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Abstract
Brief bursts of high-frequency spikes are a common firing pattern of neurons. The cellular mechanisms of bursting and its

biological significance remain a matter of debate. Focusing on the energy aspect, this paper proposes a neural energy

calculation method based on the Chay model of bursting. The flow of ions across the membrane of the bursting neuron with

or without current stimulation and its power which contributes to the change of the transmembrane electrical potential

energy are analyzed here in detail. We find that during the depolarization of spikes in bursting this power becomes

negative, which was also discovered in previous research with another energy model. We also find that the neuron’s energy

consumption during bursting is minimal. Especially in the spontaneous state without stimulation, the total energy con-

sumption (2.152 9 10-7 J) during 30 s of bursting is very similar to the biological energy consumption (2.468 9 10-7 J)

during the generation of a single action potential, as shown in Wang et al. (Neural Plast 2017, 2017a). Our results suggest

that this property of low energy consumption could simply be the consequence of the biophysics of generating bursts,

which is consistent with the principle of energy minimization. Our results also imply that neural energy plays a critical role

in neural coding, which opens a new avenue for research of a central challenge facing neuroscience today.
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Introduction

Understanding neural coding remains a central focus of

neuroscience since the pioneering research of Edgar Adrian

in the 1930s (Adrian 1932). The question is critical to

elucidating the working mechanisms of the brain. A variety

of proposed neural coding patterns, such as rate coding,

time coding, phase coding and population coding (Optican

and Richmond 1987; Lee et al. 1988; Igarashi et al. 2007;

Cessac et al. 2010), are applicable only to local neural

activity research, and have limited use for the exploration

of global brain activity (Butts et al. 2007; Gong et al. 2010;

Guo and Li 2012).

To overcome this limitation, researchers have developed

an energy coding theory (Wang et al. 2006, 2014, 2015a;

Wang and Wang 2014; Wang and Zhu 2016) based on the

principle that neural activities are in fact energy-expensive

coding processes (Hyder et al. 2013; Attwell and Laughlin

2001; Torrealdea et al. 2009; Alle et al. 2009). While this

theory is still in the exploratory stage, the core idea of

examining the quantitative relationship between neural

activity and neural energy consumption may offer a major

contribution in understanding neural coding (Wang et al.

2006, 2015b). Building on this theory, recent research has

achieved important results with applying various neural

models and energy calculation methods (Zheng and Wang

2012; Zheng et al. 2014, 2016, 2017a, b). (I) Using the

concepts of minimum mutual information and maximum

entropy to study neural coding shows that the neural

information processing of the brain follows the principles

of minimization of energy consumption and maximization

of information transmission efficiency (Zheng and Wang

2012; Laughlin and Sejnowski 2003). (II) The calculations

from the energy model in Zheng et al. (2014), demonstrate

that during action potentials, neurons first release stored

energy very rapidly and then receive from oxyhemoglobins

the energy required for subsequent action potentials. (III)

Wang et al. (2017a) based on the Hodgkin–Huxley model
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calculates by the method of ion counting and power inte-

gration that an action potential consumes 2.468 9 10-7 J

of biological energy produced by the hydrolysis of Ade-

nosine triphosphate (ATP). These results show that it is

reasonable and effective to explore the mechanism of

neural information processing by studying the relationship

between neurons’ firing activity and the energy they

consume.

To understand neural processing mechanisms we also

need to study the dynamics of neuronal subthreshold

electrical activities. Neuronal bursting, a common firing

pattern of these electrical activities observed in many

electrophysiological experiments, has been studied exten-

sively (Ji et al. 2015; Izhikevich 2000; Kepecs and Wang

2000; Wang et al. 2011; Shi et al. 2017; Zhang et al. 2016;

Perc and Marhl 2005; Gu et al. 2015; Jia et al. 2017; Duan

et al. 2017). These studies mainly focus either on mathe-

matical models for numerical analysis or on elucidating the

time coding characteristics of bursting activities (Ji et al.

2015; Izhikevich 2000; Kepecs and Wang 2000; Wang

et al. 2011; Shi et al. 2017). The latter approach is more

common because it is assumed that the coding information

is contained in the precise time structure between spikes or

between bursts (Zhang et al. 2016; Perc and Marhl 2005;

Gu et al. 2015; Jia et al. 2017; Duan et al. 2017). However,

most such studies rely mainly on data calculation and

cannot explain the biological significance of the bursting

phenomenon. So far there is no consensus as to this sig-

nificance (Krahe and Gabbiani 2004; Wang 1999; Li et al.

