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ABSTRACT

To better understand the real-world effects of pharmacogenomic (PGx) alerts, this study aimed to characterize

alert design within the eMERGE Network, and to establish a method for sharing PGx alert response data for ag-

gregate analysis. Seven eMERGE sites submitted design details and established an alert logging data dictio-

nary. Six sites participated in a pilot study, sharing alert response data from their electronic health record sys-

tems. PGx alert design varied, with some consensus around the use of active, post-test alerts to convey Clinical

Pharmacogenetics Implementation Consortium recommendations. Sites successfully shared response data,

with wide variation in acceptance and follow rates. Results reflect the lack of standardization in PGx alert design.

Standards and/or larger studies will be necessary to fully understand PGx impact. This study demonstrated a

method for sharing PGx alert response data and established that variation in system design is a significant bar-

rier for multi-site analyses.
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BACKGROUND AND SIGNIFICANCE

Previous literature identified clinical decision support (CDS) tools

integrated into the electronic health record (EHR) as a critical vector

for disseminating pharmacogenomic (PGx) knowledge and improv-

ing drug prescribing accuracy.1–6 A number of organizations have

published on their experiences implementing PGx CDS tools and

have often taken very different design approaches.7–15 There has

been little work examining how live PGx CDS systems affect physi-

cian experience and behavior, and those studies that do evaluate

PGx CDS are generally limited to a single institution.16–18

Clinical genomics is difficult to study at a single institution, in

part due to limited sample sizes. This is one reason a number of

institutions have formed multi-center collaborations to integrate ge-

netic and genomic knowledge into clinical care, including the Elec-

tronic Medical Records and Genomics (eMERGE) Network19–21 and

the Clinical Sequencing Exploratory Research (CSER) Consortium.22

Prior work from the eMERGE Network demonstrated successful PGx

CDS implementations, with ten sites successfully implementing at

least one rule in a clinical environment.15 However, technical matters

are only one aspect of successful IT implementation—the solution

must also be effective in addressing the intended issue. A first step to-

wards determining whether PGx CDS will be effective in improving

prescribing decisions is to examine process outcome measures, such as

physician uptake and response.
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To-date, multi-site analysis of PGx CDS process outcomes has

not been well documented in the literature. Multi-site data aggrega-

tion may enable studies that would not be possible at a single site,

but it remains unclear whether such aggregated analyses are feasible,

due to technical and design differences. Current EHR systems may

make it possible to perform such studies through the use of logging

and auditing data.

OBJECTIVE

This study aimed to demonstrate the feasibility of multi-site PGx CDS

process outcome analysis across the eMERGE Network. The first objec-

tive was to understand and characterize PGx CDS design differences

that could affect data aggregation. The second was to develop, and per-

form a pilot evaluation of, a common data dictionary that would enable

multi-site data collection of physician response to PGx CDS alerts.

MATERIALS AND METHODS

The study population included seven sites from the eMERGE-PGx

workgroup. Major site characteristics are summarized in Figure 1

with additional details in Supplementary Tables SA and SB. Due to

variation in EHR and CDS infrastructure,15 it was necessary to es-

tablish standards for data sharing. Over the course of regular work-

group calls, the group reached consensus on a standardized data

dictionary. This included data fields that described alert scenarios

implemented at each site, as well as data that described individual

instances in which alerts fired in the EHR during clinical encounters.

Each site queried its local database for the requested fields, format-

ted and de-identified data to the agreed specifications, and then sub-

mitted it to the first author for aggregation and analysis. Data were

divided into three primary categories (the complete data dictionary

is described in Supplementary Table SC):

• Alert Scenario: Describes the structure and design of a particular

alert, including a name, description, and the recommendation

the alert provides.
• Alert Instance: Describes a specific instance of an Alert Scenario,

including a scenario ID, the time the alert was seen by a provider,

how the provider responded, and what medications were ordered

after it was viewed.
• Providers: Describes the provider(s) who interacted with an Alert

Instance, including title and specialty.

