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Abstract

How do people acquire knowledge about which individuals belong to different cliques or 

communities? And to what extent does this learning process differ from the process of learning 

higher-order information about complex associations between non-social bits of information? 

Here, we employ a paradigm in which the order of stimulus presentation forms temporal 

associations between the stimuli, collectively constituting a complex network. We examined 

individual differences in the ability to learn community structure of networks composed of social 

versus non-social stimuli. Although participants were able to learn community structure of both 

social and non-social networks, their performance in social network learning was uncorrelated 

with their performance in non-social network learning. In addition, social traits, including social 

orientation and perspective-taking, uniquely predicted the learning of social community structure 

but not the learning of non-social community structure. Taken together, our results suggest that the 

process of learning higher-order community structure in social networks is partially distinct from 

the process of learning higher-order community structure in non-social networks. Our study design 

provides a promising approach to identify neurophysiological drivers of social network versus 

non-social network learning, extending our knowledge about the impact of individual differences 

on these learning processes.
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Consider the important, yet daunting, challenge of learning a social network at a new job. 

Some connections are dictated by management structure, such as who supervises whom, 

project assignments, and administrative burden. Other connections may reflect personal 

connections from shared personal interests, proximity of offices, kids on the same sports 

team, or spouses who are friends from college. Individuals may also cluster together into 

cliques or communities based on these individual work or personal connections. This 

intricate web of human interactions reflects a rich social network of relationships between 

individuals. Navigating these interwoven layers of social connections is critical for success 

at the workplace but also in a much broader range of social interactions with friends, family 

and strangers (Balkundi & Harrison, 2006; Fitzhugh & DeCostanza, 2016; Jehn & Shah, 

1997; Orvis & DeCostanza, 2016). Understanding how people learn relational information 

and update their representations of social network connections and communities may 

provide key insights into a broad range of important questions about human behavior.

Research on statistical learning may provide insights into how people learn relational 

information. People are able to implicitly learn and pick up on spatial and temporal 

associations between objects grouped into communities (Halford, Wilson, & Phillips, 2010; 

Karuza, Thompson-Schill, & Bassett, 2016). Learning relational information about how 

objects or individuals are related to one another in space, time, or content is important for 

reasoning, language, and other higher cognitive processes (Halford, Wilson, & Phillips, 

2010). This information enables individuals to form internal representations of the external 

world (Fiser & Aslin, 2002, 2005; Gómez, 2002; Jenny R. Saffran, Newport, & Aslin, 1996; 

Turk-Browne, Isola, Scholl, & Treat, 2008) which facilitate efficient information processing 

(Fine, Jaeger, Farmer, & Qian, 2013; Karuza, Farmer, Smith, Fine, & Jaeger, 2014; Turk-

Browne, Scholl, Johnson, & Chun, 2010). By learning the relationships between objects or 

between individuals, people understand visual patterns, produce language (Friederici, 2005), 

form knowledge (Bousfield, 1953), develop social intuition (Gopnik & Wellman, 2012), 

exercise logical deduction, and attain expertise in their line of work (Moon, Hoffman, 

Novak, & Canas, 2011). Since social networks are inherently about the relations among 

individuals, learning relational information also likely confers advantages for successfully 

understanding social structure.

Collectively, relational data can be described as a network in which nodes might represent 

concepts, objects, or individuals, and in which edges might represent shared content, social 

relationships, or conditional probabilities (e.g., Moon et al., 2011). Yet, how the organization 

and content of such a network impacts our ability to learn the data is far from understood. 

Progress has been stymied by two critical limitations in both methodology and 

conceptualization. First, methodologically, research has predominantly focused on the 

learning of object pairs or concept pairs, rather than on the learning of higher-order, non-

pairwise relationships present in real-world systems. Recent work suggests that human 

learners are sensitive to higher-order relational information beyond adjacent and 

immediately non-adjacent probabilities (Chan & Vitevitch, 2010; Goldstein & Vitevitch, 

2014; Schapiro, Rogers, Cordova, Turk-Browne, & Botvinick, 2013). Yet, experimentally 

manipulating and studying these higher-order relationships requires a quantitative 

framework in which to characterize the higher-order relationships. The lack of such a 
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framework has challenged our ability to predict how people might learn such higher-order 

relational information.

Network science can provide a useful framework for characterizing complex patterns of 

relationships between pieces of information by conceptualizing the objects or concepts as a 

graph where the objects or concepts are nodes and relationships between the objects or 

concepts serve as edges (Newman, 2010). Network metrics can then be applied to describe 

higher-order patterns of relationships in the graph. For example, the degree to which words 

are clustered together into communities influences how easily a particular word is learned 

(Goldstein & Vitevitch, 2014). Moreover, individuals performing a basic perceptual learning 

task process stimuli more slowly if they lie in different communities (Karuza, Kahn, 

Thompson-Schill, & Bassett, 2017; Schapiro et al., 2013). Thus, the clustering or 

community structure is an important source of information about the higher-order 

relationships embedded in a network.

Second, conceptually, progress has been hampered by the lack of an understanding of the 

similarities and differences between learning relational content among objects, such as 

abstract shapes or verbal commands, and learning relationships among individuals, such as 

colleagues or friends. Categorization research has found that people use different strategies 

when processing information and assigning information to categories, and these strategies 

seem to be relatively consistent across different types of information (Baldwin, 1992; 

Murphy & Medin, 1985; Reed & Friedman, 1973). For example, people use similar 

strategies when categorizing individuals into social communities when the information about 

individuals is presented using conceptual information (age, demographics, etc.) and 

perceptual information (facial features; Reed & Friedman, 1973). But it is not known 

whether categorizing people and categorizing non-social targets operate using similar 

mechanisms.

Categories of objects or concepts are mathematically represented by sets, and are often 

colloquially referred to as clusters. If we connect these objects with edges indicating shared 

features, then objects or concepts in the same category will tend to be more densely 

interconnected than objects or concepts in different categories. In this context, a community 

is a set of objects or concepts whose elements are more densely interconnected with one 

another than expected in a random network null model. Thus, people may adopt similar 

strategies when learning the categories of different types of information or learning the 

community membership of that information.

However, much of the literature on categorization and statistical learning described above 

has focused on learning in one domain (social or non-social) and has not directly compared 

how people learn social versus non-social information. Although traditional views suggest 

that statistical learning of relational data may be relatively agnostic to data category 

(symbols, syllables, visual patterns; Reed & Friedman, 1973; Schapiro et al., 2013), 

emerging evidence demonstrates that category learning is influenced by salient goals (Chin-

Parker & Birdwhistell, 2017). For example, infants are better at learning object properties 

when given additional social cues (Wu, Gopnik, Richardson, & Kirkham, 2011). This work 
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suggests that motivation influences how people process information and social content can 

further aid in learning individual features and categories.

Moreover, neurobiological mechanisms are differentially recruited for learning and 

processing social versus non-social information (Meyer, Spunt, Berkman, Taylor, & 

Lieberman, 2012; Meyer, Taylor, & Lieberman, 2015). The ability and motivation to process 

social information and non-social information is differentially associated with social traits, 

including perspective-taking (Meyer & Lieberman, 2016; Meyer et al., 2015). Furthermore, 

individuals who are more collectivistic tend to think about the self as being closely 

intertwined with others and are more sensitive to social relationships and contextual 

information (Chua, Boland, & Nisbett, 2005; Kim & Markus, 1999; Markus et al., 1991; 

Nisbett, Peng, Choi, & Norenzayan, 2001; Tompson, Lieberman, & Falk, 2015; Triandis & 

Gelfand, 1998), and may therefore be more likely to perceive relational information in social 

networks. It remains an open question whether there might be unique social, cognitive, or 

social-cognitive factors that predict learning of social versus non-social relational data, 

including higher-order community structure.

Here, we addressed these methodological and conceptual challenges by studying individual 

differences in the learning of higher order patterns of relationships. We defined social 
network learning to be the learning of inherently social relational data embedded on a 

network structure. We treated objects or individuals as nodes in a network, and we treated 

relationships (e.g., conditional probabilities or frequencies of co-occurrence) as edges in a 

network. For this study we focused on community structure (where nodes in a community 

are tightly interconnected to one another, with relatively few connections to nodes in other 

communities) as one type of higher-order network structure that could be important for 

individuals to learn.

Across five studies, participants completed a basic perceptual judgment where the order in 

which the stimuli were presented reflected previously defined relationships between the 

stimuli instantiated in a clustered network architecture. The network architecture was never 

explicitly shown to the participants, but we hypothesized that that architecture could be 

inferred by the temporal associations between stimuli. More specifically, stimuli were 

presented such that the stimulus presented on each subsequent trial was connected in a 

network to the stimulus presented on the previous trial. We then manipulated the cover story 

for the stimuli. To study social network learning, we emphasized that the stimuli represented 

people; to study non-social network learning, we emphasized that the stimuli represented 

abstract images or rock formations (depending on the study). Importantly, we used the same 

visual representations across both social and non-social tasks, and only changed the meaning 

ascribed to the stimuli. Using this task and a post-learning categorization task, we implicitly 

measured the degree to which participants learned the higher order community structure of 

social versus non-social networks, including the community assignment for each image.

Using an experimental paradigm that bridges social psychology, cognitive science, and 

network engineering, we examined three broad questions about social and non-social 

network learning. First, some researchers have suggested that learning relational data 

operates in a manner that is independent from the type of data being learned (Schapiro et al., 
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2013). Thus, we hypothesized that people should learn the network structure for both social 

and non-social networks, and that this process should be indexed by our implicit measures of 

learning.

