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Music of brain and music on brain: a novel EEG sonification approach
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Abstract
Can we hear the sound of our brain? Is there any technique which can enable us to hear the neuro-electrical impulses

originating from the different lobes of brain? The answer to all these questions is YES. In this paper we present a novel

method with which we can sonify the electroencephalogram (EEG) data recorded in ‘‘control’’ state as well as under the

influence of a simple acoustical stimuli—a tanpura drone. The tanpura has a very simple construction yet the tanpura drone

exhibits very complex acoustic features, which is generally used for creation of an ambience during a musical perfor-

mance. Hence, for this pilot project we chose to study the nonlinear correlations between musical stimulus (tanpura drone

as well as music clips) and sonified EEG data. Till date, there have been no study which deals with the direct correlation

between a bio-signal and its acoustic counterpart and also tries to see how that correlation varies under the influence of

different types of stimuli. This study tries to bridge this gap and looks for a direct correlation between music signal and

EEG data using a robust mathematical microscope called Multifractal Detrended Cross Correlation Analysis (MFDXA).

For this, we took EEG data of 10 participants in 2 min ‘‘control condition’’ (i.e. with white noise) and in 2 min ‘tanpura

drone’ (musical stimulus) listening condition. The same experimental paradigm was repeated for two emotional music,

‘‘Chayanat’’ and ‘‘Darbari Kanada’’. These are well known Hindustani classical ragas which conventionally portray

contrast emotional attributes, also verified from human response data. Next, the EEG signals from different electrodes were

sonified and MFDXA technique was used to assess the degree of correlation (or the cross correlation coefficient cx)

between the EEG signals and the music clips. The variation of cx for different lobes of brain during the course of the

experiment provides interesting new information regarding the extraordinary ability of music stimuli to engage several

areas of the brain significantly unlike any other stimuli (which engages specific domains only).
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‘‘The Music is a vibration in the

brain rather than the ear’’

Amy Clampitt

Introduction

Can we hear our brain? If we can, how will it sound? Will

the sound of our brain be different from one cognitive state

to another? These are the questions which opened the vistas

of a plethora of research done by neuroscientists to sonifiy

obtained EEG data. The first thing to be addressed while

dealing with sonification is what is meant by ‘sonification’.

As per the definition of International Conference on

Auditory Display (ICAD) ‘‘the use of non-speech audio to

convey information; more specifically sonification is the

transformation of data relations into perceived relations in

an acoustic signal for the purposes of facilitating commu-

nication or interpretation’’ (Kramer et al. 2010). Hermann

(2008) gives a more classic definition for sonification as’’a

technique that uses data as input, and generates sound

signals (eventually in response to optional additional

excitation or triggering)’’.
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History of sonifying EEG waves

Over the past decade, sonification or the transformation of

data into sound, has received considerable attention from

the scientific community. Sonification is the data-driven

sound synthesis designed to make specific features within

the data perceptible (Kramer 1994). It has been applied to

human EEG in different approaches (Hermann et al. 2002;

Meinicke et al. 2004), most of which are not easily

implemented for real-time applications (Baier et al. 2007).

While the sense of vision continues to predominate the

hierarchy of senses, auditory data representation has been

increasingly recognized as a legitimate technique to com-

plement existing modes of data display (Supper 2012).

Sonification is, however, not an exclusively scientific

endeavor; the technique has been commonly applied within

the domain of experimental music. This poses a challenge

to the field, as some argue for a sharper distinction between

scientific and artistic sonification, whereas others proclaim

openness to both sides of the science–art spectrum (Supper

2012).

The interplay between science and art is beautifully

demonstrated by the sonification of the EEG, a practice that

was first described in the early 1930s and subsequently

gave rise to a variety of medical and artistic applications. In

neurophysiology, sonification was used to complement

visual EEG analysis, which had become increasingly

complex by the middle of the 20th century. In experimental

music, the encounter between physicist Edmond Dewan

(1931–2009) and composer Alvin Lucier (b. 1931) inspired

the first brainwave composition Music for the solo per-

former (1965). By the end of the century, advances in EEG

and sound technology ultimately gave rise to brain–com-

puter music interfaces (BCMIs), a multidisciplinary

achievement that has enhanced expressive abilities of both

patients and artists (Miranda and Castet 2014). The tech-

nique of sonification though underexposed, beautifully

illustrates the way in which the domains of science and art

may, perhaps more than occasionally, enhance one another.

In 1929, the German psychiatrist Hans Berger

(1873–1941) published his first report on the human EEG,

in which he described a method for recording electrical

brain activity by means of non-invasive scalp electrodes. In

1934, the renowned neurophysiologist and Nobel laureate

Edgar Adrian (1889–1977) first described the transforma-

tion of EEG data into sound (Adrian and Matthews 1934).

Whereas these early experiments were primarily concerned

with the recording of brainwaves in health, the EEG would

soon prove to be of particular value to clinical diagnostics.

Indeed, over the following decades, ‘EEG reading’ would

greatly enhance neurological diagnostics. At the same time,

‘EEG listening’ continued to provide a useful complement

to visual analysis, as various EEG phenomena were more

readily identified by ear, such as the ‘alpha squeak’, a drop

in alpha rhythm frequency upon closing the eyes (van

Leeuwen and Bekkering 1958), the ‘chirping’ sound

associated with sleep spindles and the low-pitch sound

typical for absence seizures. Interestingly, the use of

sonification for the detection of sleep disorders and

epileptic seizures has recently resurfaced (Väljamäe et al.

2013). Besides its undisputed value as a diagnostic tool, the

impact of the EEG extended far beyond the domain of

neurophysiology. With the rise of cybernetics after the end

of World War II, the conceptual similarities between the

nervous system and the electronic machine were increas-

ingly recognized, inspiring both scientists and artists to

explore the boundaries between the ‘natural’ and the ‘ar-

tificial’. In this context, the EEG came to be regarded as a

promising tool to bridge the gap between mind and

machine, potentially allowing for the integration of mental

and computational processes into one single comprehen-

sive system.

Applications of EEG sonification

The sonification of brainwaves took a new turn by the end

of the 1960s, when prevalent cybernetic theories and sci-

entific breakthroughs gave rise to the field of biofeedback,

in which ‘biological’ processes were measured and ‘fed

back’ to the same individual in order to gain control over

those processes (Roseboom 1990). In 1958, American

psychologist Joe Kamiya (b. 1925) had first demonstrated

that subjects could operantly learn to control their alpha

activity when real-time auditory feedback was provided,

but the technique only became popular after his accessible

report in Psychology Today (1968). As the alpha rhythm

had long been associated with a calm state of mind, EEG

biofeedback—later called neurofeedback—was soon

adopted for the treatment of various neuropsychiatric

conditions, such as attention deficit hyperactivity disorder

(ADHD), depression and epilepsy (Rosenboom 1999). In

therapeutic neurofeedback, the auditory display of brain-

waves proved to be indispensable, as subjects could not

possibly watch their own alpha activity while holding their

eyes closed. Elgendi et al. (2013) provides feature depen-

dent real time EEG sonification for diagnosis of neuro-

logical diseases.