2016; Izhikevich et al. 2003; Li et al. 2009; Bera et al.

2017). One study argues that bursting can strengthen

synaptic plasticity (Li et al. 2016). Another study posits

that bursts can be used in the selective communication

between neurons (Izhikevich et al. 2003). Still another

study found in the case of sleeping rats that the bursting of

a single cortical neuron could trigger shifts between the

states of slow-wave sleep (SWS) and rapid eye movement

(REM) (Li et al. 2009). In addition, bursting has also been

related to chimera states in neuronal dynamics (Bera et al.

2017). Further study in this field, therefore, is obviously

necessary to obtain a better understanding of the biological

significance of bursting.

Starting from experimental observations that neural fir-

ing activity consumes energy, this study uses the Chay

model to propose a method of calculating the energy

consumption of a bursting neuron. Using these results, we

study the influence of ion flows on changes in both mem-

brane potential and its corresponding power and analyze

the fluctuations of the total energy consumption induced by

various electrical stimuli to obtain a deeper understanding

of firing activity within the neural system.

Methods

Chay model

The Chay model can simulate bursting activities of neurons

of a biological nervous system in a simple yet effective

way (Chay 1985; Chay and Fan 1995) (Fig. 1). This model

contains the following ionic currents: inwards Na?–Ca2?

mixed channel ions, outwards voltage-dependent K?

channel ions, Ca2?-dependent K? channel ions and leakage

channel ions. The Chay model is described using the fol-

lowing three differential equations:

dV

dt
¼ gim

3
1h1ðVi � VÞ þ gkvn

4ðVk � VÞ

þ gkc
C

1þ C
ðVk � VÞ þ glðVl � VÞ þ I

ð1Þ

dn

dt
¼ n1 � n

sn
ð2Þ

dC

dt
¼ q m3

1h1ðVC � VÞ � kCC
� �

ð3Þ

m1, h1, n1 and sn can be expressed by:

y1 ¼ ayðVÞ
ayðVÞ þ byðVÞ

ðy ¼ m; h; nÞ;

amðVÞ ¼ 0:1ð25þ VÞ=ð1� e�0:1V�2:5Þ;
bmðVÞ ¼ 4e�ðVþ50Þ=18;

ahðVÞ ¼ 0:07e�0:05V�2:5;

bhðVÞ ¼ 1=ð1þ e�0:1V�2Þ;
anðVÞ ¼ 0:01ð20þ VÞ=ð1� e�0:1V�2Þ;
bnðVÞ ¼ 0:125e�ðVþ30Þ=80;

sn ¼ 1=ðknðan þ bnÞÞ;

Here V, n, and C are the membrane potential, the proba-

bility of opening voltage-dependent K? channels, and the

intracellular Ca2? concentration, respectively. Vi, Vk, Vc

and Vl are the reversal potentials (which are also referred to

as ‘‘Nernst potentials’’) for mixed Na?–Ca2?, K?, Ca2?

and leakage ions, respectively. gi, gkv, gkc, and gl represent

the maximum conductance of the mixed Na?–Ca2?, volt-

age-dependent K?, Ca2?-dependent K?, and leakage ions

respectively. m1, h1 are the probabilities of activation and

inactivation of the mixed inward current channel, and n1 is

the steady-state value of n. sn is the relaxation time of the

voltage-gated K? channel. kC is the rate constant for the

efflux of the intracellular Ca2?, and q is a proportionality

constant. I is the stimulus current.
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The energy calculation method

During spontaneous firing, the difference in membrane

potential depends on the selective permeability of the

neuronal membrane and the ion concentration gradients

across the membrane (Hyder et al. 2013; Gazzaniga et al.

2008; Hammond 2008). The selective permeability of

membranes is due largely to ion channels, proteins that

allow only certain kinds of ions to cross the membrane in

the direction of their concentration gradients. As ions take

their electrical charge with them as they go, electrical

potential (which carries neural information) is generated.