Second, we asked whether there were meaningful differences in the behavioral markers of 

social and non-social network learning despite their broad similarities. Although people 

should be able to learn both social and non-social network structures, previous work has 

found that the processing of social information can be performed independently from the 

processing of non-social information (Meyer & Lieberman, 2016; Meyer et al., 2012, 2015). 

We therefore hypothesized that individual differences in performance on social tasks might 

only show weak correlations with performance on non-social tasks.

Third, we investigated what traits predict social and non-social network learning. Previous 

work has demonstrated that processing social and non-social information is differentially 

associated with perspective-taking (Meyer et al., 2015), leading to our hypothesis that social 

traits (including perspective-taking and social orientation) should uniquely predict learning 

for social networks but not for non-social networks. Collectively, our results advance 

understanding of how people process complex relational information, and how that 

processing is influenced by the type of information being learned.

Overview

We recruited a total of 349 participants across five studies. In the first four studies, we 

recruited participants through Amazon Mechanical Turk. In Study 5, we recruited 

participants from the University of Pennsylvania using an online subject recruitment website 

(Experiments @ Penn). The protocol for all five studies was approved by the Institutional 

Review Board of the University of Pennsylvania.

We first employed a between-subjects paradigm in Studies 1 and 2 to test for implicit 

signatures of network learning in social and non-social networks. In Studies 3 and 4, we then 

examined whether the group difference between social and non-social network learning 

could be replicated at the individual level using a within-subject design. Finally, Study 5 

investigated whether individual differences in traits could account for variability in learning 

social versus non-social networks.

In all five studies, participants viewed a sequence of fractal images and completed a rotation 

detection task where they judged whether each image was rotated 90 degrees. Each image 

was unique, and for each participant, each image was randomly assigned to a network node. 

The sequence of fractal images that each participant saw was generated by a random walk 

through the network (see Figure 1). This random walk ensured that the probability of one 

image being presented after the current trial was equivalent across trials and determined by 

the network structure. Each node was connected to exactly four other nodes, ensuring 

equivalent transition probabilities. The structure of transition probabilities is an important 

cue signaling event structure, which can influence how quickly participants learn 

information (Fiser & Aslin, 2005; Saffran, Aslin, & Newport, 1996; Turk-Browne, Jungé, & 

Scholl, 2005). Therefore, keeping the network structure uniform to remove transition 
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probabilities as a potential source of information about which trials to expect next is 

important for testing whether participants can learn higher-order network topology.

To measure implicit learning of the network structure, we computed differences in RT 

between pre-transition trials that occurred immediately before a transition from one cluster 

to another and post-transition trials that occurred immediately after a transition from one 

cluster to another. If participants learn the cluster membership, then they should anticipate 

seeing a within-cluster image rather than an image from another cluster. This surprisal effect 
should slow participants’ response to the rotation judgment on the next trial (Karuza et al., 

2017; Schapiro et al., 2013). The first two studies also included an odd-man-out test that 

measured learning based on categorization of images (described below) to provide additional 

evidence that participants’ responses were influenced by the network structure. The fifth 

study included two trait questionnaires on social orientation and perspective-taking to 

examine individual differences that account for variability between social and non-social 

network learning.

Study 1

In the first study, we used a between-subjects design to test for implicit signatures of 

network learning in social and non-social networks. The primary goal of Study 1 was to 

establish that participants are capable of learning community structure for both social and 

non-social relational information. Intuitively, slower RT on post-transition trials and greater 

accuracy on the odd-man out task would indicate that individuals successfully learned the 

network structure. In this task, participants were presented with three images at a time and 

instructed to select one of the three images that “did not fit” with the other two. Importantly, 

two of the images on each trial were from the same cluster (i.e., same cluster nodes) and the 

third image (i.e., distant node) was at least three steps away from the other two images.

Study 1 Method

Participants—For the first study, we recruited 76 participants (37 non-social, 39 social) 

using Amazon Mechanical Turk. We excluded two participants who had accuracy lower than 

expected by chance (which we defined as 70%, given the proportion of rotated and unrotated 

trials in the task). None of the results in this study or any other study changed when 

participants with poor performance were included in analyses. Total compensation for a 

participant who completed all phases of either study ranged from $6.25–$9.00 (depending 

on performance bonuses).

Procedure—In Study 1, participants viewed a sequence of fractal images that we created 

using the Qbist filter (Loviscach & Restemeier, 2001) in the GNU Image Manipulation 

program (v.2.8.14; www.gimp.org), converted to grayscale, and then matched for average 

brightness. Each image was unique, and for each participant, each image was randomly 

assigned to a network node. The sequence of fractal images that each participant saw was 

generated by a random walk through the network (see Figure 1). Images were presented for 

1500 ms. To ensure that participants were attending to the stream of images, they were 

instructed to press the J key with their right index finger if the image was rotated (30% of 

trials) and to press the F key with their left index finger if the image was not rotated (70% of 
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trials). The task was broken into 5 segments and participants were given a break between 

segments to reduce fatigue.

Participants completed a brief training procedure prior to starting the rotation detection task. 

First, they were shown each image in its non-rotated orientation. Then, they were shown the 

rotated and non-rotated versions side by side and asked to pick the non-rotated image. Next, 

they completed a practice version of the rotation detection task, where they saw each image 

once in random order. During the task, participants were also given audio feedback to assist 

learning the rotation of images. Specifically, they heard a high audio tone when they made 

an incorrect response and a low audio tone when they responded too slowly (greater than 

1500 ms).

The network structure consisted of three clusters each composed of five nodes, and 

participants viewed a sequence of 1500 fractal images. Participants in the non-social 

condition were simply told that they would be judging whether abstract images were rotated. 

In the social condition, participants were told that “the images that you will see are taken 

from an online social media platform where people can choose one of these images as their 

avatar to represent themselves, much like you might use a photo to represent yourself on 

Facebook or Twitter. While completing the task (described in more detail on the next page), 

please make sure you focus on the people these avatars represent.”

After performing the image rotation judgment task, participants completed an odd-man-out 

test. On each trial, participants were simultaneously presented with three images in random 

order; two of the images represented nodes in the same cluster, and one image was drawn 

from nodes in a different cluster. Participants were told that the stream of images they just 

saw in the exposure phase adhered to a pattern, and they were instructed to select via button-

press one of the three images that “did not fit” with the other two. We picked sets of images 

such that none of the images were boundary nodes (nodes that are connected to their own 

community and also connected to another community), and the probability of each image 

being presented with other images was equivalent. Each set of three images was then 

presented in all permuted orders giving 6 trials per set and 54 trials total.

Data Exclusions—To examine differences in RT due to the transition from one cluster to 

another, we excluded incorrect trials (11.2% data loss) and rotation trials (23.7% data loss) 

as well as trials with implausible response times (i.e., less than 100 ms or greater than 1500 

ms; less than 1% data loss). We also excluded outlier data points greater than 3 standard 

deviations from the mean response time (less than 1% data loss). We also excluded a small 

number of trials (less than 1% data loss) where the random walk transitioned from one 

cluster to another and then immediately transitioned back to the first cluster, which resulted 

in the middle trial counting as both a pre-transition and post-transition trial. There were no 

significant differences in rates of data excluded for social versus non-social conditions.

Statistical Analysis—In our primary analyses, we tested whether previously identified 

indices of network learning in non-social domains might also index the learning of network 

structure in the social domain. Specifically, we examined cross-cluster differences in RT for 

the pre-transition and post-transition trials using linear mixed effects models, implemented 
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in R (v. 3.2.2; R Development Core Team, 2015) using the lmer() function (library lme4, v. 

1.1–10). Intuitively, slower RT on post-transition trials would indicate that individuals 

successfully learned the community structure of the network. Linear mixed effects models 

are ideal for testing repeated measures designs which include both within-subject and 

between-subject variables (Bates, Mächler, Bolker, & Walker, 2015). Importantly, linear 

mixed effects models also allow us to account for between-subject differences in RT.

The primary mixed effects model in Study 1 included node type (pre-transition versus post-

transition), condition (social versus non-social), trial number (standardized), and the two-

way and three-way interactions between these variables, as predictors of RT (with node type 

and trial number included as within-subjects variables and with condition included as a 

between-subjects variable). For all models, we included the fullest set of random effects that 

allowed the model to converge, which included a random intercept for participant and a by-

participant random slope for trial number and node type. All predictors were mean-centered 

to reduce multicollinearity (all rs<.280). We then conducted simple effects analyses to 

examine whether the effect of node type was significant in both the social and non-social 

tasks. We also ran additional analyses including repetition priming effects (number of times 

the image was presented in the previous 10 trials, number of trials since the image was last 

presented) as additional variables in a mixed effects model. Including these variables did not 

alter the significance of the effects reported below, and thus we focus our discussion on the 

first set of analyses.

We also tested whether participants demonstrated network learning using the odd-man out 

task. In this task, participants were shown sets of three images where two images were in the 

same cluster and the third image was in a different cluster and at least 3 steps away from the 

other two images. Thus, if participants learned the network structure (either community 

structure or distance-based features of the network), they should be more likely to indicate 

that the image that was in a different cluster “did not fit” with the other two. To test for this 

behavior, we computed the percentage of trials where participants chose the different-cluster 

image and ran a one-sample t-test to examine whether this percentage was significantly 

greater than chance (33%). We tested this difference in percentage for each condition 

separately, and also ran a two-sample t-test to examine whether accuracy differed for the 

social and non-social tasks.