Following Lucier’s Music for the solo performer, vari-

ous experimental composers started to incorporate the

principles of neurofeedback into their brainwave compo-

sitions, allowing for the continuous fine-tuning of alpha

activity based on auditory feedback of previous brainwaves

(Rosenboom 1999). In 1973, computer scientist Jaques

Vidal published his landmark paper Toward Direct Brain-
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Computer Communication, in which he proposed the EEG

as a tool for mental control over external devices (Miranda

and Castet 2014). This first conceptualization of a brain–

computer interface naturally relied on advances in com-

putational technology, but equally on the discovery of a

new sort of brain signal: the event-related potential (ERP).

To enhance musical control further, BCMI research

recently turned towards ERP analysis (Miranda and Castet

2014). The detection of steady-state visual-evoked poten-

tials—focal electrophysiological responses to repeated

visual stimuli—has proven to be particularly useful, as

subjects are able to voluntarily control musical parameters

simply by gazing at reversing images presented on a

computer screen; the first clinical trial with a severely

paralyzed patient has demonstrated that it is indeed possi-

ble for a locked-in patient to make music (Miranda and

Castet 2014). Real time EEG sonification enjoys a wide

number of applications including diagnostic purposes like

epileptic seizure detection, different sleep states etc. (Glen

2010; Olivan et al. 2004; Khamis et al. 2012), neuro-

feedback applications (Hinterberger et al. 2013; McCreadie

et al. 2013), brain-controlled musical instruments (Arslan

et al. 2005) while a special case involves converting brain

signals directly into meaningful musical compositions

(Miranda and Brouse 2005; Miranda et al. 2011). Also, we

have a number of studies which deal with the emotional

appraisal in human brain corresponding to a wide variety of

scale-free musical clips using EEG/fMRI techniques

(Sammler et al. 2007; Koelsch et al. 2006; Lin et al. 2010;

Lu et al. 2012; Wu et al. 2009), but none of them provides a

direct correlation between the music sample used and the

EEG signal generated using the music as a stimulus,

although both are essentially complex time series varia-

tions. The main reason behind this lacunae is the disparity

between the sampling frequency of music signals and EEG

signals (which are of much lower sampling frequency). A

recent study (Lu et al. 2018) used a neural mass model, the

Jansen–Rit model, to simulate activity in several cortical

brain regions and obtained BOLD (blood-oxygen level

dependent) music for healthy and epileptic patients. The

EEG signals are lobe specific and characterized with a lot

of fluctuations corresponding to different musical and other

types of stimulus. So, the information procured varies

continuously throughout the period of data acquisition and

that too the fluctuations are different in different lobes.

The role of Tanpura in Hindustani classical
music

In this work, the main attempt is to device a new

methodology which looks to obtain a direct correlation

between the external musical stimuli and the corresponding

internal brain response using latest state of the art non-

linear tools for characterization of bio-sensor data. For this,

we chose to study the EEG response corresponding to the

simplest (and yet very complex) musical stimuli—the

Tanpura drone. The Tanpura (sometimes also spelled

Tampura or Tambura) is an integral part of classical music

in India. It is a fretless musical instrument which is very

simple in construction, yet the acoustic signals generated

from it is quite complex. It consists of a large gourd and a

long voluminous wooden neck which act as resonance

bodies with four or five metal strings supported at the lower

end by a meticulously curved bridge made of bone or

ivory. The strings are plucked one after the other in cycles

of few seconds generating a buzzing drone sound. The

Tanpura drone primarily establishes the ‘‘Sa’’ or the scale

in which the musical piece is going to be sung/played. One

complete cycle of the drone sound usually comprises of Pa/

Ma (middle octave)—Sa (upper octave)—Sa (upper

octave)—Sa (middle octave) played in that order. The

drone signal has repetitive quasi-stable geometric forms

characterized by varying complexity with prominent

undulations of intensity of different harmonics. Thus, it

will be quite interesting to study the response of brain

simultaneously to a simple drone sound using different

non-linear techniques. This work is essentially a continu-

ation of our work using MFDFA technique on drone-in-

duced EEG signals (Maity et al. 2015) and the hysteresis

effects on brain using raga music of contrast emotion

(Banerjee et al. 2016). Because there is a felt resonance in

perception, psycho-acoustics of Tanpura drone may pro-

vide a unique window into the human psyche and cognition

of musicality in human brain. Earlier ‘‘Fractal Analysis’’

technique has been used to study the non linear nature of

the tanpura signals (Sengupta et al. 2005). Global

Descriptors (GD) have also been used to identify the time

course of activation in human brain in response to tanpura

drone (Braeunig et al. 2012). Hence it demands robust non-

linear methods to assess the complex nature of tanpura

signals.

Emotions and Indian classical music

In Indian classical music (ICM), each raga has a well

defined structure consisting of a series of four/five or

more musical notes upon which its melody is constructed.

However, the way the notes are approached and rendered in

musical phrases and the mood they convey are more

important in defining a Raga than the notes them-

selves. From the time of Bharata’s Natyashastra (Ghosh

2002), there have been a number of treatises which speak

in favor of the various rasas (emotional experiences) that
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are conveyed by the different forms of musical

performances.

The aim of any dramatic performance is to emote in the

minds of audience a particular kind of aesthetic experience,

which is described as ‘‘Rasa’’. The concept of ‘‘Rasa’’ is

said to be the most important and significant contribution

of the Indian mind to aesthetics.

It is only from the last two decades of the twentieth

century that scientists began to understand the huge

potential of systematic research that Indian classical music

(ICM) has to offer in the advancement of cognitive science

as well as psychological research. A number of works tried

to harvest this immense potential by studying objectively

the emotional experiences attributed to the different ragas

of Indian classical music (Balkwill and Thompson 1999;

Chordia and Rae 2007; Wieczorkowska et al. 2010; Mathur

et al. 2015). The studies have revealed unlike Western

Music pieces the emotions evoked by Indian Classical

Music pieces are often more ambiguous and far more

subdued. Earlier few musicologists believed that a partic-

ular emotion can be assigned to a particular Raga but

recent studies (Wieczorkowska et al. 2010) clearly revealed

that different phrases of a particular Raga is capable of

evoking emotions among the listeners. So, the need arises

to have a direct correlation between the input raga which

actually conveys the emotional cue and the output EEG

signal which forms the cognitive appraisal of the input

sound. Multifractal Detrended Cross-Correlation Analysis

(MFDXA) provides a robust non-linear methodology

which gives the degree of cross-correlation between two

non-stationary, non-linear complex time series i.e. music

signal and EEG signal. The same can be used to capture the

degree of correlation between different lobes of brain while

listening to music input, which in turn gives a quantitative

measure of the arousal-based effects in different locations

of the human brain.

Fractals and Multifractals in EEG study

A fractal is a rough or fragmented geometrical object that

can be subdivided in parts, each of which is (at least

approximately) a reduced-size copy of the whole. Fractals

are generally self-similar and independent of scale (fractal

dimension)—the degree of roughness or brokenness or

irregularity in an object. They are created by repeating a

simple process over and over in an ongoing feedback loop.

A fundamental characteristic of fractal objects is that their

measured metric properties, such as length or area, are a

function of the scale of measurement.