However, the activity of these ion channels relies on the

establishment and maintenance of ion concentration gra-

dients by ion pumps, which require biological energy ATP

to pump ions across the neuronal membrane against ion

concentration gradients (Gazzaniga et al. 2008; Hammond

2008), as the sodium–potassium pump (Na/K-ATPase

pump) and calcium pump (Ca-ATPase pump) show in

Fig. 2. The Na/K-ATPase pump actively extrudes three

Na? and imports two K? for the hydrolysis of one ATP to

generate and maintain transmembrane concentration gra-

dients for Na?, K? and indirectly for other ions.

The neural energy calculated in this paper is only the

biological energy ATP consumed by Na/K-ATPase pumps,

which effectively contributes to electrical signals. It should

be noted that the ATP consumed by the Ca-ATPase pump

is ignored here for following two reasons. First, the intra-

cellular Ca2? concentration is very low compared to that of

other ions. At rest, the neuron has a K? concentration of

3 mM outside the membrane and 140 mM inside; a Na?

concentration of 140 mM outside and 7 mM inside; a Cl-

concentration of 40 mM outside and 7 mM inside; and a

Ca2? concentration of 1.5 mM outside and 0.1 lM inside

(Hammond 2008). Second, the role of Ca2? in this Chay

model is considered in the mixed Na?–Ca2? channel, with

the concentration changes of intracellular Ca2? varying by

about 0.05 lM and not more than 0.1 lM (Fig. 3). In

addition, the change of Ca2? concentration depends mainly

on Na–Ca transporters (Fig. 2) to pump Ca2? out of neu-

rons (0.5–1.0 lM) under the effect of the Na? electro-

chemical gradient, which does not consume ATP, and

much less on the Ca-ATPase pump (0.2–0.3 lM), which

does consume ATP (Hammond 2008). This further indi-

cates the rationality of ignoring the ATP consumption of

the Ca-ATPase pump.

Fig. 1 Burst firing simulated by

the Chay model. The membrane

potential varies between - 55

and - 15 mV, and each burst

contains several spikes.

Vi = 100 mV, Vk = - 75 mV,

Vl = - 40 mV, Vc = 100 mV;

gi = 1800 nS, gkv = 1700 nS,

gkc = 11.5 nS, gl = 7 nS. For a

detailed description of the Chay

model please refer to Chay

(1985)

Fig. 2 Schematic diagram of major ion pumps (Na/K-ATPase pump

and Ca-ATPase pump) and tansporters (Na–Ca transporter and K–Cl

tansporter) across the neuronal membrane. The red arrows represent

the ion movement against the ion concentration gradient; the green

arrows represent the ion movement along the ion concentration

gradient; the black arrows represent the hydrolysis of biological

energy ATP. These two pumps acquire energy directly from the

hydrolysis of ATP to pump ions across the membrane against their

electrochemical gradients. Other transporters do not consume ATP

directly but rather take advantage of the electrochemical gradients of

Na? and K? (or other ions), which ultimately depend on the

hydrolysis of ATP by ATPase pumps, such as the Na/K-ATPase

pump [Fig. 2 from Hammond (2008)]. (Color figure online)
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Na/K-ATPase pumps consume ATP in order to create

and maintain the concentration gradients of ions across the

neuronal membrane, and therefore provide reversal

potentials for each ion to generate electrical signals

(Hammond 2008; Skou and Esmann 1992; Ogawa et al.

2009). In fact, Na/K-ATPase pumps store energy in the

form of ion concentration gradients firstly during the

refractory period, whereas the subsequent opening of ion

channels rapidly dissipates this stored energy during rela-

tively brief electrical signaling events, such as action

potentials or spikes of bursting. More specificly, the bio-

logical energy ATP consumed by Na/K-ATPase pumps is

transformed into the energy in the form of transmembrane

concentration gradients of all the ions, which are the

reversal potentials (Vi, Vk, Vl) of each ion. As the electrical

properties of neurons can be described in terms of electrical

circuits, these reversal potentials can be regarded as the

voltage sources in the electrical circuit (Fig. 4). Thus, the

electrical potential energy consumption of the voltage

sources representing the reversal potentials in the circuit,

i.e. the stored energy by Na/K-ATPase pumps, is approx-

imately the same as the consumed biological energy ATP.