Study 1 Results

Commonalities in Social Versus Non-Social Network Learning—First, we 

investigated whether participants were able to learn the network architecture implicit in the 

temporal contingencies between stimuli. We fit a linear mixed effects model with node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number 

as predictor variables, using RT as the dependent variable. There was a significant main 

effect of node type (pre-transition versus post-transition), such that participants were 

significantly slower at responding to the post-transition trial than to the pre-transition trial 

for both social and non-social networks (see Table 1 and Figure 2A). There was no main 

effect of condition (social versus non-social), nor was the effect of node type moderated by 

condition. Follow-up analyses examining the cross-cluster surprisal effect for each condition 
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separately confirmed that participants showed a significant cross-cluster surprisal effect in 

both conditions. These results suggest that participants were surprised when the visual 

stream transitioned from one cluster to another, demonstrating that they learned the network 

structure of both the social and non-social networks.

Interestingly, we also found a significant three-way interaction between node type (pre-

transition versus post-transition), condition (social versus non-social), and trial number (see 

Figure 2B). Participants demonstrated smaller cross-cluster surprisal effects at the beginning 

of the social network learning task (versus non-social network learning task) but this 

difference between social and non-social conditions diminished over time, such that the 

cross-cluster surprisal effects were equivalent at the end of the task. These results suggest 

that it may be more difficult to learn the social networks than the non-social networks, but 

that this effect disappears after sufficient practice.

A second measure of network learning is given by the participant’s categorization accuracy 

on the odd-man out task. Participants were significantly more likely to indicate that the 

distant node “did not fit” with the other two same-cluster nodes in both the social task 

(M=0.415, SD=0.134, t(38)=3.95, p<0.001) and in the non-social task (M=0.386, SD=0.127, 

t(34)=2.61, p=.013), and there was no significant difference between the two conditions 

(t(71.73)=0.93, p=.355). These results provide additional evidence that participants learned 

the network structure of both social and non-social networks.

Study 1 Discussion

Study 1 provides converging evidence across two tasks that participants are capable of 

learning community structure of both social and non-social networks. Importantly, 

participants show similar signatures of learning across the two tasks. The primary difference 

between the two results is that participants in the social condition exhibited a stronger 

change in learning rate over the course of the task. This finding suggests that it may be more 

difficult to learn the social networks than non-social networks, but that this effect goes away 

after sufficient practice. There are, however, a few limitations to this first study which we 

aim to address in Study 2. Study 1 did not include a cover story and it is possible that 

differences in learning rate between tasks is simply due to added cognitive load of 

completing the image rotation judgment while thinking about the images as people. Nor did 

it include a test of how much participants were thinking about the abstract images as people 

in each condition. In Study 2, we aimed to correct for these limitations and test the 

generalizability of the results from Study 1.

Study 2

The second study is identical to the first study, except that 1) participants learned a different 

number of communities (two instead of three), 2) participants received a more elaborate 

cover story, and 3) participants were given a post-task manipulation test to measure whether 

they were more likely to think about the social stimuli as people. The purpose of this second 

study was to shorten the task and test for generalization of results across variable network 

size, explicitly control for potential differences in cognitive load, and directly test whether 

participants were more likely to think about the social stimuli as people.
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Study 2 Method

Participants—For Study 2, we recruited 82 participants (40 non-social, 42 social) from 

Amazon Mechanical Turk. We excluded three participants who had accuracy lower than 

chance (70%). Total compensation for a participant who completed all phases of either study 

ranged from $6.25–$9.00 (depending on performance bonuses).

Procedure—The procedure for Study 2 was identical to Study 1, with three notable 

changes. First, we reduced the network size from 15 nodes to ten nodes to shorten the task 

and test for generalization of results across variable network size. In Study 2, the network 

structure consisted of two clusters each composed of five nodes, and participants viewed a 

sequence of 1000 fractal images. The only difference between the odd-man out task in Study 

2 was that it had fewer trials than that in Study 1. Due to the smaller network size, there 

were also fewer potential unique combinations for the odd-man out task, and the odd-man 

out task therefore had fewer trials. Each set of three images in the odd-man out task was 

presented in all permuted orders giving 6 trials per set and 36 trials total.

Second, participants also read a cover story about the images in the non-social condition. 

The purpose of this manipulation in Study 2 was to explicitly control for potential 

differences in cognitive load created by instructing participants to think about the images as 

either people or rock formations. In the social condition, participants received the same 

instructions as in the first study, and were told that “the images that you will see are taken 

from an online social media platform where people can choose one of these images as their 

avatar to represent themselves, much like you might use a photo to represent yourself on 

Facebook or Twitter. While completing the task (described in more detail on the next page), 

please make sure you focus on the people these avatars represent.” In the non-social 

condition, participants were told that the “images were abstract patterns frequently found in 

rock formations. Some of these patterns are visible to the naked eye, whereas others are only 

visible with a microscope. These rock patterns are often created by natural forces, including 

tectonic plate shifts, wind and water erosion, and volcanic activity.” To enhance the cover 

story, we also had participants complete a pre-exposure choice where they were instructed to 

pick an image to serve as their avatar representing themselves (social condition) or to pick 

their favorite rock formation (non-social).

Third, participants completed a post-exposure rating task where they reported how much 

they thought about the images as people on a 5-point scale. We expected that participants 

would report thinking about the images as people more in the social condition than in the 

non-social condition.

Data Exclusions—Data exclusion criteria were identical to Study 1 and exclusion rates 

were similar (incorrect trials: 8.9%, rotation trials: 24.7%, implausible response times: less 

than 1%, outlier response times: less than 1%, and trials where the middle trial counted as 

both a pre-transition and post-transition trial: less than 1%). There were no significant 

differences in data loss across conditions.

Statistical Analysis—Analyses for Study 2 were identical to the analyses for Study 1.
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Study 2 Results

Confirming Attributions of Social Meaning to Fractal Images—To interpret the 

results of our study as relating to social versus non-social network learning, it is imperative 

to first demonstrate that participants attributed social meaning to the fractal images in the 

social condition more so than to the fractal images in the non-social condition. To address 

this question, we tested whether participants were significantly more likely to report 

thinking about the images as people in the social condition than in the non-social condition. 

We found that there was a significant difference in post-task ratings (t(75.01)=3.21, p=.002), 

such that participants reported thinking about the images as people more frequently in the 

social condition (M=2.97, SD=1.19) than in the non-social condition (M=2.00, SD=1.48). 

These results suggest that participants were indeed more likely to think about the abstract 

images as people when told that they represented online avatars.

Commonalities in Social Versus Non-Social Network Learning—Next, we 

investigated whether participants were able to learn the network architecture implicit in the 

temporal contingencies between stimuli. We fit a linear mixed effects model with node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number 

as predictor variables, using RT as the dependent variable. Replicating the results from 

Study 1, there was a significant main effect of node type, such that participants were 

significantly slower at responding to the post-transition trial than to the pre-transition trial 

for both social and non-social networks (see Table 2 and Figure 3A). There was again no 

main effect of condition (social versus non-social), nor was the effect of node type 

moderated by condition. Follow-up analyses examining the cross-cluster surprisal effect for 

each condition separately confirmed that participants showed a significant cross-cluster 

surprisal effect in both conditions.

Replicating Study 1, we also found a significant three-way interaction between node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number 

(see Figure 3B). There was a stronger positive slope for social networks, such that 

participants demonstrated smaller cross-cluster surprisal effects at the beginning of the 

social network learning task (versus non-social network learning task), but by the end of the 

task the surprisal effect was actually larger in the social networks.

A second measure of network learning is given by the participant’s categorization accuracy 

on the odd-man out task. Replicating the results from Study 1, participants were 

significantly more likely to indicate that the distant node “did not fit” with the other two 

same-cluster nodes in the social task (M=0.413, SD=0.216, t(37)=2.37, p=.023) and 

marginally more likely to indicate that the distant node “did not fit” with the other two same-

cluster nodes in the non-social task (M=0.375, SD=0.169, t(40)=1.69, p=.099), and there 

was no significant difference between the two conditions (t(70.05)=0.87, p=.386).

Study 2 Discussion

Study 2 replicates Study 1 by showing that participants slow their responses following a 

transition from one cluster to another and are more likely to group images from the same 

community together. We also find that participants once again were slower at learning the 
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social network structure, despite adding a cover story to the non-social task to try to account 

for differences in cognitive load. Taken together, these results provide robust evidence that 

individuals are capable of learning community structure of both social and non-social 

networks. One limitation of both Study 1 and Study 2 is that they employed a between-

subjects design. A stronger test of the potential overlap or independence of social and non-

social network learning would involve having participants complete both tasks, to directly 

compare each individual’s ability to learn community structure of both social and non-social 

networks.

Study 3

In our third study, we complemented the between-subject approach of the first two studies 

with a within-subject approach. Here, we directly examined whether individuals with better 

performance on the non-social network learning task also displayed better performance on 

the social network learning task. To the extent that these skills are independent, we would 

expect minimal relationship between performance on one task and performance on the other 

task. In contrast, if a common set of mechanisms underpins all types of network learning, 

then we would expect that performance on these two tasks would be correlated across 

subjects. Importantly, there could also be individual differences in motivation to learn social 

versus non-social networks, where some individuals are more motivated to learn social 

relationships than others. To reduce any potential participant fatigue induced by completing 

two 25-minute image rotation tasks (required due to the within subject design), we did not 

include the odd-man out task in this study.

Study 3 Method

Participants—For Study 3, we recruited 65 participants from Amazon Mechanical Turk. 