Chaos has been already studied and discovered in a wide

range of natural phenomena such as the weather, popula-

tion cycles of animals, the structure of coastlines and trees

and leaves, bubble-fields and the dripping of water, bio-

logical systems such as rates of heartbeat, and also

acoustical systems such as that of woodwind multiphonics.

The study of chaos is approached and modeled through the

use of nonlinear dynamic systems, which are the mathe-

matical equations whose evolution is unpredictable and

whose behavior can show both orderly and/or chaotic

conditions depending on the values of initial parameters.

What has attracted the non-science community to these

dynamic systems is that they display fractal properties and,

thus, patterns of self-similarity on many levels (Pressing

1988). Already, the art community has employed such

chaotic patterns, and many examples exist of nonlinear/

fractal visual art created with the assistance of the com-

puter (Pressing 1988; Truax 1990). Thus, non-linear

dynamical modeling for source clearly indicates the rele-

vance of non-deterministic/chaotic approaches in under-

standing the speech/music signals (Behrman 1999; Kumar

and Mullick 1996; Sengupta et al. 2001; Bigerelle and Iost

Bigerelle and Iost 2000; Hsü and Hsü 1990; Sengupta et al.

2005, 2010). In this context fractal analysis of the signal

which reveals the geometry embedded in signal assumes

significance.

In recent past, the Detrended Fluctuation Analysis

(DFA) has become a very useful technique to determine the

fractal scaling properties and long-range correlations in

noisy, non-stationary time-series (Hardstone et al. 2012).

DFA is a scaling analysis method used to quantify long-

range power-law correlations in signals—with the help of a

scaling exponent, a, to represent the correlation properties

of a signal. In the realm of complex cognition, scaling

analysis technique was used to confirm the presence of

universality and scale invariance in spontaneous EEG

signals (Bhattacharya 2009). In stochastic processes, chaos

theory and time series analysis, DFA is a method for

determining the statistical self-affinity of a signal. The

obtained exponent is similar to the Hurst exponent, except

that DFA may also be applied to signals whose underlying

statistics (such as mean and variance) or dynamics are non-

stationary (changing with time). DFA method was applied

in (Karkare et al. 2009) to show that scale-free long-range

correlation properties of the brain electrical activity are

modulated by a task of complex visual perception, and

further, such modulations also occur during the mental

imagery of the same task. In case of music induced emo-

tions, DFA was applied to analyze the scaling pattern of

EEG signals in emotional music (Gao et al. 2007) and

particularly Indian music (Banerjee et al. 2016). It has also

been applied for patients with neurodegenerative diseases

(John et al. 2018; Yuvaraj and Murugappan 2016; Bornas

et al. 2015; Gao et al. 2011), to assess their emotional

response, to assess the change of neural plasticity in a

spinal cord injury rat model (Pu et al. 2016) and so on.
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It is known that naturally evolving geometries and

phenomena are rarely characterized by a single scaling

ratio and therefore different parts of a system may be

scaling differently. That is, the self similarity pattern is not

uniform over the whole system. Such a system is better

characterized as ‘multifractal’. A multifractal can be

loosely thought of as an interwoven set constructed from

sub-sets with different local fractal dimensions. Music too,

has non-uniform property in its movement. It is therefore

necessary to re-investigate the musical structure from the

viewpoint of the multifractal theory. Multifractal Detren-

ded Fluctuation Analysis (MFDFA) (Kantelhardt et al.

2002) technique analyzes the musical signal in different

scales and gives a multifractal spectral width which is the

measure of complexity of the signal. MFDFA has been

applied successfully to study multifractal scaling behavior

of various non-stationary time series (Sadegh Movahed

et al. 2006; Telesca et al. 2004; Kantelhardt et al. 2003) as

well as in detection or prognosis of diseases (Dutta et al.

2013, 2014; Figliola et al. 2007). EEG signals are essen-

tially multifractals as they consist of segments with large

variations as well as segments with very small variations,

hence when applied to the alpha EEG rhythms, the multi-

fractal spectral width will be an indicator of emotional

arousal corresponding to particular clip (Banerjee et al.

2016; Maity et al. 2015).

Correlation in general determines the degree of simi-

larity between two signals. In signal processing, cross-

correlation is a measure of similarity of two series as a

function of the lag of one relative to the other. A robust

technique called Multifractal Detrended Cross correlation

Analysis (MFDXA) (Zhou 2008) has been used to analyze

the multifractal behaviors in the power-law cross-correla-

tions between any two non-linear time series data (in this

case music and sonified EEG signals). With this technique,

all segments of the music clips and the sonified EEG sig-

nals were analyzed to find out a cross correlation coeffi-

cient (cx) which gives the degree of correlation between

these two categories of signals. For uncorrelated data, cx

has a value 1 and the lower the value of cx more correlated

is the data (Podobnik and Stanley 2008). Thus a negative

value of cx signifies that the music and bio-signals have

very high degree of correlation between them. The strength

of the MF-DXA method is seen in various phenomena

using one- and two-dimensional binomial measures, mul-

tifractal random walks (MRWs) and financial markets

(Ghosh et al. 2015; Wang et al. 2012; Wang et al. 2013).

MFDXA technique has also been successfully applied to

detect the prognosis or onset of epileptic seizures (Ghosh

et al. 2014). We have also used the MFDXA technique to

assess the degree of correlation between pairs of EEG

electrodes in various experimental conditions (Ghosh et al.

2018b). In this study, two experiments are performed with

the sole objective to quantify how the different lobes of

brain are correlated while processing musical stimuli and

how they are correlated with the input music stimuli. For

the first experiment a tanpura drone is used as a musical

stimuli while in the second experiment, we have used a pair

of ragas of contrast emotion—Chayanat and Darbari

Kanada as in Banerjee et al. (2016) and evaluated the EEG

cross-correlation coefficients corresponding to them. With

this novel technique, a direct correlation is possible

between the audio signals and the corresponding biosensors

data. We intend to have rigorous methodology on emotion

categorization using musical stimuli.

Overview of the present work

In this work, we took EEG data of 10 naive participants

while they listened to the 2 min tanpura drone clip which

was preceded by a 2 min resting period. In another

experiment, we took EEG data for the same set of partic-

ipants using the same pair of ragas having contrast emo-

tions Chayanat and Darbari Kanada as in one of our

previous works (Banerjee et al. 2016) which dealt with the

evidence of neural hysteresis (Ghosh et al. 2018a). The

main constraint in establishing a direct correlation between

EEG signals and the stimulus sound signal is the disparity

in sampling frequency of the two; while an EEG signal is

generally sampled at up to 512 samples/sec (in our case it is

256 samples/sec), the sampling frequency of a normal

recorded audio signal is 44100 samples/sec. Hence the

need arises to up-sample the EEG signal to match the

sampling frequency of an audio signal so that the correla-

tion between the two can be established. This phenomenon

is called sonification (or audification) in essence, and we

propose a novel algorithm in this work to sonify EEG

signals and then to compare them with the source sound

signals. A human response psychological data was taken

initially to standardize the emotional appraisal corre-

sponding to the acoustic clips chosen for this study, fol-

lowed by EEG response using the same musical clips as

stimuli. Five frontal (F3, F4, Fp1, Fp2 and Fz)and temporal

(T3/T4) electrodes were selected for our study corre-

sponding to auditory and cognitive appraisals associated

with our study. The alpha frequency wave is extracted from

the entire EEG signal using Wavelet Transform technique

as elaborated in Banerjee et al. (2016) as alpha waves are

mainly associated with emotional activities corresponding

to music clips (Sammler et al. 2007; Maity et al. 2015;

Babiloni et al. 2012). Next, the MFDXA technique has

been applied to assess the degree of correlation between the

two non-linear, non-stationary signals (in this case output

EEG signals and the input acoustic musical signals). The

output of MFDXA is cx (or the cross-correlation

Cognitive Neurodynamics (2019) 13:13–31 17

123



coefficient) which determines the degree of cross-correla-

tion of the two signals taken. For the ‘‘Auditory Control/

rest’’ state, we have determined the cross-correlation

coefficient using the ‘‘auditory control/rest’’ EEG data as

one input and a simulated ‘‘white noise’’ as the other input.