According to Fig. 4, we firstly derive the following

formula for the calculation of the power of the electrical

potential energy consumption of the voltage sources (Vi,

Vk, Vl) in the circuit, which is also equivalent to the average

power of consuming the energy stored by Na/K-ATPase

pumps according to the analysis above.

P ¼ jIkvVkj þ jIkcVkj þ jIlVlj � jIiVij ð4Þ

Ii ¼ gim
3
1h1ðV � ViÞ

Ikv ¼ gkvn
4ðV � VkÞ

Ikc ¼ gkc
C

1þ C
ðV � VkÞ

Il ¼ glðV � VlÞ

Note here that, the fourth item in formula (4) is—|IiVi|. This

is because, in the circuit as well as in the neuron, the Na?–

Ca2? current (Ii) is inward while K? and leakage ion cur-

rents (Ik and Il) are outward. When these two inward and

outward currents occur at the same time, the overlapping

part of the electrical charges offset each other; therefore, it

is their net power which contributes to the electrical

potential energy (more properly, the membrane potential,

such as resting potential and action potential) across the

Fig. 3 Changes of intracellular

Ca2? concentration during

bursting. The intracellular Ca2?

concentration varies by about

0.05 lM and not more than

0.1 lM during burst firing

Fig. 4 Schematic diagram of the electrical circuit of the neural

membrane. Voltage sources (Vi, Vk, Vl) in this circuit correspond to

reversal potentials for mixed Na?–Ca2?, K? and leakage ions in the

neuron, respectively. Ii, Ik (the total of Ikv and Ikc), and Il are

corresponding currents of voltage sources. Note that Ii has a reverse

direction of Ik and Il
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membrane. Thus, the ATP consumed by the overlapping

current intrinsically determined by individual neurons, i.e.

the neural models, is not contained in P here.

Throughout burst firing, themembrane potential is always

below- 15 mV (Fig. 1), and the ion environment across the

membrane remains positive outside and negative inside

(Fig. 4). During a spike, the Na?–Ca2? ion inflow (Ii)

releases the energy stored in the form of Na? and Ca2? ion

concentration gradients. The outflow of K? and leakage ions

(Ik and Il) releases the energy stored in the form of K? and

leakage ion concentration gradients. Therefore, if P is posi-

tive at a certain moment, this means that the neuron’s con-

sumption of stored energy in the form of K? and leakage ion

concentration gradients is greater than its consumption of

stored energy in the form of Na? and Ca2? ion concentration

gradients. Conversely, if P is negative, then the consumption

of stored energy in the form of Na? and Ca2? ion concen-

tration gradients outweighs the consumption of stored

energy in the form of K? and leakage ion concentration

gradients. To simplify, we call positive P a net absorption of

electrical potential energy and negative P a net release of

electrical potential energy. This is because the outflow of Ik
and Il increases the electrical potential energy across the

membrane while the inflow of Ii reduces it.

When P is positive, we write Ppositive ¼
PsgnðPÞ; ðP� 0Þ, then the net absorption of electrical

potential energy in 30 s is
RT

0

PpositiveðtÞdt; ðT ¼ 30 sÞ.

Conversely, when P is negative, we write Pnegative ¼
PsgnðPÞ; ðP\0Þ, then the net release of electrical potential

energy in 30 s is
RT

0

PnegativeðtÞdt; ðT ¼ 30 sÞ. During the

generation of electrical signals, these two types of consumed

energy derive from ion concentration gradients (Na?–Ca2?,

K? and leakage ions) stored by Na/K-ATPase pumps

through the consumption of ATP before the outset of each

electrical signal. During 30 s of bursting, the total of these

two types of energy is therefore roughly equal to the ATP

consumption of Na/K-ATPase pumps. We will call this total

energy consumption ‘‘E’’:

E ¼
ZT

0

PpositiveðtÞdt þ
ZT

0

PnegativeðtÞdt; ðT ¼ 30 sÞ ð5Þ

Results

No stimulus current

Figure 5 shows the membrane potential curve of a bursting

neuron with stimulus current I = 0 nA and the corre-

sponding power curve.