Objective 1: analysis of PGx CDS implementation

characteristics
TMH and JP conducted informational discussions with subject mat-

ter experts at each site to determine general themes of PGx CDS de-

sign within eMERGE. These discussions informed development of a

data collection tool addressing implementation strategies. In addi-

tion to alert characteristics, we also collected operational character-

istics. One representative from each site submitted responses via

e-mail. Additional implementation characteristics were assessed

through review of the submitted Alert Scenario data.

Alert characteristic analysis focused on the drug–gene interac-

tions (DGI) for which alerts were defined, use of active or passive

alerts, use of pre-test or post-test alerts, use of patient genotype or

phenotype as CDS input, type of recommendation, and available

alert actions. Active alerts were defined as interruptive alerts that

appeared during order entry. Detailed definitions of these terms can

be found in Figure 1 and Supplementary Table SA.

Objective 2: cross-site data collection and pilot out-

comes analysis
Alert data were collected via the Alert Instance fields in the submit-

ted datasets. These data were combined with the Alert Scenario and

Providers data to analyze clinician response. We determined clini-

cian alert response rate by site and by DGI. Clinician response to the

alert consisted of the alert response and clinical response (see Table 2

for detailed definitions of these terms). While alert response values

could be mapped directly to EHR logging data, local workflow vari-

ation required each site to report clinical responses based on local

definitions. Because only two sites implemented passive alerts or

pre-test alerts, quantitative analysis was limited to active, post-test

alerts that contained a prescribing recommendation.

RESULTS

Objective 1: analysis of PGx CDS implementation

characteristics
All seven participating sites (Figure 1) submitted information de-

scribing the nature of their PGx CDS alert designs. There was con-

sistency in several of the alert characteristic categories, particularly

DGI, active vs. passive, and pre- vs. post-test alert strategies. Adult

and pediatric sites differed in which DGIs they implemented. All five

adult sites implemented alerts to assist in prescribing at least two

out of three of the following drugs: clopidogrel (CYP2C19), simva-

statin (SLCO1B1), and warfarin (CYP2C9, VKORC1). The two

pediatric sites chose to focus on other DGIs more common in chil-

dren. Cincinnati Children’s Hospital Medical Center (CCHMC)

implemented alerts for codeine, oxycodone, hydrocodone, and

tramadol, all associated with CYP2D6. Boston Children’s Hospital

implemented alerts for phenytoin, which is also associated with

CYP2C9. Additional detail is in Supplementary Table SA.

All seven sites implemented some form of active alerts. Five of

the seven sites implemented only post-test prescribing alerts.

CCHMC implemented pre-test alerts to encourage clinicians, when

attempting to order a relevant drug, to first order an appropriate ge-

notype test. In addition, they also implemented an alert that would

inform clinicians when a genotype test result already exists, if they

are attempting to order a duplicate test. Mt. Sinai Health System

implemented both pre- and post-test alerts for warfarin only.

There were sixteen total DGIs with alerts defined across the seven

sites. Of those: seven algorithms utilized specific genotypes (eg,

CYP2C19*1/*2) stored in the patient record; five utilized PGx pheno-

types in the form of computed observations2,4 (eg, intermediate

metabolizer); two could utilize either specific genotypes or pheno-

types; and one utilized the simple existence of a genotype test result,

regardless of its contents.

The mechanism by which recommendations were generated varied

by site and specific DGI. For clopidogrel and simvastatin, all sites used

static text to relay the Clinical Pharmacogenetics Implementation Con-

sortium (CPIC) recommendations in their alerts, though Marshfield

Clinic also supplemented these recommendations with dynamically cal-

culated values. Warfarin alerts demonstrated the greatest variability: two

sites displayed only dynamically calculated doses, one site supplemented

dynamically calculated doses with static CPIC recommendations, one

site supplemented dynamically calculated doses with static FDA recom-

mendations, and one site did not calculate a dose, but directed clinicians

to the WarfarinDosing.org website. There was significant variation

among the sites on which actions were available to providers on the

pop-up alerts. Details are in Table 1 and Supplementary Table SA.
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Objective 2: cross-site data collection and pilot

outcomes analysis
Six sites participated in the alert-level analysis and submitted 294

active, post-test alert instances across all DGIs, using the agreed-

upon data structure. Alert responses were aggregated by site and

DGI (Table 2). CCHMC and Vanderbilt University Medical Center

accounted for 212 of the 294 (72%) alerts, with submissions rang-

ing from 9 to 114 instances. The most common alerts were for

codeine and warfarin, accounting for 70% of submitted instances.