We have provided a comparative analysis of the variation

of correlation between the ‘‘rest’’ state EEG and the ‘‘music

induced’’ EEG signals. Furthermore, the degree of cross-

correlation between different lobes of the brain has also

been computed for the different experimental conditions.

The results clearly indicate a significant rise in the corre-

lation during the music induced state compared to the

auditory control condition in case of tanpura drone. In case

of emotional music, the values of cx show distinct evidence

in support of emotional quantification in specific electrodes

of human brain. In this experiment we have unique insights

into the arousal based responses simultaneously in different

portions of the brain under the influence of musical stimuli.

This novel study can be very useful in the domain of

auditory neuroscience when it comes to quantifying the

emotional state of a listener in respect to a particular

stimulus.

Materials and methods

Subjects summary

For the human response data, 50 participants (M = 33,

F = 17) were asked to rate the music clips in a sheet on the

basis of what emotion they felt for each clip. From the 50

listeners, 10 musically untrained right handed adults (6

male and 4 female) voluntarily participated in the EEG

study. Their ages were between 19 and 25 years (SD =

2.21 years). None of the participants reported any history

of neurological or psychiatric diseases, nor were they

receiving any psychiatric medicines or using a hearing aid.

None of them had any formal music training and hence can

be considered as naı̈ve listeners. Informed consent was

obtained from each subject according to the ethical

guidelines of the Ethical Committee of Jadavpur Univer-

sity. All experiments were performed at the Sir C.V.

Raman Centre for Physics and Music, Jadavpur University,

Kolkata.

Experimental details

The tanpura stimuli given for our experiment was the

sound generated using software ‘Your Tanpura’ in C# pitch

and in Pa (middle octave)—Sa (middle octave)—Sa

(middle octave)—Sa (lower octave) cycle/format. From the

complete recorded signal a segment of about 2 min was cut

out at the zero point crossing using open source software

toolbox Wavesurfer (Sj}olander and Beskow 2009). Varia-

tions in the timbre were avoided as same signal were given

to all the participants. Fig 1 depicts a 2 min Tanpura drone

signal that was given as an input stimulus to all the

informants.

In the second experiment, the two pair ragas chosen for

our analysis were ‘‘Chayanat’’ (romantic/joy) and ‘‘Dar-

bari Kannada’’ (sad/pathos). Each of these sound signals

was digitized at the sample rate of 44.1 KHZ, 16 bit res-

olution and in a mono channel. From the complete playing

of the ragas, segments of about 2 min were cut out for

analysis of each Raga. Help was taken of some experienced

musicians for identifying the emotional phrases in the

music signal along with their time intervals, based on their

feelings. A sound system (Logitech R_Z-4 speakers) with

high S/N ratio was used in the measurement room for

giving music input to the subjects. For the listening test,

each participant were asked to mark on a Template as

presented in Table 1. Here Clip 1 refers to tanpura drone,

Clip 2 refers Chayanat and Clip 3 refers to Darbari Kan-

nada. The subjects were asked to mark in any of the

options they find suitable, even if it is more than one

option.

Finally, the EEG experiment was conducted in the

afternoon (around 2 PM) in a room with the subjects sitting

relaxed in a comfortable chair with their eyes closed during

the experiment.

Experimental protocol

The EEG experiments were conducted in the afternoon

(around 2 PM) in an air conditioned room with the subjects

sitting in a comfortable chair in a normal diet condition. All

experiments were performed as per the guidelines of the

Institutional Ethics Committee of Jadavpur University. All

Fig. 1 Waveform of 1 cycle of tanpura drone signal

Table 1 Response sheet to identify the emotion corresponding to

each clip

Joy Anxiety Sorrow Calm

Clip 1

Clip 2

Clip 3
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the subjects were prepared with an EEG recording cap with

19 electrodes (Fig. 2) (Ag/AgCl sintered ring electrodes)

placed in the international 10/20 system. Impedances were

checked below 5 k Ohms. The EEG recording system

(Recorders and Medicare Systems) was operated at 256

samples/s recording on customized software of RMS. Raw

EEG signals were filtered using a low and high pass filter

with cut-off frequencies of 0.5 to 35 Hz. The electrical

interference noise (50 Hz) was eliminated using notch fil-

ter. Muscle artifacts were removed by selecting the EMG

filter. The ear electrodes A1 and A2 linked together have

been used as the reference electrodes. The same reference

electrode is used for all the channels. The forehead elec-

trode, FPz has been used as the ground electrode. Each

subject was seated comfortably in a relaxed condition in a

chair in a shielded measurement cabin.

After initialization, a 6 min recording period was started,

and the following protocol was followed:

1. 2 min auditory control (white noise)

2. 2 min with tanpura drone

3. 2 min Rest (after music).

In the second experiment for emotional categorization,

the following protocol was observed:

1. 2 min auditory control

2. 2 min with music (Chayanat)

3. 2 min auditory control

4. Sequence 2–3 was repeated With Music (Darbari

Kannada)

In between the application of stimuli, the subjects were

asked to rate the clips on the basis of emotional appraisal.

Markers were set at start, signal onset/offset, and at the end

of the recording. We divided each of the experimental

conditions in four windows of 30 s each and calculated the

cross-correlation coefficient for each window correspond-

ing to the frontal (F3, F4, Fp1, Fp2 and Fz)and temporal

(T3/T4) electrodes.

The listening test experiment was performed following

the same protocol with each subject being asked to mark

the emotional appraisal corresponding to each music clip.

Methodology

Pre-processing of EEG signals

We have obtained artifact free EEG data for all the elec-

trodes using the EMD technique as in Maity et al. (2015)

and used this data for further analysis and classification of

acoustic stimuli induced EEG features. The amplitude

envelope of the alpha (8–13 Hz) frequency range was

obtained using wavelet transform (WT) technique (Akin

et al. 2001). Data was extracted for the the frontal (F3, F4,

Fp1, Fp2 and Fz) and temporal (T3/T4) electrodes

according to the time period given in the Experimental

protocol section i.e. for Experimental conditions.

Sonification of EEG signals

Sonification refers to the use of non-speech audio for data

perception as a complement to data visualization. A sudden

or gradual increase or a drop in an information can be

perceived as an increase in the amplitude, pitch or tempo in

the audio file formed from the data information by using

Acoustic Sonification. We attempt to make a similar ven-

ture with the bio-medical signals such as Electroen-

cephalography (EEG) signals. EEG signal which is

essentially a time-series data is to be transformed and

interpreted through signal processing techniques as an

audio waveform and this technique provides a mean by

which large datasets can be explored by listening to the

data itself.