In Fig. 6 below, we enlarge the 0.7–1.5 s interval in

Fig. 5 and divide the first complete spike into 4 periods,

which are AB (resting potential stage), BC (depolarization

stage), CD (anterior segment of repolarization), and DE

(posterior segment of repolarization). We now analyze one

by one the change of membrane potential and its corre-

sponding power for each segment. Figure 7 shows the

variation curve of the ion current corresponding to Fig. 6,

wherein the points A, B, C, D, and E correspond to each

point in Fig. 6.

(1) AB segment—resting potential stage

The neuronal membrane potential is about - 48 mV. Its

corresponding power value P is greater than but close to

0 nW. As there are many more K? channels without gate

control than Na? channels, the membrane permeability of

K? ions is higher than that of Na? ions. Thus, even at

resting potential, there will always be a small net outflow

of K? ions, which is consistent with the calculation that

power value P is close to 0 nW.

(2) BC segment—depolarization stage

Membrane potential change When the membrane potential

reaches - 45 mV, voltage-gated Na?–Ca2? mixed chan-

nels open, which allows Na? and Ca2? ions to enter into

the neuron and depolarize it. This process, in turn, results

in more voltage-gated Na? channels opening and further

promotes membrane depolarization. The process continues

and reinforces itself until the number of opening Na?

channels reaches a maximum and thus the membrane

potential also reaches a maximum. In the BC segment, the

voltage-sensitive K? channels also open gradually,

increasing the outward K? current, which, however,

remains much less than the inward Na?–Ca2? mixed cur-

rent, so that the membrane potential of BC segment rises

until it reaches a maximum.

Power change Starting from point B, the power value P

turns negative, gradually declining at first and then falling

sharply to a minimum, after which it rebounds sharply.

According to our definition of P, a negative value means

that the net effect of the neuron is to release the energy

stored in the form of Na? and Ca2? ion concentration

gradients. This result is consistent with the previous

research result in Zheng et al. (2014) that neurons first

release stored energy very rapidly during the generation of

action potentials.

In fact, during the early BC stage, it is the influx of Na?

and Ca2? ions which mainly contributes to an increase of

membrane potential and a decrease of the value P. During

the later BC stage, after a short delay, the membrane

depolarization reaches a level which triggers an opening of

K? channels and a large increase in the outflow K? ions.
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However, the Na?–Ca2? ions are still greater than the

outflow of K? ions, so that the membrane potential con-

tinues to rise until the inward current of Na? and Ca2? ions

roughly equals the outward currents of K? ions and leakage

ions (see Fig. 7). It is worth noting that in the later stage of

the BC phase, the power P, after reaching its minimum

value, begins to rise again, because the voltage-sensitive

K? current, though smaller than the mixed Na?–Ca2?

current, rises faster.

(3) CD segment—repolarization early phase

Membrane potential change When the membrane potential

reaches its maximum at C point, the inward and the out-

ward ion flows are basically the same. As the high per-

meability of Na? ions lasts only for a short time, the inflow

of Na? ions decreases, while the permeability of K? ions

increases sharply. Since the outward voltage-sensitive K?

current is much greater than the inward Na?–Ca2? mixed

ion current, the membrane potential repolarizes quickly.

During this phase, the outward voltage-sensitive K? cur-

rent increases to a maximum then decreases rapidly, but

remains larger than the inward Na?–Ca2? ion current,

resulting in a downward trend in membrane potential.

Power change As the outward voltage-sensitive K?

current is much larger than the inward Na?–Ca2? mixed

current after the C point, the power value P begins to rise

and turns positive. With more and more K? ions flowing

out, P increases until the outward ion current (K? and

leakage current) is larger than the inward ion current (Na?–

Fig. 5 Membrane potential of a bursting neuron with I = 0 nA (top),

and its corresponding power curve (bottom). (Top) The spikes in each

burst undergo just two stages of depolarization and repolarization.

Only after the final spike of a burst does the membrane potential

exhibit hyperpolarization (top arrows), at which time the power value

P approaches 0 nW (bottom arrows). (Bottom) During each spike, the

corresponding P experiences alternating phases of electrical potential

energy releasing (P\ 0) and absorbing (P C 0). Between bursts the

neuron requires a significantly longer energy absorbing phase in order

to recover resting potential

Fig. 6 Enlarged section of the

0.7–1.5 s interval in Fig. 5. AB

(resting potential), BC

(depolarization), CD (early

repolarization) and DE (late

repolarization). A cycle for a

spike of burst comprises BC,

CD and DE. In AB, P is greater

than but close to 0 nW. In BC, P

remains negative starting from

point B. The membrane

potential reaches its maximum

at C, while P reaches its

maximum at point D. In DE, P

declines to 0 nW at E
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Ca2? mixed current). P continues to rise, reaching its

maximum at point D.

