of CNV-harbored genes has a wide
spectrum of molecular functions, cellular components
and biological processes, and provides a rich resource
for validating hypotheses on the genetic basis of pheno-
typic variation within and among different yak popula-
tions. Furthermore, it is worth noting that a series of
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CNVR-harbored genes that are associated with adapta-
tion to high altitude [e.g, DCC, glutathione
S-transferase C-terminal domain containing (GSTCD),
MRPS28, and MOGAT2] showed significant differences
in copy number among different populations living at
different altitudes (Fig. 3).

Cluster analysis among individuals based on CNV

Using 48 selected yaks, we determined the different distri-
bution events of CNVs in which we designated a copy
number deletion event as - 1, an amplification event as 1,
and a non-CNV as 0, and subsequently performed cluster
analyze among the different individuals (Additional file 6).
The results showed that the CNV clustering was divided
into two branches (Fig. 4). Furthermore, cluster analyses
were performed based on 16 populations (Fig. 5), and the
results further indicated that the 16 populations were con-
sistently classified into two continental groups.

Discussion

In this study, we detected and verified CNVRs using
whole-genome resequencing and qPCR, the results
showed that the CNVRs occupied 163.8 Mb or 6.2% of
the yak genome, which is slightly higher than the value
determined in previous study that examined 14 wild and
65 domestic yaks (153 Mb, 5.7%) via resequencing [33]
and considerably higher that than determined for two
yak individuals (33 Mb, 1.25%) based on a CGH array
approach [29]. Due to differences in the technology
employed and the individual samples used for CNVs ana-
lysis, even though we found that the number trend of the
three categories was: loss CNVRs > gain CNVRs > gain
and loss CNVRys, it is difficult to compare the CNVs de-
tected in different studies. In the present study, using
next-generation sequencing, we achieved greater confi-
dence and better resolution in calling CNVs than has been
obtained previously. Therefore, compared with previous
studies, most of these newly discovered CNVRs are novel,
and thus further supplement the research base of CNVs in
yak. In addition, for the first time, our study focuses on
the genome CNV maps of different yak populations.

The validation of the accuracy of individual CNVs by
qPCR showed that 89% of the CNVs had an accurate copy
number. It should be note, however, that, given the com-
plex structure of CNVRs and low-copy duplications with
lower sequence similarities, false positive identification is
common in CNV detection via qPCR analysis [29, 40].
Furthermore, the quality of the assembled reference and
the annotated repeats plays a key role in discovering
CNVs using the RD method [26]. Consequently, in order
to preclude false positives from analysis, fluorescence in
situ hybridization and array comparative genomic
hybridization [41, 42] will be required to obtain more ac-
curate information in further studies.
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Table 1 The summary of SDs in yak

Taking into consideration that segmental duplications
(SDs) are among the major catalysts and hotspots for
CNV formation in mammals [43], we sought to determine
whether there are association between the CNVs and SDs
in yak. After analysis, we found that 10.8 Mb of the 163.8
Mb CNVRs directly overlapped with 529 Mb SDs. We

Length (bp) Events Average length (bp) Coverage (Mp)  speculate that the SDs distribution pattern is predominant

1000 26,945 1615 45.199657
5000 718 5990 6.827168
10,000 42 11,097 0.875054

in yak CNVs, which is consistent with previous studies
showing that CNVs are enriched with SDs [44].

Our finding that the CNV-harbored genes are
enriched in sensory perception is consistent with the
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Table 2 The significant GO categories of CNVR-harbored genes
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GO ID Function GO type Adjusted p-value  Number of CNV  Number of all
harbored genes  yak genes
GO:0015399  primary active transmembrane transporter activity molecular function  0.000469 11 50
GO:0019001  guanyl nucleotide binding molecular function  0.017441 33 328
G0:0032561  guanyl ribonucleotide binding molecular function  0.024169 31 312
GO:.0016887  ATPase activity molecular function  0.038654 20 191
GO:0004871  signal transducer activity molecular function  0.087474 53 640
GO:0060089  molecular transducer activity molecular function  0.087474 53 640
GO:0006955  immune response biological process ~ 0.000127 19 108
GO:0002376  immune system process biological process 0.000184 19 111
G0O:0009259  ribonucleotide metabolic process biological process 0.009166 16 122
GO:0009150  purine ribonucleotide metabolic process biological process 0.017198 15 120
GO:0072521  purine-containing compound metabolic process biological process 0.025628 15 126
GO:0009117  nucleotide metabolic process biological process 0.026075 18 160
GO:0009119  ribonucleoside metabolic process biological process 0.033152 14 119
GO:1901135  carbohydrate derivative metabolic process biological process 0.035667 25 249
GO:0006753  nucleoside phosphate metabolic process biological process 0.043746 18 170
G0O:0007186  G-protein coupled receptor signaling pathway biological process 0.047943 49 561
GO:0007606  sensory perception of chemical stimulus biological process 0.049864 125 809
GO:0009116  nucleoside metabolic process biological process 0.058703 14 129
GO:1901657  glycosyl compound metabolic process biological process 0.058703 14 129
GO:0019637  organophosphate metabolic process biological process 0.072145 21 218
GO:0055086  nucleobase-containing small molecule metabolic process  biological process 0.084247 18 185
GO:0007600  sensory perception biological process 0.0031005 154 1023
GO:0071944  cell periphery cellular component  0.024498 10 72

findings of previous studies, which have shown that
there are a large family of olfactory genes and that these
are associated with CNVs in humans [45], mice, and
dogs [46]. This apparent conservation of CNVs across
mammalian species may be attributable, in part at least, to
the fact that selective pressure might drive the acquisition
or retention of specific gene dosage alterations, and that
the gene families involved in sensory perception are typic-
ally rapidly evolving because they play key roles in the re-
sponse of organisms to rapid changes in the environment
and have been repeatedly detected in CNVRs of cattle,
mouse, and dog genomes [47, 48]. The functional category
enrichment of CNV-harbored genes may be a reflection of
their physiological role in the regulation of hypoxic adap-
tion, species evolution and biodiversity.