The order of the social and non-social conditions was counterbalanced across participants. 

We excluded one participant who had accuracy lower than chance (70%). Total 

compensation for a participant who completed all phases of either study variant ranged from 

$6.25–$9.00 (depending on performance bonuses).

Procedure—The procedure for Study 3 blended the procedures from Study 1 and Study 2 

while adapting the task for a within-subject paradigm. As in the first two studies, 

participants completed a rotation detection task where the stimulus order followed a random 

walk along a modular community. Study 3 used the non-social cover story (abstract images) 

from Study 1, but the same community structure as Study 2. We used 10 unique fractals for 

each condition, and the images were randomly assigned to the social and non-social network 

for each participant. Images in each condition were organized into two clusters of five 

images, and participants completed 1,000 trials per condition.

Designing a within-subject version of the image rotation task required a few key 

modifications. First, we removed the odd-man out task to reduce fatigue for participants, 

since each condition of the image rotation task took 25 minutes. Second, to increase the 

degree to which subjects differentiated between the social and non-social conditions, we 

instructed participants as follows in the second variant: “In this study, we are interested in 

how the source and context of abstract patterns influences their representation. For each part 
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of the study, try to focus on the instructions and type of images that you are looking at IN 

THAT PART.”

Data Exclusions—Data exclusion criteria were identical to Studies 1 and 2 and exclusion 

rates were similar (incorrect trials: 9.2%, rotation trials: 24.5%, implausible response times: 

less than 1%, outlier response times: less than 1%, and trials where the middle trial counted 

as both a pre-transition and post-transition trial: less than 1%). There were no significant 

differences in data loss across conditions.

Statistical Analysis—As in the first two studies, we tested cross-cluster differences in RT 

for the pre-transition and post-transition trials using linear mixed effects models. The only 

difference between the mixed effects model in Study 3 and earlier studies is that condition is 

now treated as a within-subjects variable. We also ran an additional analysis including 

condition order as a between-subjects variable to the model to test whether the order in 

which participants completed the task influenced how they processed the images. Including 

condition order did not alter the significance of the effects reported below, and thus we focus 

our discussion on the first model.

Using the within-subjects design of Study 3, we were also able to test whether individuals 

who performed better in the non-social network learning condition also performed better in 

the social network learning condition. To isolate cross-cluster surprisal from individual 

differences in response time, we converted response times to z-scores (within-subject) and 

then computed the average difference in standardized RT for each subject. We then tested 

whether there was a significant correlation between the mean standardized RT difference 

between pre-transition and post-transition trials for social and non-social network runs. We 

also ran linear regression analyses adding condition order as a covariate to test whether the 

relationship between social and non-social network learning differed depending on the order 

in which participants completed the task. Finally, we also ran these analyses without first 

standardizing the response times within-subject and found the same effects when testing 

whether there was a significant correlation between the mean RT difference between pre-

transition and post-transition trials for social and non-social network conditions.

Study 3 Results

Confirming Attributions of Social Meaning to Fractal Images—We first tested 

whether participants were significantly more likely to report thinking about the images as 

people in the social condition than in the non-social condition, in order to demonstrate that 

participants attributed social meaning to the fractal images in the social condition more so 

than to the fractal images in the non-social condition. Consistent with the effects from Study 

2, we also found a significant difference in post-task ratings in Study 3 (t(63)=4.34, p<.001), 

such that participants reported thinking about the images as people more frequently in the 

social condition (M=2.77, SD=1.16) than in the non-social condition (M=2.22, SD=1.33).

Commonalities in Social Versus Non-Social Network Learning—Next, we 

investigated whether participants were able to learn the community structure implicit in the 

temporal contingencies between stimuli. To address this question, we examined RT 

Tompson et al. Page 13

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



differences for pre-transition and post-transition trials; intuitively, slower RT on post-

transition trials would indicate that individuals successfully learned the network structure. 

We fit a linear mixed effects model with node type (pre-transition versus post-transition), 

condition (social versus non-social), and trial number as predictor variables, using RT as the 

dependent variable. Replicating the effects from Studies 1 and 2, there was a significant 

main effect of node type, such that participants were significantly slower at responding to 

the post-transition trial than to the pre-transition trial for both social and non-social networks 

(see Table 3 and Figure 4A). Replicating Studies 1 and 2, there was again no main effect of 

condition (social versus non-social), nor was the effect of node type moderated by condition. 

Follow-up analyses examining the cross-cluster surprisal effect for each condition separately 

confirmed that participants showed a significant cross-cluster surprisal effect in both 

conditions.

The rate of learning effect found in Studies 1 and 2 did not replicate in Study 3. Specifically, 

the three-way interaction between node type (pre-transition versus post-transition), condition 

(social versus non-social), and trial number was not significant (see Figure 4B). This result 

diverges from the previous results found in Studies 1 and 2, where participants were slower 

in the social network learning condition. This effect might be in part due to the within-

subject design and participants becoming more familiar with the task from the first version 

they completed to the second version, which reduces changes in cross-cluster surprisal over 

time.

Individual Differences in Social Versus Non-Social Network Learning—Next, we 

turned to an examination of individual differences in social versus non-social network 

learning. Specifically, we were interested in determining the degree to which people who are 

good at learning one type of network are also good at learning the other type of network. If 

we observed a correspondence in performance, it would suggest that the mechanism of 

learning social networks was similar to that of learning non-social networks. Conversely, if 

there was weak or no correspondence in performance, it would suggest the existence of 

distinct mechanisms or distinct motivations underlying social versus non-social network 

learning. To determine which explanation was supported by the data, we examined the 

correlation between each individual’s cross-cluster surprisal effect in the social and non-

social networks.

We observed no correlation between learning on the social and non-social tasks (r(62)=−.

026, p=.841; see Figure 4C). These data are consistent with the notion that there may be 

distinct processes underlying social versus non-social network learning, either in terms of 

motivation or in terms of learning mechanism, and that different components may be 

stronger in one person than another. In other words, even though we observe no aggregate 

differences in learning social and non-social networks for the group as a whole, different 

people efficiently learn social and non-social network information.

Importantly, these results held even after controlling for condition order. The interaction 

between condition and condition order was not significant (b=−0.27, SE=0.28, t(60)= −0.96, 

p=.340), and the association between social and non-social network learning was not 

significant when participants saw the social task first (r(31)= −.139, p=.442) and the non-
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social task first (r(29)=.109, p=.569). These results suggest that the lack of an association is 

not due to differences in condition order.

Study 3 Discussion

Study 3 shows that our cross-cluster surprisal measure of social and non-social network 

learning generalizes to a within-subjects task where participants complete both a social and 

non-social image rotation task. We did not replicate the differences in learning rate found in 

Studies 1 and 2, potentially due to the within-subject design and participants becoming more 

familiar with the task from the first version they completed to the second version. 

Importantly, this within-subjects design also allowed us to test whether individuals who were 

better at learning community structure in one type of network were also better at learning 

community structure in the other type of network. We found that there was no correlation 

between cross-cluster surprisal in the social and non-social tasks, such that people who were 

better at the social task were not necessarily better at the non-social task, and vice versa. 

This result may suggest that social and non-social network learning involve at least partially 

distinct mechanisms or motivation. This study suffered from the same limitation as Study 1, 

and in order to control for variation in cognitive load due to the social cover story, we ran an 

additional study with the same within-subjects design as Study 3, but adding in the rock 

formation cover story.

Study 4

Study 4 used an identical procedure as Study 3, except that participants were given the rock 

formation cover story for the non-social condition. This allowed us to test whether 

individuals who were better at non-social network learning were also better at social network 

learning while controlling for cognitive load induced by the cover story. To reduce order 

effects and bleed over of the cover story from the first task to the second task, we also 

included additional text between tasks to encourage participants to ignore the previous task 

when completing the second task.

Study 4 Method

Participants—In Study 4, we recruited 94 participants from Amazon Mechanical Turk. 

The order of the social and non-social conditions was counterbalanced across participants. 

We excluded five participants who had accuracy lower than chance (70%). Total 

compensation for a participant who completed all phases of either study variant ranged from 

$6.25–$9.00 (depending on performance bonuses).

Procedure—The procedure for Study 4 was identical to Study 3, with two notable 

changes. First, we added the rock formation cover story back in, in order to help account for 

differences in cognitive load due to the cover story. Second, to increase the degree to which 

subjects differentiated between the social and non-social conditions, we instructed 

participants as follows in the second variant: “In this study, we are interested in how the 

source and context of abstract patterns influences their representation. For each part of the 

study, try to focus on the instructions and type of images that you are looking at IN THAT 

PART.”
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Data Exclusions—Data exclusion criteria were identical to Studies 1–3 and exclusion 

rates were similar (incorrect trials: 10.4%, rotation trials: 21.9%, implausible response times: 

less than 1%, outlier response times: less than 1%, and trials where the middle trial counted 

as both a pre-transition and post-transition trial: less than 1%). There were no significant 

differences in data loss across conditions.

Statistical Analysis—Analyses in Study 4 were identical to analyses in Study 3.

Study 4 Results

Confirming Attributions of Social Meaning to Fractal Images—We first tested 

whether participants were significantly more likely to report thinking about the images as 

people in the social condition than in the non-social condition, in order to demonstrate that 

participants attributed social meaning to the fractal images in the social condition more so 

than to the fractal images in the non-social condition. Replicating the results from Studies 2 

and 3, we found a significant difference in post-task ratings (t(88)=5.13, p<.001), such that 

participants reported thinking about the images as people more frequently in the social 

condition (M=2.86, SD=1.13) than in the non-social condition (M=2.26, SD=1.32).