EEG signals are characterized with a lot of variations

and are essentially lobe specific. Hence, the information

varies constantly throughout a period of data acquisition

and also the fluctuations are unique in different lobes. The

sampling rate of EEG signal used in this experiment is

256 Hz. We have taken music induced EEG signals in this

work and envisage to obtain a direct comparison between

these music induced EEG signals and the source acoustical

music signals which caused arousal in the brain dynamics

of different lobes. A sample music induced raw EEG signal

is shown in Fig. 3.

We are interested to find the arousals in different lobes

and to determine the similarity or differences in the

behaviour of different lobes under the effect of emotional

music stimuli. In particular, attempt is made to sonify alpha

rhythms in an excerpt of an EEG recording using modu-

lation techniques to produce an audible signal. The alpha

rhythms are characterized by their frequency ranges from 8

Fig. 2 The position of electrodes as per 10-20 system
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to 13 Hz and usually appear when the eyes are closed and

the subject is relaxed. To obtain the signal in the frequency

range of interest to be used for further exploration, band-

pass filtering is done to remove unwanted frequencies. A

representative plot is shown in Fig. 4 after the sample EEG

signal is band-pass filtered for alpha wave.

Till date, no direct correlation have been established

between the source acoustical and the output EEG signals,

because the EEG signals have a frequency (in the order of

256 Hz generally) much less than that of the music signals

(in the order of 44.1 kHz) and hence the sampling fre-

quencies don’t match. Keeping in mind this problem, we

resampled (upsampling followed by interpolation) the

bandpass filtered desired EEG data to a higher frequency of

44.1 kHz. This is done by using an inbuilt Matlab function

(called resample) which not only removes any distortion in

the form of aliasing but also compensates for any delay

introduced by the anti-aliasing filter. Upsampling is done

by inserting zeros in between the original samples.

Upsampling creates imaging artifacts which are removed

by low-pass filtering. In the time domain, low-pass filtering

interpolates the zeros inserted by upsampling. The resam-

pling modified an EEG signal of frequency 256 Hz to a

modulated EEG signal of frequency 44.1 kHz. A sample

plot is shown considering a portion of the bandpass filtered

EEG data which is resampled from 256 Hz to 512 Hz.

Here 512 Hz is considered for simplicity in representation,

otherwise the plot would have been clumsy. Here it is

shown that the initial envelope of the signal is maintained

and using resampling, new samples are inserted, conse-

quently increasing the sampling rate (Fig. 5). The solid red

lines indicate the actual signal while the dashed-dotted

black lines indicate the resampled data inserted within two

consecutive data samples. In the original methodology, the

Fig. 3 A 2 min raw EEG signal

Fig. 4 A 2 min alpha frequency

EEG signal after bandpass

filtering
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same procedure is applied to upsample the EEG signal to

44.1 kHz (shown in Fig. 6).

In order to add aesthetic sense, the obtained signals are

modulated into the auditory range by assigning different

tones (electrode wise) to them so that when they are played

together the sudden increase or decrease in the data

information can be perceived as manifested by the change

in the amplitudes of the signal. For this, some suit-

able frequencies are chosen to produce a sound which is

harmonious to the ear. Now that we have a resampled

music induced EEG signal of the same frequency as that of

the music signal, an audio file was written out for the

obtained signal (Fig. 7).

Additionally, we can now use cross-correlation tech-

niques to establish any relation between these signals. We

used a robust non-linear cross correlation technique called

Multi Fractal Detrended Cross Correlation Analysis

(MFDXA) (Zhou 2008) in this case, taking the tanpura

drone/music signal as the first input and a music induced

resampled EEG signal (electrode wise) as the second input.

Multifractal Detrended Cross-Correlation
Analysis (MFDXA)

In 2008, Zhou proposed a method called multifractal

detrended cross-correlation analysis(MFDXA) is an off-

shoot of the generalized MFDFA method, which is based

on detrended covariance to investigate the multifractal

behaviors between two time series or high-dimensional

quantities. In order to study the degree of correlation

between two time series, linear cross-correlation analysis is

normally used, but two time series are always considered

stationary. However, real-time series are hardly stationary

and to cure that, as a rule, short intervals are considered for

Fig. 5 Sample plot showing

resampling of EEG data

Fig. 6 Sample EEG signal

filtered and resampled at 44100

Hz
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analysis. a method called detrended cross-correlation

analysis (DXA) was reported by Podobnik and Stanley

(2008). To unveil the multifractal nature of the music and

sonified EEG signals, multifractal detrended cross-corre-

lation analysis (MF-DXA) is applied here to study the

degree of correlation between the simultaneously recorded

EEG signals.

Here, we compute the profiles of the underlying data

series x(i) and y(i) as

X(i) �
Xi

k¼1

xðkÞ � xavg

" #
for i ¼ 1. . .N

Y(i) �
Xi

k¼1

xðkÞ � xavg

" #
for i ¼ 1. . .N

ð1Þ

The next steps proceed in the same way as the MFDFA

method, with the only difference being we have to take 2Ns

bins here. The qth order detrended covariance Fq(s) is

obtained after averaging over 2Ns bins.

Fq sð Þ ¼ 1=2Ns

X2Ns

v¼1

½Fðs; vÞ�q=2

( )1=q

ð2Þ

where q is an index which can take all possible values

except zero because in that case the factor 1/q blows up.

The procedure can be repeated by varying the value of s.

Fq(s) increases with increase in value of s. If the series is

long range power correlated, then Fq(s) will show power

law behavior

Fq sð Þ� skðqÞ:

If such a scaling exists ln Fq will depend linearly on ln s,

with k(q) as the slope. Scaling exponent k(q) represents the

degree of the cross-correlation between the two time series.

In general the exponent k(q) depends on q. We cannot

obtain the value of k(0) directly because Fq blows up at

q = 0. Fq cannot be obtained by the normal averaging

procedure; instead a logarithmic averaging procedure is

applied

F0 sð Þ ¼ 1=4Ns

X2Ns

v¼1

Fðs; vÞ½ �
( )

� Skð0Þ: ð3Þ

For q = 2 the method reduces to standard DCCA. If

scaling exponent k(q) is independent of q, the cross-cor-

relations between two time series are monofractal. If

scaling exponent k(q) is dependent on q, the cross-corre-

lations between two time series are multifractal. Further-

more, for positive q, k(q) describes the scaling behavior of

the segments with large fluctuations and for negative q,

k(q) describes the scaling behavior of the segments with

small fluctuations. Scaling exponent k(q) represents the

degree of the cross-correlation between the two time series

x(i) and y(i). The value k(q) = 0.5 denotes the absence of

cross-correlation. k(q)[ 0.5 indicates persistent long

range cross-correlations where a large value in one variable

is likely to be followed by a large value in another variable,

while the value k(q)\ 0.5 indicates anti-persistent cross-

correlations where a large value in one variable is likely to

be followed by a small value in another variable, and vice

versa (Movahed and Hermanis 2008).