Even though the membrane potential reaches its maxi-

mum at C, the inward ion flow remains slightly larger than

the outward ion flow (see Table 1). Therefore the power

value P at this point is still negative. After a very short

period of 0.006 s, P rises to 0 nW.

(4) DE segment—repolarization late phase

After point D, the membrane permeability for K? and for

the Na?–Ca2? mixed ions both continue to decline. Thus,

the membrane potential decreases, returning to the resting

potential. The power value P declines to 0 with the

decrease of the K? ion outflow. At the same time, the

outward (two K? currents) and the inward (Na?–Ca2?

mixed current and leakage current) ion flows remain almost

equal. These four stages are repeated in the subsequent

spikes in neuronal bursting.

The above analysis describes the ionic mechanism of the

change of membrane potential and its corresponding power

for each spike during bursting. The spikes in each burst

undergo just two stages of depolarization and

repolarization. Only after the final spike of a burst does the

membrane potential exhibit hyperpolarization (Fig. 5 top

arrows), at which time the power value P approaches 0 nW

(Fig. 5 bottom arrows). This phenomenon is different from

action potential (AP), which exhibits hyperpolarization in

each spike, due to the overriding effect of outward K?

currents, which outweigh the effect of inward Na?–Ca2?

and leakage currents. In Fig. 5, we also can observe that

the bursting neuron experiences alternating phases of

electrical potential energy release and absorption. Between

bursts the neuron requires a significantly longer energy

absorbing phase in order to recover resting potential.

Different stimulus currents

To study the various power changes when a bursting

neuron receives a stimulus, we consider three types of

stimulus inputs: (1) a one-second (1 s) stimulus (Figs. 8,

9), a 5 s stimulus (Figs. 10, 11), and intermittent stimuli of

1 s every 5 s (Figs. 12, 13).

From the membrane potential changes of the bursting

neuron illustrated in Figs. 8, 9, 10, 11, 12 and 13, three

results can be observed: (1) A positive stimulus of 0–1 s

increases the number of spikes of bursts and causes longer

hyperpolarization after the first burst, while a stimulus of

0–5 s has a similar but greater effect. In both cases there is

no effect on the following bursts. (2) A negative stimulus

of 1 s or 5 s makes the neuron prone to hyperpolarization.

The greater the current value and the longer the stimulus,

Fig. 7 Ion currents in 0.7–1.2 s interval. The dark black line

represents the Na?–Ca2? mixed channel current, which is negative

and in the direction of introversion. The voltage-gated Na?–Ca2?

mixed channel opens when the membrane potential reaches about

- 45 mV and allows Na? and Ca2? ions to flow into the neuron. The

light black line is the absolute value curve of the mixed Na?–Ca2?

ions current. The red line indicates the voltage-sensitive K? channel

current, which is positive and in the direction of extroversion. When

the membrane is depolarized, the voltage-sensitive K? channel opens

and allows K? ions to flow out of the neuron. The light blue line

represents the Ca2?-sensitive K? current with a positive value and in

the direction of introversion. As the intracellular Ca2? concentration

increases, the Ca2?-sensitive K? channel opens and allows K? ions to

flow out. Green line represents the other leakage current. (Color

figure online)

Table 1 Values of ion currents at C point

Ionic currents INa–Ca (nA) IKV (nA) IKC (nA) IL (nA)

C point -1619 1249 182.7 143.7

1575.4
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the more obvious the hyperpolarization phenomenon is; but

a longer stimulus has no influence on subsequent bursts. (3)

For intermittent stimuli, the effects of positive and negative

currents on the bursting neuron are similar to those of a

single positive and negative 1 s and 5 s stimulus, respec-

tively, except that positive stimuli produce synchronous

bursts (Figs. 7, 8, 9).