Commonalities in Social Versus Non-Social Network Learning—Next, we 

investigated whether participants were able to learn the community structure implicit in the 

temporal contingencies between stimuli. We fit a linear mixed effects model with node type 

(pre-transition versus post-transition), condition (social versus non-social), and trial number 

as predictor variables, using RT as the dependent variable. Replicating the results from 

Studies 1–3, there was a significant main effect of node type, such that participants were 

significantly slower at responding to the post-transition trial than to the pre-transition trial 

for both social and non-social networks (see Table 4 and Figure 5A). There was again no 

main effect of condition (social versus non-social). Unlike prior studies, we did find a two-

way node × condition interaction, such that participants showed greater cross-cluster 

surprisal in the non-social than the social condition.

Follow-up analyses examining the cross-cluster surprisal effect for each condition separately 

confirmed that participants showed a significant cross-cluster surprisal effect in both 

conditions, although this effect was larger in the non-social condition than in the social 

condition. Once again, we found that the three-way interaction between node type (pre-

transition versus post-transition), condition (social versus non-social), and trial number was 

not significant (see Figure 5B). Thus, this interaction is significant in both between-subjects 

design studies but not significant in both within-subjects design studies.

Individual Differences in Social Versus Non-Social Network Learning—Next, we 

turned to an examination of individual differences in the learning of community structure in 

social versus non-social networks. Specifically, we were interested in determining the degree 

to which people who are good at learning community structure in one type of network are 

also good at learning the community structure in other type of network. Replicating the 

effect from Study 3, we observed no correlation between learning on the social and non-

social tasks (r(87)=.157, p=.141; see Figure 5C). These data are consistent with the notion 
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that there may be distinct processes underlying the learning of community structure in social 

versus non-social networks, either in terms of motivation or in terms of learning mechanism.

Somewhat surprisingly, these results were influenced by condition order. There was a 

significant interaction between condition and condition order (b=−0.47, SE=0.21, t(85)= 

−2.26, p=.027), such that the association between learning on social and non-social networks 

was not significant when participants performed the social task first (r(47)=−.110, p=.452), 

but there was a significant correlation when participants performed the non-social task first 

(r(38)=.400, p=.011). Because this effect does not hold up in Study 3 and represents a small 

subset of the data, we cannot make a strong statement about this effect.

Study 4 Discussion

Taken together, all four studies discussed so far provide compelling evidence that 

participants learn community structure of both social and non-social networks. Importantly, 

Studies 3 and 4 also show that there is little association between learning rates within-

subjects, suggesting that individuals who learn community structure in non-social networks 

are not also better at learning community structure in social networks, and vice versa. 

Interestingly, the one scenario where we did see an association between performance on 

social and non-social networks was when participants performed the non-social task first and 

were given a clear cover story for both tasks. Study 4 is also the only study that shows a 

significant difference in cross-cluster surprisal between the social and non-social conditions. 

However, this effect does not replicate in any of the other studies and a meta-analysis 

(described below) reveals this effect is not significant across studies. Further, given that our 

evidence so far for distinct mechanisms leading to social and non-social community learning 

is based on a lack of correlation (and hence limits our ability to make strong inferences), in 

the next study, we attempt to more directly show that different types of people are most 

efficient in learning community structure on social versus non-social networks.

Study 5 Introduction

Finally, our fifth study investigated whether learning the community structure of social and 

non-social networks is influenced by social traits. This study was identical to Study 4, with 

two notable changes. First, participants completed individual difference questionnaires 

designed to test social traits, including social orientation and perspective taking. The 

acquisition of this data allows us to more directly test whether social and non-social network 

learning are influenced by distinct processes. Second, to accommodate the longer study 

duration, we chose to recruit participants from the Philadelphia area who then completed the 

task in the lab. This change allowed us to more carefully monitor subject fatigue and 

replicate the earlier studies in a more controlled environment.

Study 5 Method

Participants—We recruited 33 participants from the University of Pennsylvania who 

completed the study in an on-site laboratory, and we excluded 2 participants due to missing 

data (server malfunction) and 1 participant who had accuracy lower than chance (70%). 

Total compensation for Study 5 ranged from $20–$30 (depending on performance bonuses).
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Procedure—The procedure for Study 5 was identical to Study 4: it included cover stories 

for both the social and non-social conditions, and it also included extra instructions to 

encourage participants to differentiate between the instructions for the two conditions. The 

important new feature of this study was that we asked participants to complete two 

questionnaires measuring individual differences in social orientation and perspective-taking.

Social Orientation: The Triandis Individualism-Collectivism Scale (Triandis & Gelfand, 

1998) consists of 15 items measured on a 7-point scale. It is designed to assess the extent to 

which an individual thinks about himself or herself as independent of and distinct from 

others (8 items) versus the extent to which an individual thinks about himself or herself as 

interdependent on and connected to others (7 items). Sample independent items include, “I'd 

rather depend on myself than others” and “My personal identity, independent of others, is 

very important to me” (M=4.75, SD=0.75 α=.700). Sample interdependent items include, “I 

feel good when I cooperate with others” and “It is important to me that I respect the 

decisions made by my groups” (M=5.43, SD=0.65, α=.670). For our composite social 

orientation score, we reverse coded interdependent items and computed the average response 

across all 15 items for each participant (M=3.73, SD=0.56, α=.722).

Perspective-Taking: The Interpersonal Reactivity Index (Davis, 1980) consists of 28 items 

measured on a 5-point scale. It further consists of four subscales measuring different 

components of empathy, including perspective-taking, fantasy, empathic concern, and 

personal distress. In these analyses, we focused on the most cognitive component – 

perspective-taking – since we did not hypothesize any involvement of fantasy or emotional 

responses in the learning of community structure in networks. Sample items include, “I try 

to look at everybody's side of a disagreement before I make a decision” and “I sometimes try 

to understand my friends better by imagining how things look from their perspective”. Two 

of the seven items in the perspective-taking subscale were reverse coded, and we computed 

the average response for each participant (M=4.23, SD=0.67, α=.733).

Data Exclusions—Data exclusion criteria were identical to Studies 1–4 and exclusion 

rates were similar (incorrect trials: 8.7%, rotation trials: 26.2%, implausible response times: 

less than 1%, outlier response times: less than 1%, and trials where the middle trial counted 

as both a pre-transition and post-transition trial: less than 1%). There were no significant 

differences in data loss across conditions.

Statistical Analysis—As in Studies 3 and 4, we tested cross-cluster differences in RT for 

the pre-transition and post-transition trials using mixed effects modeling and tested whether 

individuals who are better at learning the community structure of non-social networks were 

also better at learning the community structure of social networks. However, information 

about task order for Study 5 was lost due to a technical malfunction, and therefore we were 

not able to analyze whether task order influenced the reported effects.

Using the additional individual differences measures collected in Study 5, we were also able 

to test whether differences in social orientation and perspective-taking accounted for 

differences between learning conditions. To examine individual differences in the learning of 

community structure in social and non-social networks, we first converted RT to z-scores 
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(within-subject) and computed the average standardized cross-cluster surprisal effect 

separately for the social task and the non-social task. We then fit linear mixed effects models 

with condition (social versus non-social) and scores on a single trait measure (either social 

orientation or perspective-taking) as predictor variables, and with standardized cross-cluster 

surprisal as a dependent variable.

Study 5 Results

Confirming Attributions of Social Meaning to Fractal Images—First, we tested 

whether participants were significantly more likely to report thinking about the images as 

people in the social condition than in the non-social condition. Consistent with the effects 

from Studies 2–4, we also found a significant difference in post-task ratings in Study 5 

(t(29)=2.90, p=.007), such that participants reported thinking about the images as people 

more frequently in the social condition (M=2.33, SD=0.99) than in the non-social condition 

(M=1.80, SD=1.06).

Commonalities in Social Versus Non-Social Network Learning—Next, we 

investigated whether participants were able to learn the network architecture implicit in the 

temporal contingencies between stimuli. In order to test whether participants were 

significantly slower on post-transition trials than pre-transition trials, we fit a linear mixed 

effects model with node type (pre-transition versus post-transition), condition (social versus 

non-social), and trial number as predictor variables, using RT as the dependent variable. 

Consistent with the results from Studies 1–4, we found that there was a significant main 

effect of node type, such that participants were significantly slower at responding to the 

post-transition trial than to the pre-transition trial for both social and non-social networks 

(see Table 5 and Figure 6A). Moreover, there was no main effect of condition, nor was the 

cross-cluster surprisal effect moderated by condition. Follow-up analyses examining the 

cross-cluster surprisal effect for each condition separately confirmed that participants 

showed a significant cross-cluster surprisal effect in both conditions. As in Studies 3 and 4, 

we did not find a significant interaction between node type (pre-transition versus post-

transition), condition (social versus non-social), and trial number (see Figure 6B). This 3-

way interaction is significant in both between-subjects design studies but not significant in 

the three within-subjects design studies.

Individual Differences in Social Versus Non-Social Network Learning—Next we 

turned to an examination of individual differences in learning the community structure of 

social versus non-social networks. As in Studies 3 and 4, we were interested in determining 

the degree to which people who are good at learning community structure in one type of 

network are also good at learning community structure in the other type of network. Similar 

to Studies 3 and 4, we observed no correlation between learning during the social task and 

learning during the non-social tasks for Study 5 (r(28)= −0.074, p=.697); see Figure 6C. The 

combined correlation across the three within-subjects studies (Studies 3–5) was only 0.049 

(p=.512).