Zhou (2008) found that for two time series constructed

by binomial measure from p-model, there exists the fol-

lowing relationship:

k q ¼ 2ð Þ � hx q ¼ 2ð Þ þ hy q ¼ 2ð Þ
� �

=2: ð4Þ

Podobnik and Stanley have studied this relation when

q = 2 for monofractal Autoregressive Fractional Moving

Average (ARFIMA) signals and EEG time series (Podob-

nik and Stanley 2008).

Fig. 7 Sample EEG signal

filtered and modulated at 44100

Hz (after addition of tones)
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In case of two time series generated by using two

uncoupled ARFIMA processes, each of both is autocorre-

lated, but there is no power-law cross correlation with a

specific exponent (Movahed and Hermanis 2008).

According to auto-correlation function given by:

C sð Þ ¼ xði þ sÞ � xh i½ � xðiÞ � xh i½ �h i� s�c: ð5Þ

The cross-correlation function can be written as

Cx sð Þ ¼ xði þ sÞ � xh i½ � yðiÞ � yh i½ �h i� s�c
x ð6Þ

where c and cx are the auto-correlation and cross-correla-

tion exponents, respectively. Due to the non-stationarities

and trends superimposed on the collected data, direct cal-

culation of these exponents are usually not recommended;

rather the reliable method to calculate auto-correlation

exponent is the DFA method, namely

c ¼ 2 � 2hðq ¼ 2Þ ðMovahed and Hermanis 2008Þ:

Recently, Podobnik et al. (2011), have demonstrated the

relation between cross-correlation exponent, cx and scaling

exponent k(q) derived by Eq. (4) according to

cx ¼ 2 � 2kðq ¼ 2Þ:

For uncorrelated data, cx has a value 1 and the lower the

value of c and cx more correlated is the data. In general,

k(q) depends on q, indicating the presence of multifrac-

tality. In other words, we want to point out how two non-

linear signals (in this case music and EEG) are cross-cor-

related in various time scales.

Results and discussion

The emotional responses corresponding to each music clip

have been given in Table 2 which gives the percentage

response obtained for each particular emotion, while Fig. 8

displays the emotional appraisal in a radar plot.

Thus it is seen that tanpura drone is mainly associated

with a serene/calm emotion, while the two raga clips in

general portray mainly contrast emotions, the internal

neuro-dynamics associated are assessed in the following

EEG study.

For preliminary analysis, we chose five electrodes from

the frontal and fronto-polar lobe viz. F3, F4, Fp1, Fp2 and

Fz, as the frontal lobe has been long associated with cog-

nition of music and other higher order cognitive skills.

Also, two electrodes from the temporal lobe viz. T3, T4

have been analyzed since the auditory cortex is preliminary

processing centre for the musical stimuli.

The cross correlation coefficient is evaluated for all

possible combinations of electrode and music clips during

the experimental conditions. All the data sets were first

transformed to reduce noise in the form of muscle and

blink artifacts in the data using the EMD technique (Maity

et al. 2015). The integrated time series were then divided to

Ns bins where Ns = int (N/s), N is the length of the series.

The qth order detrended covariance Fq(s) was obtained for

values of q from - 5 to ? 5 in steps of 1. Power law

scaling of Fq(s) with s is observed for all values of q. Fig 9

is a representative figure which shows the variation of

scaling exponent, k(q) with q for tanpura drone and music

in the ‘‘with drone’’ period is displayed. For comparison,

we have also shown variation of H(q) with q individually

for the same two signals—music and F3 electrode EEG by

means of MF-DFA in the same figure. If the scaling

exponent is a constant, the series is monofractal, otherwise

it is multifractal. The plot depicts multifractal behavior of

cross-correlated time series as for q = 2 the cross-correla-

tion scaling exponent k(q) is greater than 0.5 which is an

indication of persistence long-range cross-correlation

between the two signals. In the same way, k(q) was eval-

uated for all the possible combinations of music-EEG as

well as EEG–EEG data. The q-dependence of the classical

multifractal scaling exponent s(q) is depicted in Fig. 10 for

the music-EEG correlation case. From Fig. 10 we can see

s(q) is nonlinearly dependent on q, which is yet another

evidence of multifractality. We also plotted the multifractal

width of the cross correlated signals of music and F3

Table 2 Percentage response of 50 listeners to music clips

Joy Anxiety Sorrow Calm

Clip 1 (Drone) 10 5 8 77

Clip 2 (Chayanat) 96 10 4 55

Clip 3 (Darbari Kanada) 10 42 77 15
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Fig. 8 Emotional plot for the three clips
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electrode in Fig. 11. The presence of spectral width of

cross correlated EEG signals confirms the presence of

multifractality even in the cross-correlated music and EEG

signals. This is a very interesting observation from the

stand-point of psycho-acoustics which reveals the fact that

not only the music and EEG signals originating from the

brain are cross-correlated, but the cross-correlated signals

are also multifractal in nature. The same analysis was

Fig. 9 Variation of k(q) versus

q for music and F3

Fig. 10 Variation of s(q) versus

q for music vs F3
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repeated for all other electrodes and music clips as well as

between the EEG electrodes which revealed the amount

cross-correlation between the different electrodes of human

brain.

The cross-correlation coefficient (cx) corresponding to

the two experimental conditions were computed and the

difference between the two conditions were computed and

the corresponding graph (Fig. 12) shows the same. The

complete 2 min signal (both EEG and audio signal) was

segregated into 4 segments of 30 s each and for each part

the cross-correlation coefficient was computed. Fig 12

represents the change in cross-correlation coefficient under

the effect of the four segments of the drone stimulus. It is

worth mentioning here that a decrease in the value of cx

signifies an increase in correlation between the two signals.

From the figure it is clear that the degree of correlation

between audio signal and the EEG signal generated from

the different electrodes increase with the progress of time

where Segment 1 denotes the initial 30 s, while Segment 4

denotes the concluding 30 s of the drone stimulus. In most

of the cases it is seen that the degree of correlation is the

highest in the third segment i.e. in between 1 min - 1 min

30 s and in few electrodes (i.e. Fz and F3), the degree of

cross-correlation is highest in the last segment i.e. in

between 1 min 30 s–2 min. In one of our earlier works

(Maity et al. 2015), we reported how the complexity of the

EEG signals generated from frontal lobes increase signifi-

cantly under the influence of tanpura drone signal, while in

this work we report how the audio signal which causes the

change is directly correlated with the output EEG signal.

Fig. 11 Multifractal spectral

width for cross correlated music

and F3 electrode
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Fig. 12 Variation of correlation

between rest and tanpura drone

condition
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Also, how the correlation varies during the course of the

experiment is also an interesting observation from this

experiment. From the figure, a gradual increase in the

degree of cross-correlation is observed, but the 2nd part

shows a fall in few electrodes, but in the 3rd and 4th part

there is always an increase. The temporal electrodes also

show maximum increase in the third and final segments as

is seen from the figures. The error bars in the figure show

the computational errors in the measurement of cross-cor-

relation values. It can thus be interpreted that the middle

part of the audio signal is the most engaging part as it is in

this section that the correlation between the frontal lobes

and the audio signal becomes the highest. In our previous

study also, we have shown that the increase in complexity

was the highest in this part only. So the results from this

experiment corroborate our previous findings. Next, we

wanted to see how inter/intra lobe cross-correlations vary

under the effect of tanpura drone stimuli. So, we calculated

the cross-correlation coefficient between pairs of electrodes

chosen for our study during the two experimental condi-

tions i.e. ‘‘Rest/Auditory Control state’’ and ‘‘with music’’

state. Again the difference between the two states has been

plotted in Fig. 13. In this case we considered only the

electrodes of left and right hemispheres and neglected the

frontal midline electrode Fz.

