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Predicting pharmacokinetics, based on the theory of dynamic systems, for an administered drug (whether intravenously, orally,
intramuscularly, etc.), is an industrial and clinical challenge. Often, mathematical modeling of pharmacokinetics is preformed using
only ameasured concentration time profile of a drug administered in plasma and/or in blood. Yet, in dynamic systems, mathematical
modeling (linear) uses both a mathematically described drug administration and a mathematically described body response to the
administered drug. In the present work, we compare several mathematical models well known in the literature for simulating
controlled drug release kinetics using available experimental data sets obtained in real systems with different drugs and nanosized
carriers. We employed the χ2 minimization method and concluded that the Korsmeyer–Peppas model (or power-law model)
provides the best fit, in all cases (theminimum value of χ2 per degree of freedom; χ2min/d.o.f.�1.4183, with 2 free parameters orm� 2).
Hence, (i) better understanding of the exact mass transport mechanisms involved in drugs release and (ii) quantitative prediction of
drugs release can be computed and simulated. We anticipate that this work will help devise optimal pharmacokinetic and dynamic
release systems, with measured variable properties, at nanoscale, characterized to target specific diseases and conditions.

1. Introduction

Nowadays, pharmaceutical industries and registration au-
thorities focus on drug dissolution and/or pharmacokinetic
release studies. Mathematical modeling aids at predicting
drug release rates, and thus helping researchers to develop
highly effective drug formulations and more accurate dosing
regimens saving time andmoney [1]. Fundamentally, kinetic
models evaluate and describe the amount of drug dissolved
“C” from the solid 1 dosage form as a function of time t, or
f�C(t). Since in practice, the underlying mechanism is
usually unknown, some semiempirical equations, based on
elementary functions (polynomials, exponentials, etc.), are
introduced. Up to now, a significant number of mathe-
matical models have been introduced in the literature [1–3],
and in principle, one can opt to use any of these. So, the

question naturally arising herein is which mathematical
model is the best fit to use for a given nanosystem?

In the present work, we attempt to readdress precisely
this question by systematically comparing various existing
mathematical models. Already in [2], it is mentioned that
statistical methods can be used to select a model, and one
common method is based on minimization of the coefficient
of determination R2, or if models with different numbers of
parameters are to be compared, the adjusted coefficient of
determination R2

adjusted � 1− (1−R2) · (N− 1)/(N−m) is
preferred, whereN is the number of experimental points and
m is the number of free parameters of a given mathematical
model.

Herein, however, and to the best of our knowledge, it is
the first attempt in which the mathematical model com-
parison is done explicitly using concrete experimental data
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that correspond to different drugs and different nano-
particles; a more realistic approach, perhaps. Furthermore,
we employed the χ2 minimization method instead of the R2

coefficient of determination, resulting in different conclu-
sions as we shall discuss in more detail later on. *ereby, the
work is organized as follows: we first present the models to
be compared as well as the data sets we have used for the
analysis. *en, we perform the comparison and present
findings and conclusions. A narrative format is deemed
suitable for added clarity.

2. Methods

2.1. Mathematical Models and Data Sets. We compared the
following mathematical 6 renowned models [1–3]:

(i) Zero-order model:

Q(t) � A + Bt, (1)

with two free parameters A and B.
(ii) First-order model:

Q(t) � Q0 exp
kt

2.303
􏼠 􏼡, (2)

with two free parameters Q0 and k.
(iii) Higuchi model [4]:

Q(t) � k(t)
1/2

, (3)

with a single free parameter k.
(iv) Hixson–Crowell model [5]:

Q(t) � (A + Bt)
3
, (4)

with two free parameters A and B.
(v) Korsmeyer–Peppas model (or power-law model)

[6]:

Q(t) � At
n
, (5)

with two free parameters A and n.
(vi) Hopfenberg model [7] for the n � 1 flat geometry:

Q(t) � kt, (6)

with a single parameter k.

On the other hand, the obtained data sets are summa-
rized in Tables 1–5.