To further examine the question of potentially distinct processes underlying the learning of 

community structure in social versus non-social networks, we asked whether social traits of 
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a participant predicted their ability to learn the community structure in social networks but 

not their ability to learn the community structure in non-social networks. We found that 

there was a significant interaction between social orientation and condition (b=0.21, 

SE=0.08, t(28.00)= −2.61, p=.014), such that individuals who reported greater collectivistic 

(versus individualistic) cultural values showed greater cross-cluster surprisal for the social 

networks (r(28)=.492, p=.006; see Figure 7A), but there was no association between social 

orientation and cross-cluster surprisal for the non-social networks (r(28)=−.164, p=.387). 

There was also a marginally significant interaction between perspective-taking and condition 

(b=0.13, SE=0.07, t(56.00)=1.90, p=.063; see Figure 7B), such that individuals who reported 

greater perspective-taking showed greater cross-cluster surprisal for the social networks 

(r(28)=.412, p=.024), but there was no association between perspective-taking and cross-

cluster surprisal for the non-social networks (r(28)=−.080, p=.674). These results suggest 

that people who are more in tune with others, who think about the self as connected to 

others, and who frequently consider the perspectives of others, are more likely to learn the 

community structure when the network is social versus non-social. These data provide 

additional evidence that the learning of community structure in social networks is 

characterized by some processes that are independent from those implicated in the learning 

of community structure in non-social networks.

Study 5 Discussion

Study 5 replicated the key findings from the first four studies using an in-lab experiment. We 

find that participants were capable of implicitly learning the complex, higher-order structure 

of social networks. We also found that their performance in social network learning was 

uncorrelated with their performance in non-social network learning. Furthermore, social 

traits, including social orientation and perspective-taking, uniquely predicted learning social 

community structure but not learning non-social community structure. Our results suggest 

that the process of learning community structure in social networks displays clear 

distinctions from the process of learning community structure in non-social networks.

Mini Meta-Analysis

In order to test whether the results described above were robust across studies, we also 

conducted a mini meta-analysis (Goh, Hall, & Rosenthal, 2016) on each effect of interest 

that was included in at least 3 of our studies. Using this approach, we were able to estimate 

the effect size for each of four effects: manipulation check (Studies 2–5), cross-cluster 

surprisal effect (Studies 1–5), moderation of the cross-cluster surprisal effect by condition 

(social versus non-social; Studies 1–5), and the correlation between cross-cluster surprisal in 

the social and non-social tasks (Studies 3–5).

First, we tested whether there was a significant main effect of condition in our manipulation 

check in Studies 2–5 (there was no manipulation check in Study 1). Our mini meta-analysis 

estimated an effect size of d=0.60 (95% CI=[0.41,0.79]), confirming that participants were 

reliably more likely to report thinking about the stimuli as people in the social condition than 

in the non-social condition (z=6.16, p<.001).
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Second, we tested whether participants reliably learned the community structure of the 

networks, as evidenced by a significant cross-cluster surprisal effect. We included the main 

effect of node type from the mixed effects models in Studies 1–5 (presented in Tables 1–5) 

in our mini meta-analysis. We estimated an effect size of d=2.11 (95% CI=[1.89,2.33]). 

Specifically, we found that participants were reliably slower when responding on post-

transition trials than on pre-transition trials when examining all trials together (z=18.80, p<.

001). Participants were also reliably slower when responding on post-transition trials than 

pre-transition trials when we estimated the effect size separately in the social task (z=16.64, 

p<.001, d=1.72, 95% CI=[1.52,192]) and non-social task (z=16.77, p<.001, d=1.75, 95% 

CI=[1.54,1.95]). These results suggest that participants are able to learn the community 

structure of both social and non-social networks.

Third, we also estimated the effect size for whether the cross-cluster surprisal effect was 

moderated by condition. We found that the cross-cluster surprisal is not reliably moderated 

by condition (node × condition interaction meta-analysis: z=0.58, p=.562, d=0.05, 95% 

CI=[−0.12,0.22]), such that there is no difference in effect sizes across the social and non-

social conditions. This result is intuitive given that the node × condition interaction was 

significant in only one study (Study 4), and the direction of the effect varied across studies 

(negative slope in Studies 1 and 4, positive slope in Studies 2, 3, and 5). These results 

suggest that the cross-cluster surprisal effect does not differ across conditions.

Finally, across Studies 3–5 we also conducted a mini meta-analysis to test the correlation 

between conditions. We estimated an effect size of r=.058 (95% CI=[−.091,.203]), such that 

across studies there was not a significant relationship between the cross-cluster surprisal 

effect in the social and non-social conditions (z=0.76, p=.447). These results suggest that the 

process of learning community structure in social networks is not correlated with the process 

of learning community structure in non-social networks.

Discussion

The majority of real-world systems are complex networks characterized by patterns of 

relationships between elements in the network (Cong & Liu, 2014; Dorogovtsev, Goltsev, & 

Mendes, 2008). Higher-order information about the patterns of relationships is often not 

captured by simply measuring pairwise associations (Barrat, Barthélemy, & Vespignani, 

2008) and is an important mechanism by which people learn complex information (Chan & 

Vitevitch, 2010; Goldstein & Vitevitch, 2014; Halford, Wilson, & Phillips, 1998).

While there has been a recent explosion in research on topological features of complex 

networks across the social sciences and biological sciences (Dorogovtsev et al., 2008; 

Girvan & Newman, 2002; Newman, 2010), research on how people learn relational data has 

mostly focused on pairwise relationships without considering the type of information. Thus, 

it is unclear how people learn information about higher-order clustering of social 

information, and whether the learning process shares any similar features with previously 

studied processes involved in learning relational data for non-social information (Karuza et 

al., 2017; Qian & Aslin, 2014; Qian, Jaeger, & Aslin, 2016; Schapiro et al., 2013).
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Here we show for the first time that people are capable of implicitly learning the complex, 

higher-order structure of social networks. Our results suggest that the learning of community 

structure in social networks may be at least partially distinct from the learning of community 

structure in non-social networks: we observed little correlation between individual 

differences in the ability to learn community structure in social versus non-social networks. 

Finally, social traits, including social orientation and perspective-taking, uniquely predicted 

learning for social networks but not for non-social networks. These results advance our 

understanding of how people process complex relational information, and how that 

processing is influenced by the type of information being learned.

Expanding Experimental Paradigms from Non-Social to Social Network Learning

This study extends previous work that examined statistical relationships between non-social 

stimuli (Fiser & Aslin, 2002, 2005; Karuza et al., 2017; Qian & Aslin, 2014; Qian et al., 

2016; Schapiro et al., 2013). In this literature, statistical relationships between stimuli are 

represented by temporal associations (stimuli frequently presented near each other in time; 

(Karuza et al., 2017; Qian & Aslin, 2014; Schapiro et al., 2013) or spatial associations 

(stimuli frequently presented at the same time; Qian et al., 2016). Individuals automatically 

bundle stimuli together into communities based on their temporal or spatial associations, 

such that stimuli that are strongly connected are processed more quickly, and people tend to 

respond more slowly when presented with stimuli that are not part of the current cluster 

(Karuza et al., 2017; Schapiro et al., 2013). Thus, individuals are capable of developing rich 

mental models of the higher-order topological information about the networks, even when 

they are not aware that such features exist (Qian et al., 2016).

Here, we observed that participants were significantly slower at responding to trials 

immediately following a transition from one cluster to another cluster for both social and 

non-social stimuli. Importantly, each node in the networks had an equivalent number of 

edges and thus the likelihood of moving from the pre-transition node to the post-transition 

node was equivalent to the likelihood of moving to any of the other within-cluster nodes that 

shared an edge with the current image. This architecture ensured that slower responses could 

not be due to differences in transition probabilities and instead is likely due to differences in 

cluster membership for the pre-transition and post-transition nodes. Thus, participants who 

responded slower to post-transition nodes had implicitly learned that the post-transition and 

pre-transition nodes belonged to different clusters.

Participants were also more likely to group together images that were closer together in the 

network, and these results did not differ for social and non-social networks, supporting the 

notion that participants successfully learned a higher order network structure. Again, the 

probability of any images being presented together in the odd-man out task was matched and 

all permutations were presented, and yet participants’ responses suggest that they were 

biased by the higher-order network structure. Together, these results provide evidence for a 

common RT signature of network structure learning for social and non-social stimuli. 

Network learning for non-social stimuli plays a crucial role in cognitive performance in 

many other domains, including categorization, word-learning, reasoning, planning, and 

memory (Cong & Liu, 2014; Engelthaler & Hills, 2017; Goldstein & Vitevitch, 2014; 
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Halford et al., 2010). It is possible that social network learning might also play a crucial role 

in facilitating efficient performance on social cognitive tasks such as perspective-taking, 

social working memory, and social reasoning.

Individual Differences in Social and Non-Social Network Learning

However, the presence of a similar RT signature of learning in social and non-social 

networks does not necessarily mean that the underlying processes are identical. Previous 

work suggests that processing social information may rely on distinct processes from 

processing non-social information (Gamond et al., 2012; Meyer et al., 2012; Van Overwalle, 

2011; Zahn et al., 2007). For example, brain regions recruited when reasoning about other 

people’s mental states (mentalizing) are distinct from brain regions recruited during other 

reasoning tasks (Van Overwalle, 2011) and brain regions involved in mentalizing predict 

working memory performance for social but not non-social information (Meyer et al., 2012). 