Overall, 62% of alerts were accepted and 26% overridden.

Boston Children’s (BCH)
Type: Ac�ve, Post
Responses: N/A

Cincinna� Children’s (CCHMC)
Type: Ac�ve, Pre, Post

Responses: 114

Marshfield Clinic (MC)
Type: Ac�ve, Passive, Post

Responses: 40Mayo Clinic (MCHR)
Type: Ac�ve, Post

Responses: 9

Vanderbilt (VUMC)
Type: Ac�ve, Post

Responses: 98

Mt. Sinai Health (MSHS)
Type: Ac�ve, Pre, Post

Responses: 11

Northwestern (NMH)
Type: Ac�ve, Passive, Post

Responses: 22

Defini�ons

Ac�ve: Site implemented 
interrup�ve alerts that 
appear during order entry

Passive: Site implemented 
informa�onal alerts that 
appear in the EHR 
workflow, but are op�onal 
to view or respond to 

Pre: Site implemented 
alerts that would encourage 
a clinician to perform a 
genotype test prior to 
ordering a par�cular drug

Post: Site implemented 
alerts that appear and 
provide a medica�on or 
dosing recommenda�on 
when gene�c informa�on is 
already on file

Responses: The number of 
ac�ve, post-test alerts 
submi�ed for analysis 

Sites varied in their PGx CDS implementa�on strategies, though all sites implemented at least Ac�ve, Post-Test alerts.  
Others also elected to implement Passive and Pre-Test alerts. For consistency, only the Ac�ve, Post-Test alerts 
responses were aggregated for cross-site analysis, resul�ng in a total of 298 alert responses in the analysis group.

Figure 1. Site characteristics.

Table 1. Available alert actions by site and DGI

Site Gene Drug

Accept

with No

Update

Accept

with

Update

Explicit

Cancel

Implicit

Cancel

View

Educational

Materials

Override

with

Reason

Override

with No

Reason Other

Cincinnati Children’s CYP2D6 codeine X X

oxycodone

hydrocodone

tramadol

Marshfield Clinic CYP2C19 clopidogrel X X X

SLCO1B1 simvastatin X X X

CYP2C9, VKORC1 warfarin X X X

Mayo Clinic CYP2C19 clopidogrel X X X

SLCO1B1 simvastatin X X X

CYP2C9, VKORC1 warfarin X X X

Mt. Sinai CYP2C19 clopidogrel X X X X X X X

SLCO1B1 simvastatin X X X X X X X

CYP2C9, VKORC1 warfarin X X X X X X X X

Northwestern CYP2C19 clopidogrel X X X X

SLCO1B1 simvastatin X X X X

CYP2C9, VKORC1 warfarin X X X X

Vanderbilt CYP2C19 clopidogrel X X X X

CYP2C9, VKORC1 warfarin X X

Sites varied in the actions that they provided to users on PGx CDS alerts, which affected the Accept, Override, and Ignore rates found upon aggregation. Table

includes only the 6 sites that submitted data for aggregation in Table 2.
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Clinically, 42% were followed and 43% not followed. By DGI, sim-

vastatin (92%) and codeine (89%) alerts were most likely to be ac-

cepted, clopidogrel most likely to be overridden (71%), and

warfarin most likely to be ignored (20%). Codeine alerts were most

likely to be followed (60%), while clopidogrel alerts were most

likely to be not followed (62%). Codeine (24%) and clopidogrel

(23%) alerts were also most likely to have no action taken.