Tables 1 and 2 relate to a multidrug-loaded nanoplat-
form composed of layer-by-layer- (LbL-) engineered
nanoparticles (NPs) achieved via the sequential deposition
of poly-L-lysine (PLL) and poly(ethylene glycol)-block-
poly(l-aspartic acid) (PEG-b-PLD) on liposomal nano-
particles (LbL-LNPs). *e multilayered NPs (∼240 nm in
size, illustrated in Figure 1) were designed for the systemic
administration of doxorubicin (DOX-release kinetic pro-
filing is displayed in Figure 2) and mitoxantrone (MTX).
Data sets in Tables 3 and 4 relate to poly(D,L-lactide-co-
glycolide) (PLGA-based nanoparticles) designed for the
long-term sustained and controlled (linear) delivery of

simvastatin (SMV). Finally, [poly(ε-caprolactone)-based
nanocapsules were prepared for the data set, summarized
in Table 5.

3. Results and Discussion

3.1. Model Comparison. We now proceed to perform the
model comparison using the χ2 minimization method. For a
given data set with N number of time points with values Qi
and errors si, i taking values from one to N, and for a
given function f(t; a1, a2, . . . , am) that models the amount of
drug as a function of time and is characterized by m free

Table 3: *ird data set (PLGA NPs) (from [9]).

Number of
time point Time (d) Drug dissolution (%) Error bars

1 1 10 2.5
2 2 18 2.5
3 3 23 4
4 4 27 3
5 5 29 3
6 7 34 3
7 8 36 3
8 12 40 3
9 15 43 3
10 18 44 4
11 24 45 3
12 30 46 2.5

Table 1: First data set (DOX) (from [8]).

Number of
time point Time (h) Drug dissolution (%) Error bars

1 1 10 7
2 2 20 7
3 4 30 3
4 5 38 3
5 7.5 42 7
6 10 48 2
7 12 50 8
8 24 60 2
9 35 65 5
10 48 70 1

Table 2: Second data set (MTX) (from [8]).

Number of
time point Time (h) Drug dissolution (%) Error bars

1 1 2 1
2 2 5 1
3 4 10 1
4 5 15 1
5 7.5 19 1
6 10 21 1
7 12 25 1
8 24 35 1
9 35 40 1
10 48 45 1
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parameters (where N>m), we compute χ2 using the stan-
dard formula:

χ2 a1, a2, . . . , am( 􏼁 � 􏽘
N

i�1

f ti; a1, a2, . . . , am( 􏼁−Qi( 􏼁
2

σ2i
, (7)

where we sum overall experimental time points from i � 1 to
i � N, and thus, χ2 is a function of the free parameters that
characterize the mathematical model. Minimizing χ2, we
determine the values of the parameters for which the model
best fits the data, and finally, we compute χ2min/d.o.f , where
d.o.f stands for the number of degrees of freedom given by
N−m.

*is last step is necessary in order to compare models
with different numbers of free parameters.

In our analysis, the models are characterized either by
one or by two free parameters, and so m� 1 or m� 2, while
the data sets have either 8, 10, or 12 points and so N � 8,
N � 10, or N � 12.

For a given data set, the model that best fits the data is the
one with the lowest χ2min/d.o.f . We start with the first data set
seen in Table 1, and weminimize χ2 for all models one by one
using computer software Wolfram Mathematica [11]. By
comparing χ2min/d.o.f , we see that the power law model has
the best fit. *e values of the parameters are summarized in
Table 6, while as was illustrated in Figure 2, we can see that
indeed the power law model fits the data way better than the
Higuchi model.

We then follow exactly the same procedure for the rest of
the data sets seen in Tables 2–5. Our results show that the

power-law model has the best fit in all cases, and therefore,
our conclusion is robust.

Our results are interesting for three reasons: foremost,
we have shown that although the most widely used model in
the literature is the one introduced by Higuchi [4], at least
the class of systems considered here are best described by the
power-law model. In addition, we have shown that, it is
possible that a model with more parameters has a better fit to
the data contrary to what is stated in the literature when the
coefficient of determination R2 is used [2]. *is is due to the
fact that although the number of degrees of freedom de-
creases when the number of free parameters increases, in
some cases, χ2 at the minimum is reduced so much that
overall χ2/d.o.f is lower. Finally, knowing themodel that best
describes the systems studied herein, it would be interesting
to try to understand the underlying mechanism starting
from basic principles and relate the parameters of the model
with properties of the system. In that case, since the pa-
rameters of the model have been already determined upon
comparison with the data, one can compute the properties of
the system, and thus, the properties of the system could be
measured experimentally using our method. Furthermore, it
is interesting to note at this point that the power-law time
dependence can be mathematically derived as the exact
analytical solution of the diffusion equation in one di-
mension in the semi-infinite domain x > 0:

C(t, x)t � DC(t, x)xx, (8)

where the subindex t denotes differentiation with respect to
time, while the subindex xx denotes double differentiation
with respect to space, with the initial condition C(t � 0, x) �

0 and boundary condition C(t, x � 0) � ktn/2. In the above
initial/boundary problem, D is the diffusion coefficient as-
sumed to be a constant, C(t, x) is the drug concentration as a
function of time and position, and k, n are constants. It is
known frommathematical physics that this boundary/initial
value problem is well posed, and it has a unique solution
[11]. Using the method of Laplace transform (e.g., [11]), one
finds that the unique solution that satisfies the diffusion
equation and all conditions is the following equation [12]:

C(t, x) � kΓ 1 +
n

2
􏼒 􏼓􏼒 􏼓(4t)

n/2
i
nerfc

x

2
(Dt)

1/2
􏼒 􏼓, (9)

where Γ(z) is Euler’s Gamma function, and we make use of
the error function erf(x) and the complementary error
function erfc(x) defined as follows:

erf(x) �
2
π

􏼒 􏼓 􏽚
x

0
dt exp −t2􏼐 􏼑,

erfc(x) � 1− erf(x).

(10)

For more details on the special functions of mathe-
matical physics, see, e.g., [13]. Finally, given the drug
concentration, we can now compute the amount of the drug
as a function of time by performing the integral over all
space from zero to infinity:

M(t) � 􏽚
∞

−∞
dx C(t, x). (11)

Table 4: Fourth data set (CA-PLGA NPs) (from [9]).

Number of
time point Time (d) Drug dissolution (%) Error bars

1 1 20 2.5
2 2 27 2.5
3 3 32 3
4 4 38 2.5
5 5 43 5
6 7 49 3
7 8 53 5
8 12 55 3
9 15 57 3
10 18 58 2.5
11 24 58 3
12 30 59 3

Table 5: Fifth data set (PD-PCL-NC) (from [10]).

Number of
time point Time (h) Drug dissolution (%) Error bars

1 0 0 1
2 0.5 45 1
3 1 65 1
4 2 80 1
5 3 90 1
6 4 95 1
7 5 97.5 1
8 6 100 2.5
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*e integral can be computed exactly, and finally, we
obtain the following equation:

M(t) �
k(D)1/2Γ(1 +(n/2))

2nΓ((3/2) +(n/2))
t
n+(1/2)

. (12)

4. Conclusions

In this work, we conducted comparisons between several
mathematical models widely mentioned in the literature
regarding predicting overall release behavior. We have used
5 different data sets obtained experimentally in realistic
systems with different drugs and nanoparticles. Each model
is characterized by one or two free parameters to be de-
termined upon comparison with the data. We have used the
χ2 minimization method to determine the values of the
parameters of each model and obtained the minimum value

of χ2 per degree of freedom for each model. Our results
show that among all mathematical models studied herein,
the power-law model has the best fit in all 4 cases. We
conclude that, at least, for the class of systems considered
herein, they are best described by the power-law model,
characterized by two free parameters, although the Higuchi
model is the most widely used in the literature, and despite
other claims that adopting the coefficient of determination
R2, models with more parameters have a worse fit to the
data. Finally, our derived method could in principle be used
to measure variable properties of the nanosystems,
experimentally.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Table 6: Values of parameters for the first data set (N � 10).

Model First parameter Second parameter χ2min/d.o.f

Higuchi (m� 1) k� 10.6865 ĥ(−1/2) — 13.1467
Power-law (m� 2) A� 23.3605 ĥ(−n) n � 0.2856 1.4183
Hopfenberg (m� 1) k� 1.5740 ĥ(−1) — 69.1869
Zero order (m� 2) A� 35.7739 B� 0.7355 ĥ(−1) 5.9920
Hixson–Crowell (m� 2) A� 3.3535 B� 0.0164 ĥ(−1) 7.0212
First order (m� 2) Q0� 38.4977 k� 0.0293 ĥ(−1) 7.4994

DOX
DOX MTX

Nanoliposome loaded
with doxorubicin 

Layer-by-layer build-up
with PEG-PLD and poly-L-lysine

Figure 1: Schematic illustration of the nanoparticulate dual-drug delivery system.
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Figure 2: Drug dissolution versus time, for the first data set presented in Table 1. Shown are the data points, the Higuchi model (red color),
and the power law model (black color) which fits the data better than the Higuchi model.
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