The ways in which people learn categories are influenced by the type of category they are 

learning (Ashby & Maddox, 2005, 2011; Cunningham & Zelazo, 2007) and this extends to 

social categories (Gamond et al., 2012). However, none of this previous work has studied 

complex patterns of relational information.

Our data suggest that the ability to learn community structure in social and non-social 

networks are uncorrelated, and individuals who are good at learning community structure on 

one type of network are not necessarily good at learning community structure on the other 

type of network. While noise could obscure the relationship between social and non-social 

network learning, the reliability of this effect across studies suggests that the signal-to-noise 

ratio is unlikely to be a central limitation. Although we hesitate to draw too strong 

conclusions from null effects, this observation is particularly striking given that we observed 

equivalent effects on average for both tasks, and the experimental task was virtually identical 

except for the way in which the stimuli were described. The only difference was whether the 

images were described as online avatars representing people or described as non-social 

images (abstract images in Studies 1 and 3, and rock formations in Studies 2, 4, and 5). 

Results from a post-questionnaire confirmed the influence of the cover story where 

participants reported thinking about the images as people more frequently in the social 

condition.

Thus, it is possible that social and non-social network learning may be supported by 

independent processes and motivations. The strongest evidence in favor of this idea is that 

social, but not non-social network learning, was correlated with individual differences in 

perspective taking and social orientation. This observation highlights that different 

individuals, with different baseline motivations, performed the task differently. The lack of 

an interaction between node type (pre- vs. post-transition) and condition (social vs. non-

social) in all but one of our study variants, however, leaves open the possibility that the 

underlying mechanisms may overlap and be called upon according to these differing 

motivational forces. Additional research is needed to disentangle these different possible 

interpretations.

We also found some evidence that the rate at which participants learn the social versus non-

social stimuli also differs. In Studies 1 and 2, participants demonstrated smaller cross-cluster 
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surprisal effects at the beginning of the social network learning task (versus non-social 

network learning task) but this difference between social and non-social conditions 

diminished over time, such that the cross-cluster surprisal effects were equivalent at the end 

of the task (see Tables 1 and 2 and Figures 2B and 3B).

There are at least two plausible interpretations of this effect. First, this effect could be due to 

social network learning repurposing network learning of non-social information, much like 

other types of social cognition modify and repurpose other “ancestral” cognitive processes 

(Immordino-Yang, Chiao, & Fiske, 2010; Parkinson & Wheatley, 2015). This process might 

involve scaffolding of the social information on top of basic processing and would result in 

increased task demands and slower learning of the social network structure. Second, social 

information could actually be processed first and could instead bias the subsequent 

processing of detail. Both scenarios would lead to slower learning of the social network 

structure. However, it is important to note that the interaction between node type and time 

was only present in the between-subjects designs in Studies 1 and 2, and the interaction was 

not significant in the within-subjects paradigms used in Studies 3, 4, and 5. It is possible that 

the order in which the participants saw the two networks, or the fact that they saw both 

networks, obfuscated the interaction between node type and time, although further work is 

needed to directly test this possibility.

Social Traits Uniquely Predict Social Network Learning

Another important test of the similarities (or differences) in learning social vs. non-social 

network structure concerns the trait-level predictors of social and non-social network 

learning. To the extent that learning social networks and learning non-social networks 

involve independent processes, we would expect them to be predicted by different traits. 

Consistent with this hypothesis, we find that perspective-taking and social orientation 

uniquely predict the learning of community structure in social networks but not non-social 

networks. Thus, individuals who are more likely to consider the mental states of others and 

think about the self as being closely connected to others are more likely to learn the higher-

order structure of the social networks.

People who are high in collectivistic social orientation are more likely to be concerned with 

social relationships and maintaining social harmony (Kim & Markus, 1999; Markus et al., 

1991; Tompson et al., 2015; Triandis & Gelfand, 1998), and may therefore be more likely to 

pick up on relational information in social networks. Moreover, people from collectivistic 

cultures are more likely to attend to contextual information (Chua et al., 2005; Nisbett et al., 

2001) and perceive relationships in the environment (Ji, Peng, & Nisbett, 2000). Our work 

suggests that people high in collectivistic orientation are uniquely sensitive to social 

relationships, as they are not more likely to pick up on non-social network structure.

This work also extends previous evidence suggesting that individual differences in ability to 

maintain social information in working memory is uniquely predicted by perspective-taking, 

whereas no such relationship exists for working memory for non-social information (Meyer 

& Lieberman, 2016; Meyer et al., 2012, 2015). We build on this earlier work to show that 

learning of social networks is also uniquely predicted by perspective-taking, and expand it to 

show that other social traits including social orientation also predict social network learning.
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Real World Applications

Understanding how people learn complex social networks has important implications for 

many real-world domains. In fact, the majority of real-world systems can be described by 

complex patterns of relationships between elements in the network (Cong & Liu, 2014; 

Dorogovtsev et al., 2008). Furthermore, network structure is a key driver of group behavior 

and has been studied in the context of environmental disasters (Bosworth & Kreps, 1986), 

terrorist networks (Krebs, 2002), gangs (Van Gennip et al., 2013), and many other social and 

biological systems (Girvan & Newman, 2002). In an increasingly mobile world, people are 

frequently interacting, living, and working with novel groups of people. To successfully 

integrate into these new communities, it will be crucial for individuals to learn information 

about that network.

Methodological Considerations

One potential limitation of the current work is that data for Studies 1–4 were collected 

online through MTurk. This collection method allows for rapid collection of large samples 

of survey and behavioral data, but also introduces noise into the study. Although MTurk 

participants are at least as attentive as participants drawn from college samples (Hauser & 

Schwarz, 2016), there are risks associated with collecting data from a pool of participants 

who might complete dozens of surveys and experiments per month (Chandler, Mueller, & 

Paolacci, 2014; Crump, McDonnell, Gureckis, Romero, & Morris, 2013).

Moreover, our primary measure across all of the experiments was RT, which is likely 

influenced by variability in the computer, web browser, and internet quality used by each 

participant. However, our primary dependent variable focused on within-participant 

variability in RT, and thus any concerns about between-subject variability in RT are 

mitigated. Moreover, in Study 5 we recruited participants from the community around 

Philadelphia and had them complete the experiment in a laboratory under controlled 

experimental conditions. The mean RT, accuracy, and cross-cluster surprisal effect were very 

similar in the MTurk samples and community sample. Converging evidence across Studies 

1–4 (MTurk samples) and Study 5 (community sample) helps to strengthen our confidence 

in these findings.

Another potential limitation is the small set of stimuli and single type of network structure. 

In order to demonstrate a clear effect with minimal variation across social and non-social 

networks, we chose to focus our experiments on abstract images chosen from a small set and 

only examined two network configurations with very clear clusters. It is therefore unclear 

whether the effects described here might be influenced by the structure, such that it might be 

more difficult to learn more complex network topologies or network topologies with more 

transition edges between communities. Moreover, our results show that participants are 

capable of learning which communities an individual node belongs to, but future research 

should examine whether individuals are capable of learning other network features, such as 

which nodes are most influential (degree) or how densely connected the network is 

(density).
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Additionally, we did not test non-social traits. Given that social traits uniquely predicted 

social network learning, one potential hypothesis is that non-social network learning should 

be uniquely predicted by non-social traits (including working memory ability, intelligence, 

etc.). In addition, it is possible that familiarity with the type of information could influence 

how individuals learn network structure, such that individuals learn information they are 

familiar with better. Future work could address this hypothesis by examining individual 

differences in familiarity with both social and non-social types of information.

Moreover, if social information processing scaffolds on top of basic cognitive processing, 

then it is also possible that non-social cognitive abilities might influence both social and 

non-social network learning, even though social traits only influence social network 

learning. Future work should include additional measures of non-social traits to test these 

competing hypotheses.

Conclusion

In this paper, we discussed statistical learning of social and non-social network structures. 

Statistical learning is an important process whereby people learn the relationship between 

features or pieces of information based on their frequency of occurring near each other in 

space or time (Fiser & Aslin, 2002, 2005). While this topic has been heavily studied in the 

non-social domain (Karuza et al., 2017; Qian & Aslin, 2014; Qian et al., 2016; Schapiro et 

al., 2013), no research to date has examined this process in the social domain. However, it is 

likely that statistical learning plays a crucial role in learning social networks, such as when 

individuals start a new job or encounter a new social group. Taken together, these results 

suggest that individuals are able to learn the higher-order network structure of both social 

and non-social information. Importantly, although there are similarities in the implicit 

learning signatures, there also appear to be distinct processes or motivations involved in 

learning social and non-social network structures. These results advance understanding of 

how people build mental models of both social and non-social features of the natural world. 

This research has important implications for how quickly people will learn and adapt to new 

social contexts that require integration into a new social network. Future research should 

examine whether individual differences in these abilities are linked to psychological 

adjustment and well-being following a move or social transition.
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Figure 1. 
Random walk through network of fractal images. Study 1 consisted of a random walk 

through three clusters of five images (Figure 1A) whereas all other studies consisted of a 

random walk through two clusters of five images (Figure 1B).
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Figure 2. 
Network learning in Study 1. 2A: Difference in RT for post-transition minus pre-transition 

trials for social and non-social networks. Participants responded significantly slower on 

post-transition trials than on pre-transition trials, and there were no significant differences 

between social and non-social tasks. 2B: Interaction between condition and time. 