Stimulation modifies the ion currents crossing the

membrane. Firstly, a positive current (Figs. 9, 11, 13)

lowers the negativity of the intracellular environment,

allowing the Na?–Ca2? ion channel to open faster, which

in turn accelerates the opening of voltage-sensitive K? ion

channels. As a result, the membrane potential is

depolarized and repolarized faster than without stimulation.

In addition, after each spike, outward K? and inward Na?–

Ca2? ion currents reach a balance earlier. As the Ca2?-

sensitive K? ion current is still greater, the membrane

potential is more likely to rise to cause another spike. At

the repolarization phase of the final spike, the voltage-

sensitive K? ion current is greater than the Na?–Ca2? ion

current, which makes the membrane potential more nega-

tive than without stimulation during hyperpolarization.

Since more Ca2?-sensitive K? ions must flow out of the

neuron, more time is needed to reach the resting potential.

Secondly, when stimulated by a negative current (Figs. 8,

10, 12), the intracellular environment becomes more

Fig. 8 Membrane potential of a

bursting neuron and its power

change, from 0 to 1 s stimulated

by - 30 nA current. The neuron

hyperpolarizes during the 1 s

negative stimulus while P

increases compared to no

stimulus in Fig. 5. Then the

membrane potential rises to fire

spikes. The number of spikes in

the first burst increases with the

frequency slows down

throughout the burst. The

negative stimulus has no effect

on subsequent bursts

Fig. 9 Membrane potential of a

bursting neuron and its power

change, from 0 to 1 s stimulated

by 100 nA current. The positive

stimulus depolarizes and

repolarizes the membrane

potential rapidly. The number of

spikes in the first burst increases

as well as their frequency. There

is a longer hyperpolarization

and incremental P after the first

burst, but no change to

following bursts
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negative, which delays the opening of the Na?–Ca2? ion

channel. It takes longer to reach the threshold - 45 mV for

depolarization. In general, positive stimulus currents give

rise to higher bursting frequencies with longer and more

pronounced hyperpolarization, while negative currents

inhibit neuronal firing.

Total energy consumption in 30 s

No stimulus current input

According to formula (5), when I = 0 nA, the total energy

consumed by a single neuron during 30 s of bursting is

215.2 nJ = 2.152 9 10-7 J (the second row in Table 2).

This is very similar to the result of the biological energy

supplied by ATP of 2.468 9 10-7 J during the generation

of a single action potential (Wang et al. 2017a). It is

obvious that the neuron’s energy consumption is very low

during spontaneous bursting activity.

Different stimulus current inputs

In Fig. 14 we show change in total energy consumption

when the neuron is subjected to the above mentioned

stimuli: 0–1 s, 0–5 s and intermittent 1 s every 5 s, with

currents ranging in value from - 50 to 150 nA.

In Fig. 14, with the same intensity, the longer the

stimulus, the more energy is consumed by the bursting

Fig. 10 Membrane potential of

a bursting neuron and its power

change, from 0 to 5 s stimulated

by - 30 nA current. Compared

to Fig. 8, the longer negative

stimulus gives rise to a longer

hyperpolarization of the neuron.

The number of spikes in the first

burst increases more, while

there is still no influence on

subsequent bursts

Fig. 11 Membrane potential of

a bursting neuron and its power

change, from 0 to 5 s stimulated

by 100 nA current. Compared to

Fig. 9, the increasing number of

spikes in the first burst lasts

longer with the longer positive

stimulus. There is a much

longer hyperpolarization period

and corresponding incremental

P after the first burst
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neuron, as shown by the red and blue lines. The similar

shape of the blue and green lines shows that when the total

duration of the stimulus is the same, the total energy

consumption is also fundamentally the same even though

the types of stimulus are different.

Moreover, Fig. 14 also shows the neuron’s total energy

consumption is low with stimuli near 0 nA. For both pos-

itive and negative current stimulus, the total energy con-

sumed increases as the absolute value of the current

increases. This phenomenon is consistent with the brain’s

mechanism of maximization of energy utilization (Zheng

and Wang 2012; Laughlin and Sejnowski 2003). In fact,

when the reception of information from other neurons

increases, i.e. when the electrical stimulus increases, the

energy consumed by the neuron increases, and vice versa.