DISCUSSION

This study successfully characterized the PGx CDS alert design strat-

egies within eMERGE-PGx and demonstrated the ability of the

eMERGE-PGx sites to share and aggregate PGx CDS alert data

from disparate systems.

The eMERGE Network provided participating sites the freedom

to implement PGx CDS as they each saw fit. This study found wide

variation in implementation strategies, but also revealed an emerg-

ing consensus on how to structure PGx CDS alerts. The most com-

mon alerts implemented were active, post-test, and were based on

CPIC recommendations, confirming a preference for a central au-

thority of PGx recommendations,2 and in line with other studies of

PGx implementation.23 There is also a trend towards preferring dy-

namically calculated recommendations for warfarin dosing.

Despite these areas of commonality, there is significant variation

in how PGx CDS alerts are designed throughout the eMERGE Net-

work. This demonstrates the current lack of EHR standards for stor-

ing and using genomic data and lends support to previous calls for

such standards.24 (Other work has shown that this sort of variation

is not unique to PGx alerts.25) Informal follow-up discussions with

participating sites revealed a variety of site-specific factors that led

to these differences. Common themes in those discussions included

differences in: EHR functionality; availability of informatics and

programming expertise; laboratory data formats; level of resources

(funding and personnel); level of clinician buy-in and participation;

previous experience with CDS; and concerns about risk of alert fa-

tigue. Previous publications shed some light on site-specific decision

making.8,13,15

Sites were almost evenly split as to whether to use genotype or

phenotype as algorithm input. Northwestern Memorial Hospital

expressed a preference for use of phenotype in CDS to simplify pro-

gramming logic and to provide results that were more easily inter-

preted by clinicians. MCHR reported that they were influenced by

the reporting format and interface from their testing laboratory.

Their algorithms prioritized phenotype where available and

defaulted to genotype if a phenotype was not present. Most sites

showed a preference for dynamic warfarin dosing, and commonly

accepted algorithms require genotype as input. Concordantly, all

sites that developed warfarin alerts used genotype, even when using

phenotype elsewhere.

Sites also varied significantly in what responses they allowed to

pop-up alerts. For instance, some sites used explicit “cancel” but-

tons, while others did not. Some sites allowed users to “accept” an

alert recommending a medication change without automatically

updating the order, while other sites would automatically update

the order. In some cases, these sorts of variations occurred across

DGIs within the same site.

While the pilot study was able to aggregate PGx CDS alert data

from disparate systems, the variations in design and small sample

size constrain generalized conclusions about physician response to

PGx CDS. For instance, accepting an alert is not necessarily a mean-

ingful act if it is the only explicit action available. Therefore, the

results reported in Table 2 should not be viewed as a definitive rep-

resentation of the current state of PGx CDS adoption. Though, with

Table 2. Pilot study – provider responses by site and by DGI

Alert Response Clinical Response

Site / DGI Total Alerts Accept Override Ignore Unknown Followed Not Followed No Action

Cincinnati Children’s 114 102 (89%) 0 (0%) 10 (9%) 2 (2%) 69 (61%) 18 (16%) 27 (24%)

Marshfield Clinic 40 39 (98%) 0 (0%) 1 (3%) 0 (0%) 17 (43%) 23 (58%) 0 (0%)

Mayo Clinic 9 4 (44%) 0 (0%) 5 (56%) 0 (0%) 4 (44%) 5 (56%) 0 (0%)

Mt. Sinai 11 8 (73%) 3 (27%) 0 (0%) 0 (0%) 8 (73%) 1 (9%) 2 (18%)

Northwestern 22 9 (41%) 0 (0%) 13 (59%) 0 (0%) 5 (23%) 14 (64%) 3 (14%)

Vanderbilt 98 21 (21%) 72 (73%) 5 (5%) 0 (0%) 21 (21%) 65 (66%) 12 (12%)

Total by Site 294 183 (62%) 75 (26%) 34 (12%) 2 (1%) 124 (42%) 126 (43%) 44 (15%)

Codeine 114 102 (89%) 0 (0%) 10 (9%) 2 (2%) 69 (61%) 18 (16%) 27 (24%)