From the figure, it is seen that the correlation between

left and right frontal electrode (i.e. F3 and F4) with the left

fronto-polar electrode i.e. FP1 has the most significant

increase in the 2nd and 3rd segment of the audio stimuli.

Apart from these, F3-FP2 correlation also increase con-

sistently again in the 2nd and 3rd segments of the audio

clip while inter lobe frontal correlation, i.e. between F3 and

F4 electrodes show the highest rise in the last two parts of

the audio signal. Inter-lobe fronto-polar correlation rises

significantly in the 2nd and 4th segments of the experi-

ment. An interesting observation from the figure is that the

cross-correlation of the temporal electrodes with frontal

electrodes is much higher compared to the correlation

between frontal electrodes, while the inter lobe correlation

among the temporal electrodes (T3–T4) is the strongest of

all. Amongst the correlation values, the cross-correlation of

temporal electrode with fronto-polar electrodes are on the

lower side. It is seen that the correlation of temporal lobe

with other electrodes is the strongest, which is caused by

the use of tanpura drone as brain stimulus. The computa-

tional errors from the experiment have been shown in the

form of error bars in the figure. Thus, it is clear that dif-

ferent lobes of human brain activate themselves differently

and in different portions under the effect of simple auditory

stimuli. In general, it is seen that the middle portion of an

audio clip possesses the most important information which

leads to higher degree of cross-correlation among the dif-

ferent lobes of the human brain. The last portion of the

signal also engages a certain section of the brain to a great

extent. This experiment provides novel insights into the

complex neural dynamics going on in the human brain

during the cognition and perception of an audio signal.

In the following experiment, EEG data corresponding to

emotional music stimuli were sonified and degree of cross-

correlation was evaluated for the audio clip and the sonified

EEG signals. From this we look to develop a robust emo-

tion categorization algorithm which depends on direct

correlation between the audio signal and the EEG wave-

form. Furthermore, the correlation between the various

EEG electrodes was also evaluated to have an idea of the

simultaneous arousal based response in different regions
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among different electrodes
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while listening to emotional music stimulus. The following

table (Table 3) reports the values of cross-correlation

coefficient between the music clips and the EEG signals

originating from different frontal electrodes in various

experimental conditions. Table 4 reports inter and intra

lobe cross-correlations corresponding to the same experi-

mental conditions. In the auditory control condition, white

noise has been used as the reference signal for which the

value of cross-correlation is computed with the specific

EEG electrodes.

The SD values corresponding to each experimental

condition represents the residual error coming out from the

EEG analysis performed on the 10 subjects. ANOVA tests

revealed significant p-values for each of the experimental

condition with confidence level of[ 85%. We have cal-

culated the impact of each music clip on human brain

taking the difference of music induced state from the

control state. The difference of musical stimuli induced

state from the control state has been reported in the fol-

lowing figures. While the first figure (Fig. 14) reports the

change in the degree of cross-correlation coefficient

between the music signal and the EEG electrodes for the

two specific experimental conditions, the second fig-

ure (Fig. 15) reports the change in inter and intra lobe

cross-correlation under the same two conditions.

Table 3 Values of cross-

correlation coefficients between

music and sonified EEG

Part 1 (auditory control) Part 2 (Chayanat) Part 3 (auditory control) Part 4 (Darbari Kanada)

F3 - 1.35 ± 0.04 - 0.64 ±0.02 - 1.25 ± 0.02 - 0.23 ± 0.01

F4 - 1.46 ± 0.06 - 0.85 ±0.06 - 1.28 ± 0.03 - 0.39 ± 0.02

FP1 - 1.39 ± 0.03 - 0.56 ± 0.03 - 1.52 ± 0.04 - 0.13 ± 0.04

FP2 - 1.27 ±0.02 - 0.92 ± 0.04 - 1.24 ± 0.02 - 0.15 ± 0.02

Fz - 1.19 ± 0.06 - 0.38 ± 0.02 - 1.27 ± 0.05 - 0.12 ± 0.04

T3 - 0.34 ± 0.03 - 0.95 ± 0.04 - 0.34 ± 0.02 - 0.93 ± 0.07

T4 - 0.36 ± 0.04 - 0.98 ± 0.05 - 0.37 ± 0.04 - 1.04 ± 0.06

Table 4 Values of Cross-Correlation coefficients among EEG electrodes

Part 1 (auditory control) Part 2 (Chayanat) Part 3 (auditor control) Part 4 (Darbari Kanada)

F3–F4 - 2.05 ± 0.06 - 1.78 ± 0.04 - 1.69 ± 0.06 - 2.09 ± 0.06

F3–FP1 - 1.72 ± 0.04 - 1.92 ± 0.06 - 1.03 ± 0.04 - 1.86 ± 0.07

F3–FP2 - 2.23 ± 0.07 - 1.61 ± 0.07 - 1.49 ± 0.05 - 2.07 ± 0.04

F4–FP1 - 2.47 ± 0.08 - 1.90 ± 0.06 - 1.47 ± 0.05 - 1.94 ± 0.07

F4–FP2 - 2.11 ± 0.03 - 1.74 ± 0.04 - 1.64 ± 0.07 - 2.07 ± 0.11

FP1–FP2 - 2.11 ± 0.06 - 1.91 ± 0.03 - 1.43 ± 0.08 - 1.86 ± 0.09

F3–T3 - 0.89 ± 0.03 - 0.50 ± 0.02 - 0.44 ± 0.03 - 1.15 ± 0.02

F4–T3 - 0.86 ± 0.02 - 0.26 ± 0.03 - 0.35 ± 0.02 - 1.11 ± 0.04

FP1–T3 - 0.31 ± 0.03 - 0.79 ± 0.05 - 0.85 ± 0.04 - 0.79 ± 0.07

FP2–T3 - 0.85 ± 0.04 - 0.61 ± 0.02 - 0.18 ± 0.04 - 1.14 ± 0.03

F3–T4 - 0.95 ± 0.06 - 0.44 ± 0.076 - 0.43 ± 0.02 - 1.18 ± 0.06

F4–T4 - 0.92 ± 0.02 - 0.12 ± 0.04 - 0.47 ± 0.05 - 1.15 ± 0.07

FP1–T4 - 0.31 ± 0.04 0.21 ± 0.06 - 0.74 ± 0.04 - 0.76 ± 0.04

FP2–T4 - 0.91 ± 0.05 - 0.68 ± 0.07 - 0.26 ± 0.03 - 1.16 ± 0.06

T3–T4 - 0.89 ± 0.03 - 0.23 ± 0.02 - 0.48 ± 0.01 - 1.11 ± 0.01
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Fig. 14 Change in degree of cross-correlation between music signal

and frontal electrodes
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The given Fig. 14 reports the change in the cross cor-