Conclusion and discussion

Based on the Chay model, this paper proposes a method to

calculate neural energy consumption according to the

effect of ion flows on the membrane potential during

subthreshold firing activities of a bursting neuron. We first

calculate the neural energy transferred in a unit of time, i.e.

the power. The total energy consumption of the bursting

neuron in 30 s is calculated according to the energy

Fig. 12 Membrane potential of

a bursting neuron and its power

change with an intermittent

- 30 nA stimulation of 1 s in

every 5 s. The neuron

hyperpolarizes more

intermittently when stimulated.

Bursts are influenced by the

stimuli as well

Fig. 13 Membrane potential of

a bursting neuron and its power

change with an intermittent

100 nA stimulation of 1 s in

every 5 s. Bursts of higher-

frequency spikes are

synchronous with positive

stimuli, as well as P value
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conservation law. We analyze the changes of the mem-

brane potential and neural energy consumption in detail

and come to the following conclusions about neuronal

bursting activities:

1. Each burst begins with a phase of resting potential,

during which the energy stored in the form of K? ion

concentration gradient consumed and transferred to the

electrical potential energy across the membrane. Then

come a number of spikes in which the energy is first

released from Na? and Ca2? ion concentration gradi-

ents (the power value becomes negative) during

depolarization, then the electrical potential energy

absorbs again the energy stored in the form of K? and

leakage ion concentration gradients during repolariza-

tion. At the end of this sequence comes a final phase of

hyperpolarization during which more electrical

potential energy is collected, from the effect of

absorption of the energy from K? and leakage ion

concentration gradients, to return the resting potential

before the next burst.

2. A positive electric stimulus triggers more spikes during

a burst and a longer phase of hyperpolarization after

the last spike. A longer positive stimulus triggers even

more spikes, resulting in a longer final hyperpolariza-

tion phase to absorb more energy from ion concentra-

tion gradients in order to return to the resting potential.

A negative stimulus, by contrast, inhibits spikes.

3. During bursting activities, the neuron’s total energy

consumption in 30 s is low. In the absence of stimulus,

the energy consumption of the bursting neuron remains

near the minimum. In fact, the total energy consumed

(2.152 9 10-7 J) during 30 s of bursting is very

similar to the biological energy supplied by ATP of

2.468 9 10-7 J during a single action potential. With

a positive stimulus, energy consumption increases.

And the greater the stimulus, the larger the increase in

energy consumption, regardless of the length of the

stimulus from 1 to 5 s. The effect of a negative

stimulus is similar, with energy consumption increas-

ing in line with the absolute value. If a stronger

stimulus can be equated to the transfer of more

information, the brain consumes more energy in

processing the information. All these demonstrate

how efficiently the brain uses energy.

These conclusions are in line with the previous results

(Zheng and Wang 2012; Zheng et al. 2014; Wang et al.

2017a), indicating that the neural energy calculation

method proposed in this paper is reasonable. This can

provide a theoretical basis for understanding the dynamics

Table 2 The total energy consumed by a bursting neuron with dif-

ferent stimulus current inputs

Stimuli I (nA) Total energy consumption (nJ)

0–1 s 0 215.2010

- 30 218.7014

40 228.9818

100 235.3603

0–5 s - 30 233.7486

40 288.7737

100 335.8633

Intermittent - 30 240.6388

40 286.6957

100 320.4553

These stimuli listed in this table also correspond to those in Figs. 8, 9,

10, 11, 12 and 13

Fig. 14 Changes in total energy

consumption during 30 s of

bursting with various types of

stimuli. When stimulated for

0–1 s, the neuron’s total energy

consumption remains low

(209.6130–238.6591 nJ)

regardless of the magnitude of

the current stimulus (red line).

By contrast, when stimulated

during 0–5 s, total energy

consumption varies greatly

(210.1846–361.7620 nJ) (blue

line). When intermittent

stimulation is applied, total

energy consumption is similar

to that of 0–5 s

(213.9738–353.3333 nJ) (green

line). (Color figure online)
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of subthreshold neural activity and contribute to decrypting

neural coding. Moreover, since neural energy has the

property of additivity (Wang et al. 2015b), it can be

assumed that the methods developed in this paper can be

transferred from the level of the single neuron to neural

networks. Our goal is to examine the quantitative rela-

tionship between neural signals which carry information

and neural energy consumption. The results of this research

may 1 day open the door to a better understanding of the

coding mechanisms and the functioning of the brain.
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