Clopidogrel 65 14 (22%) 46 (71%) 5 (8%) 0 (0%) 10 (15%) 40 (62%) 15 (23%)

Simvastatin 24 22 (92%) 1 (4%) 1 (4%) 0 (0%) 11 (46%) 13 (54%) 0 (0%)

Warfarin 91 45 (49%) 28 (31%) 18 (20%) 0 (0%) 34 (37%) 55 (60%) 2 (2%)

Total by DGI 294 183 (62%) 75 (26%) 34 (12%) 2 (1%) 124 (42%) 126 (43%) 44 (15%)

Alert response varied across sites. Variation in response rate is likely due to significant differences in alert design. As a result, it is difficult to draw any broad

conclusions about how physicians are responding to PGx CDS alerts in general. Instead, it will be necessary to analyze alert response in relation to the different de-

sign choices made at each site to understand how those choices influence physician behavior.

Definitions.

Alert Response: How the clinician responded to the actual alert that appeared in the EHR interface.

Clinical Response: How the clinician behaved in caring for the patient after viewing the alert.

Accept: Provider explicitly used the CDS-provided “accept” functionality to dismiss an alert.

Override: Provider explicitly used the CDS “acknowledge” or “override” functionality to dismiss an alert.

Cancel: Provider closed an alert without interacting with its contents.

Followed: Provider performed the recommended action within a pre-defined time window after seeing an alert.

Not Followed: Provider performed a clinically relevant, but not recommended, action within a pre-defined time window after seeing an alert.

No Action: Provider performed no clinically relevant action within a pre-defined time window after seeing an alert.
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that caveat, it is worth noting that override rates for PGx CDS alerts

were lower than in studies of other medication-related CDS.26–28

Results from other PGx CDS studies that examined effectiveness are

limited and varied, making them difficult to compare, but it seems

likely that local design differences influence effectiveness.9,11,16,29

These results should be interpreted in context as a pilot study, pro-

viding strong evidence that comprehensive studies of PGx CDS may

be more complex than expected, due to design variation. Addition-

ally, the relatively low firing rate of the majority of alerts in this

study suggests that a larger sample size will be needed to draw defin-

itive conclusions. The consolidation of the EHR market, and the in-

clusion of PGx CDS as a built-in EHR feature, may reduce inter-site

variability and increase PGx CDS usage, thus facilitating multi-site

aggregation in the future. Until then, multi-site studies must be care-

fully focused on areas where sites share common design approaches.

Aside from the issues of site variability and sample size, the pilot

study is limited in that it did not examine the relevance of PGx CDS

alerts, such as alerts potentially firing in inappropriate situations or

providing incorrect recommendations. Nor did it assess the correct-

ness of the clinical actions taken. Sample sizes also made it difficult

to determine how often PGx CDS alerts fire on a per patient basis or

how clinician demographics affect alert response. Such questions,

and others relating to usability and user-acceptance, are unanswered

by this study and are the subject of both previous17,18,30,31 and in-

progress work within the eMERGE Network.

The eMERGE Network is comprised of large, research-oriented

institutions. Their priorities, experience levels, and resources dedi-

cated to genomics may not represent national norms for the use of

PGx CDS.

CONCLUSION

This study serves as a proof of concept for multi-site PGx CDS anal-

ysis. We successfully characterized PGx CDS design across the

eMERGE Network. We found heterogeneity in design choices, with

notable consensus around the use of active, post-test alerts relaying

CPIC recommendations. We found variation in whether sites uti-

lized phenotype or genotype in CDS algorithms, and in the actions

that users may perform on any particular alert. This variation was

unsurprising and likely due to a lack of genomic medicine standards

in the EHR. We successfully created a data dictionary and shared

alert logging data across sites with different EHR infrastructures. Fi-

nally, a pilot analysis using shared data showed that system varia-

tions currently make it difficult to quantitatively analyze physician

response to PGx CDS across sites. Such studies should be narrowly

focused on areas of commonality until PGx CDS designs become

further standardized.
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