relation coefficient cx (which is computed between the

music clip and the sonified EEG signal) under the effect of

two Hindustani raga clips of contrast emotion. For the rest

state, the cross-correlation coefficient is computed using

white noise, which is taken as the reference state on which

the response of Chayanat and Darbari Kanada is com-

puted. It is found that in both the cases, the value of cx
increases, indicating the degree of cross-correlation

between music and EEG signal decreases. All the frontal

electrodes uniformly show a decrease in correlation with

the source music signals. In case of raga Chayanat (con-

ventionally portraying happy emotion), it is found that the

decrease in correlation is much lesser as compared to the

decrease in case of raga Darbari. The two fronto-polar

electrodes, FP1/FP2 and the frontal midline electrode Fz

are the ones which show significant increase in cross-cor-

relation coefficient for both the music clips. The response

of temporal lobes is in stark contrast to the other electrodes

as is seen from the figure. The degree of correlation

increase considerably under the effect of both Chayanat

and Darbari raga, the increase being higher for the happy

clip as compared to the sad one. Thus the cognitive

appraisal corresponding to the temporal lobe is signifi-

cantly different from that of the frontal lobe. In this way,

using EEG sonification techniques, we have been able to

establish a direct correlation between the source music

signals and the output EEG signals generated as a result of

induction of the musical stimuli. Our observations point in

the direction of distinct emotion categorization between

positive and negative emotional stimuli using robust non-

linear scientific analysis techniques. The following Fig. 15

reports the change in inter lobe and intra-lobe cross cor-

relation coefficient under the effect of contrast emotional

music stimuli.

A general look into the figure reveals two distinct modes

of emotional processing in human in respect to positive and

negative emotional stimuli. While for the raga Chayanat,

we find an increase in cross-correlation coefficient for all

electrode combinations, the same decreases for all elec-

trode combinations in case of raga Darbari Kanada. Thus,

in general it can be said that for happy clips the degree of

correlation between the frontal and fronto-polar electrodes

decrease, the same increases strongly for a sad clip. The

increase in correlation between electrodes for the sad clip is

most prominent in case of F3–FP1, F3–FP2, FP2–T3 and

Fp2–T4 combinations, while for the happy clip; the

decrease in correlation is most prominent in F3–FP2, F4–

FP1, T3–T4 and F4–T4 combinations. The observations

shed new light on how the neuronal signals originating

from different lobes of brain are correlated with one

another during the cognitive processing of an emotional

musical stimulus. The emotional categorization is most

prominent in the increase or decrease of inter/intra-lobe

correlation with respect to temporal lobe. Also, the activity

of different brain lobes corresponding to specific musical

emotion processing is an interesting revelation of this

study. Further studies corresponding to other electrodes

and a variety of emotional music stimuli is being conducted

to get more robust and concrete results in this domain.

Conclusion

Despite growing efforts to establish sonification as a sci-

entific discipline, the legitimacy of sound as a means to

represent scientific data remains to be contested. Conse-

quently, the sonification community has witnessed

increasing attempts to sharpen the boundaries between

scientific and artistic sonification. Some have argued,
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0 
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1 
Chayanat Darbari 

Fig. 15 Change in degree of

cross-correlation between

frontal electrodes under two

contrast music
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however, that these demarcation efforts do injustice to the

assets composers and musicians could potentially bring to

the field. Professor Michael Ballam of Utah State Univer-

sity explains the effects of musical repetition: ‘‘The human

mind shuts down after three or four repetitions of a rhythm,

or a melody, or a harmonic progression.’’ As a result,

repetitive rhythmic music may cause people to actually

release control of their thoughts, making them more

receptive to whatever lyrical message is joined to the

music. The tanpura drone in Hindustani music is a beau-

tiful and most used example of repetitive music wherein

the same pattern repeats itself again and again to engage

the listeners and also to create an atmosphere. In this novel

study, we deciphered a direct correlation between the

source audio signal and the output EEG signal and also

studied the correlation between different parts of the brain

under the effect of same auditory stimulus. The following

are the interesting conclusions obtained from the first

experiment:

1. A direct evidence of correlation existing between

audio signal and the sonified EEG signals obtained

from different lobes of human brain is obtained. The

degree of correlation goes on increasing as the audio

clip progresses and becomes maximum in the 3rd and

4th segment of the audio clip which is around 1–2 min

in our case. The rise in correlation is different in scale

in different electrodes, but in general we have found a

stipulated time period wherein the effect of music on

human brain is the maximum.

2. While computing the degree of correlation among

different parts of the brain, we found that the audio clip

has the ability to activate different brain regions

simultaneously or in different times. Again, we find

that the mid-portions of the audio clip are the ones

which leads to most pronounced correlation in differ-

ent electrode combinations. In the final portion of the

audio clip also we find high value of cx in several

electrode combinations. This shows the ability of a

music clip to engage several areas of the brain at a go

not possible by any other stimulus at hand.

3. The intra lobe correlation of the two temporal

electrodes as well as the inter lobe correlation with

other temporal electrodes seem to be affected most

significantly under the effect of acoustical stimuli. The

degree of correlation increases significantly under the

effect of even a neutral musical stimulus like tanpura

drone, which does not elicit any emotional appraisal as

is evident from the psychological study.

The second experiment dealing with emotional music

clips provides conclusive data in regard to emotional cat-

egorization in the brain using Hindustani classical music.

The following are the interesting conclusions as found

from the study:

1. A strong correlation is found between the music clips

and the EEG frontal electrodes as evidenced from the

values of cross-correlation coefficient. The correlation

is found to decrease under the influence of music of

both happy and sad emotion. The decrease is found to

be much more significant in case of the music which

portrays sad emotion as compared to the happy

emotional clip. We have direct quantitative evidence

of correlation between music and EEG signals as well

as the level of arousal in among the electrodes in

regard to emotional music stimuli.

2. In the cross-correlation study between different pair of

electrodes in right and left hemispheres of frontal lobe

as well as fronto-polar lobe clear evidence of distinct

emotional categorization is observed. While for raga

Darbari Kanada, the degree of correlation among the

electrodes increases significantly across all the elec-

trode combinations, the same decreases for raga

Chayanat. The inter lobe correlation between frontal

and fronto-polar electrodes appear to increase most in

case of the sad music clips.

3. The emotional categorization becomes most prominent

in the amount of correlation found in respect to the

temporal electrodes, with the specification most

prominent in the F3–T4 and F4–T4 combination

followed by the T3–T4 combination. Thus, in case of

acoustical stimuli temporal electrodes seem to play an

important role in non-linear correlation with signals

originating from other positions of human brain

During the 1970s, the rise of neurofeedback stimulated

parallel search for brainwave control using EEG waves. In

a similar manner, future works in this domain involve

procuring EEG data with sonified musical EEG signals as

the stimulus and further study of the brain response. The

use of sonified EEG waves (obtained from different

musical stimulus on human brain) as a musical stimulus to

the same participants and the analysis of the so obtained

EEG waves is in progress in our Laboratory and forms an

interesting future application of this novel study. In con-

clusion, this study provides unique insights into the com-

plex neural and audio dynamics simultaneously and has the

potential to go a long way to device a methodology for

scientific basis of cognitive music therapy, a foundation has

been laid in that direction using Hindustani Classical music

as an agent.
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