Participants in the social condition showed weaker cross-cluster surprisal to start, but by the 

end of the task the effect of condition was negligible.
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Figure 3. 
Network learning in the Study 2. 3A: Difference in RT for post-transition minus pre-

transition trials for social and non-social networks. Participants responded significantly 

slower on post-transition trials than on pre-transition trials, and there were no significant 

differences between social and non-social tasks. 3B: Interaction between condition and time. 

Participants in the social condition showed weaker cross-cluster surprisal to start, but by the 

end of the task the effect of condition was negligible.
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Figure 4. 
Network learning in Study 3. 4A: Difference in RT for post-transition minus pre-transition 

trials for social and non-social networks. Participants responded significantly slower on 

post-transition trials than on pre-transition trials, and there were no significant differences 

between social and non-social tasks. 4B: Interaction between condition and time. There was 

no significant interaction between condition and time, such that participants showed similar 

cross-cluster surprisal effects at the beginning and end of both tasks. 4C: Correlation 

between each individual’s cross-cluster surprisal effect (standardized within subject) for the 

social network and non-social network conditions. There were no significant associations 

between social and non-social network learning.
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Figure 5. 
Network learning in Study 4. 5A: Difference in RT for post-transition minus pre-transition 

trials for social and non-social networks. Participants responded significantly slower on 

post-transition trials than on pre-transition trials, and this effect was significantly larger for 

non-social networks. 5B: Interaction between condition and time. The difference in network 

learning for social and non-social networks did not significantly vary across the course of 

the tasks. 5C: Correlation between social and non-social network learning. Participants who 

were better at learning community structure in the non-social networks were not better at 

learning community structure in the social networks.

Tompson et al. Page 35

J Exp Psychol Learn Mem Cogn. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Network learning in Study 5. 6A: Difference in RT for post-transition minus pre-transition 

trials for social and non-social networks. Participants responded significantly slower on 

post-transition trials than on pre-transition trials, and there were no significant differences 

between social and non-social tasks. 6B: Interaction between condition and time. There was 

no significant difference in cross-cluster surprisal across the course of the task. 6C: 

Correlation between each individual’s cross-cluster surprisal effect (standardized within 

subject) for the social network and non-social network conditions. There were no significant 

associations between the learning of community structure in social and non-social networks.
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Figure 7. 
Association between social traits and cross-cluster surprisal. People who are more 

collectivistic (Fig 7A) and people who are more likely to consider the perspective of others 

(Fig 7B) show stronger cross-cluster surprisal for the social networks, but not for the non-

social networks. Higher values on the y-axis indicate more collectivistic (and less 

individualistic) scores (Fig 7A) and greater perspective-taking tendencies (Fig 7B).
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Table 1

Summary of Study 1 results after fitting a mixed effects model.

All Trials Non-Social Network Social Network

Study 1

Main Effect of Node Type b=15.05, SE=1.51, t(68)=9.99, p<.
001

b=15.91, SE=2.23, 
t(34.04)=7.12, p<.001

b=14.25, SE=2.10, 
t(40.57)=6.78, p<.001

Main Effect of Condition b=11.95, SE=8.63, t(72)=1.38, p=.
171

n/a n/a

Main Effect of Trial Number b=−37.34, SE=2.82, t(72)=−13.23, 
p<.001

b=−32.29, SE=4.52, t(34.15)=
−7.14, p<.001

b=−42.41, SE=3.47, 
t(37.14)=−12.21, p<.001

Node × Condition Interaction b=−0.77, SE=1.51, t(68)=−0.51, p=.
609

n/a n/a

Node × Trial Interaction b=1.81, SE=1.39, t(10,271)=1.30, 
p=.194

b=−2.94, SE=2.05, t(207.34)=
−1.44, p=.152

b=6.56, SE=2.01, 
t(211.13)=3.27, p=.001

Condition × Trial Interaction b=−5.01, SE=2.82, t(72)=−1.77, p=.
080

n/a n/a

Node × Condition × Trial Interaction b=4.68, SE=1.39, t(10,271)=3.36, 
p<.001

n/a n/a

Note. Significant effects are shown in bold.
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Table 2

Summary of Study 2 results after fitting a mixed effects model.

All Trials Non-Social Network Social Network

Study 2

Main Effect of Node Type b=11.91, SE=2.26, t(4,117)=5.28, 
p<.001

b=11.83, SE=2.27, t(546)=5.20, 
p<.001

b=14.32, SE=2.50, 
t(245)=5.74, p<.001

Main Effect of Condition b=15.61, SE=18.85, t(77)=0.83, 
p=.410

n/a n/a

Main Effect of Trial Number b=−39.36, SE=4.41, t(77)=−8.92, 
p<.001

b=−39.42, SE=4.22, t(41)=−9.33, 
p<.001

b=−25.29, SE=4.83, t(37)=
−5.24, p<.001

Node × Condition Interaction b=2.45, SE=3.29, t(4,200)=0.74, 
p=.457

n/a n/a

Node × Trial Interaction b=−1.86, SE=2.25, t(7,414)=−0.83, 
p=.409

b=−1.86, SE=2.24, t(3,950)=
−0.83, p=.407

b=5.54, SE=2.41, 
t(3,483)=2.30, p=.021

Condition × Trial Interaction b=14.04, SE=6.38, t(78)=2.20, p=.
031

n/a n/a

Node × Condition × Trial Interaction b=7.36, SE=3.29, t(7,415)=2.24, 
p=.025

n/a n/a

Note. Significant effects are shown in bold.
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Table 3

Summary of Study 3 results after fitting a mixed effects model.

All Trials Non-Social Network Social Network

Study 3

Main Effect of Node Type b=14.52, SE=1.29, t(67)=11.29, p<.
001

b=12.625, SE=1.77, t(64)=7.14, 
p<.001

b=16.14, SE=1.74, 
t(61)=9.30, p<.001

Main Effect of Condition b=.01, SE=1.25, t(12,170)=0.01, p=.
992

n/a n/a

Main Effect of Trial Number b=−24.44, SE=2.32, t(63)=−10.54, 
p<.001

b=−27.53, SE=3.35, t(61)=
−8.22, p<.001

b=−23.29, SE=2.88, 
t(59)=−8.09, p<.001

Node × Condition Interaction b=1.88, SE=1.24, t(12,130)=1.51, 
p=.131

n/a n/a

Node × Trial Interaction b=1.37, SE=1.24, t(12,160)=1.10, 
p=.270

b=1.38, SE=1.71, t(5,989)=0.81, 
p=.418

b=1.43, SE=1.70, 
t(6,050)=0.84, p=.399

Condition × Trial Interaction b=2.48, SE=1.25, t(12,170)=1.99, 
p=.047

n/a n/a

Node × Condition × Trial Interaction b=−.05, SE=1.24, t(12,160)=−0.41, 
p=.685

n/a n/a

Note. Significant effects are shown in bold.
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Table 4

Summary of Study 4 results after fitting a mixed effects model.

All Trials Non-Social Network Social Network

Study 4

Main Effect of Node Type b=14.33, SE=1.16, t(87)=12.39, p<.
001

b=17.13, SE=1.51, 
t(432)=11.33, p<.001

b=11.78, SE=1.50, 
t(85)=7.87, p<.001

Main Effect of Condition b=−0.21, SE=1.04, t(17,757)=−0.20, 
p=.839

n/a n/a

Main Effect of Trial Number b=−25.61, SE=2.09, t(88)=−12.23, 
p<.001

b=−24.84, SE=2.71, t(89)=
−9.16, p<.001

b=−27.90, SE=2.76, 
t(85)=−10.11, p<.001

Node × Condition Interaction b=−2.87, SE=1.04, t(17,741)=−2.77, 
p=.006

n/a n/a

Node × Trial Interaction b=2.20, SE=1.04, t(17,775)=2.12, 
p=.034

b=2.92, SE=1.44, 
t(8,831)=2.03, p=.042

b=1.04, SE=1.43, 
t(8,770)=0.73, p=.469

Condition × Trial Interaction b=−1.35, SE=1.04, t(17,797)=−1.30, 
p=.195

n/a n/a

Node × Condition × Trial Interaction b=−1.11, SE=1.04, t(17,762)=−1.08, 
p=.282

n/a n/a

Note. Significant effects are shown in bold.
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Table 5

Summary of Study 5 results after fitting a mixed effects model.

All Trials Non-Social Network Social Network

Study 5

Main Effect of Node Type b=8.53, SE=2.51, t(357)=3.40, p<.
001

b=8.75, SE=2.63, t(52.94)=3.32, 
p=.002

b=12.14, SE=2.72, 
t(43.99)=4.47, p<.001

Main Effect of Condition b=−5.93, SE=3.47, t(5,946)=−1.71, 
p=.087

n/a n/a

Main Effect of Trial Number b=−28.01, SE=3.39, t(54)=−8.26, 
p<.001

b=−28.39, SE=3.56, t(30.03)=
−7.98, p<.001

b=−22.78, SE=4.55, 
t(29.46)=−5.01, p<.001

Node × Condition Interaction b=3.54, SE=3.45, t(5,924)=1.03, 
p=.305

n/a n/a

Node × Trial Interaction b=0.04, SE=2.44, t(5,930)=0.02, 
p=.985

b=−0.12, SE=2.86, t(23.82)=
−0.04, p=.967

b=0.13, SE=2.78, 
t(35.18)=0.05, p=.964

Condition × Trial Interaction b=7.54, SE=3.48, t(5,937)=2.17, 
p=.030

n/a n/a

Node × Condition × Trial Interaction b=0.14, SE=3.45, t(5,927)=0.04, 
p=.967

n/a n/a

Note. Significant effects are shown in bold.
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