The DCC gene encodes a netrin receptor, a key regula-
tor in DCC/APPL-1/AKT pathway, which attenuates
hypoxia-induced neuronal apoptosis and improves
neurological function [49, 50]. GSTCD, a member of a
subgroup of the Glutathione S-Transferase (GST) gene
family, plays a specific role in protecting against the
products of oxidation stress, and its expression is in-
duced by compounds associated with chemical stress

and carcinogenesis [51]. MRPS28 is generally expressed
in oxygen sensitive organs, including the brain, cerebel-
lum, and kidney. Mitochondria are the primary energy-
generating system in multiple eukaryotic cells, and are
the energy supply centers for cellular processes, such as
intermediary metabolism, calcium signaling, and apop-
tosis. MOGAT2, a member of MOGAT gene family,
plays an important role in catalyzing the metabolism of
triglycerides and is highly conserved in organisms. In
this study, MOGAT?2 was found to have different degrees
of copy number amplification and deletion in the 16 yak
populations. Heat map analysis also revealed that there
is a significant difference in the CNV of the MOGAT2
among these individuals, which indicates that the mech-
anisms of fat metabolism and carbohydrate utilization
are important to yak production and reproductive per-
formance in the severe environment of the Qinghai-Ti-
betan Plateau. Furthermore, we found DEXI [52], CIITA
[53], and SMYD1 [54] are key genes influencing the im-
mune system and may reflect the substantially different
diseases triggered by the parasites and arbovirus found
at high altitudes. These results suggest that CNV is a key
type of genetic variation that may play an important role
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Fig. 3 Heatmap of CNVR harbored genes. The heatmap of CNVR with DCC gene (a) located in scaffold1008_1, GSTCD gene (b) located in
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Fig. 4 The clustering map in 48 individuals based on CNVs

in yak adaptation to high-altitude environments, and thus
it is desirable to carry out further research on the specific
relationships or interaction mechanisms between the
function of validated genes and CNV.

Our CNV clustering results based on individuals is
consistent with the theory that the yaks have two differ-
ent ancestral origins [55], although we also found that

Ju1

Fig. 5 The clustering map in 16 populations based on CNVs

individuals within a single population showed cross clus-
tering, only SB yaks were found to cluster together and
at a distance from other yak populations, thereby indi-
cating that CNVs may play an important role in the
adaptation to hypoxia in SB yaks and their unique char-
acters. In contrast to SNP-based cluster analysis, differ-
ent yaks in the same population were found to cluster
further from each other in clustering based on CNVs.
For instance, two individuals from the LWQ yak popula-
tion were clustered with the PL yak population, whereas
the other individual in LWQ formed a solitary group.
These findings are consistent with previous studies that
have indicated that the characteristics of CNV-based
clustering can show large variations between individuals,
and that introgression plays a potentially important role
in yak adaptation [56]. Indeed, cluster analysis of CNV
variation has geographic distribution characteristics. For
instance, TZ, DT, GN and MW and JL yaks are geo-
graphically close, which consequently enhances the op-
portunities for exchange genetic information among
these populations, and is reflected in their closer cluster-
ing based on the coefficient of CNV. Similar results were
observed for LWQ, SB and PL1 yaks. On the basis of
these differences of CNV frequency among yaks, we
hypothesize that yak CNVs are likely to arise independ-
ently in individuals/populations and contribute to indi-
vidual/population differences and therefore are related
to the population formation and adaptation, and gene
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communication exist between some populations. Differ-
ent depths of sequence would markedly affect the detec-
tion rate and feature evaluation of CNV. To eliminate
this imbalance as much as possible, cluster analyses were
further performed based on populations, and the results
indicated that the yak populations involved in this study
were consistently classified into two continental groups.

Conclusions

In this study, we employed whole-genome sequencing to
investigate the genome-wide CNV for 48 yaks in 16 pop-
ulations. A total of 24,729 gain and 26,732 loss events,
and 3174 CNVRs covering 163.8 M (6.2%) of the yak
genome were identified. These CNVs provide the largest
source of these variations identified to date along with
the highest-resolution CNVR and SD distribution maps
for the 30 chromosomes of yak. The potential CNVRs
contain 1374 functionally annotated genes and GO en-
richment analysis revealed that these CNVR-harbored
genes are largely related to oxidative phosphorylation, im-
mune response, olfactory receptor activity, and sensory
perception. Some novel CNVR-harbored genes, including
DCC, GSTCD, MRPS28 and MOGAT?2, are probably asso-
ciated with the adaptation to high-altitude environments.
In addition, the findings of our study support the hypoth-
esis that the yak populations are mainly composed of two
distinct ancestries. Taken together, our results constitute a
valuable genome-wide variation resource of different yak
populations for future work on phenotypic variation and
breeding in yaks and provide insights into the mechanisms
underlying yak genome evolution.
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