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AIMS

The aim of the present study was to quantitate the hypoglycaemic effects of dipeptidyl peptidase-4 inhibitors (DPP-4i), glucagon-
like peptide-1 receptor agonists (GLP-1r) and sodium glucose cotransporter 2 inhibitors (SGLT2i) as add-on treatments to
metformin monotherapy in patients with type 2 diabetes mellitus (T2DM) using a model-based meta-analysis (MBMA).

METHODS
A systematic literature search of public databases was conducted to develop models that describe the time courses of the fasting
plasma glucose (FPG)- and haemoglobin A1c (HbA1c)-lowering effects of three antidiabetic classes using NONMEM 7.3.0.

RESULTS
Seventy-six publications were eligible for this study, and 873 FPG and 1086 HbA1c values were collected. We developed a
physiological indirect response model that described the time courses of FPG and HbA1c and simulated reductions in these values
90 days after the initiation of add-on treatments. FPG and HbA1c reductions with once weekly exenatide, liraglutide and
dulaglutide were greater than those with other drugs. Mean changes from baseline FPG and HbA1c with these drugs were as
follows: exenatide (�22.5 and �16.6%), liraglutide (�22.1 and �16.3%), and dulaglutide (�19.3 and �14.3%). The
hypoglycaemic effects of DPP-4i and SGLT2i were similar.

CONCLUSIONS
Once weekly exenatide, liraglutide and dulaglutide provided better hypoglycaemic effects among the antidiabetic drugs
analysed. Long-acting GLP-1r appears to be more useful for T2DM patients inadequately controlled with metformin
monotherapy.
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WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT
• Clinical practice guidelines recommend metformin as first-line therapy; however, we sometimes encounter patients who
do not respond well to this treatment. Although some classes of antidiabetic drugs have been identified as candidates for
adjunctive treatments to metformin monotherapy, there is no consistent consensus regarding add-on second-line
therapy.

WHAT THIS STUDY ADDS
• The FPG- and HbA1c-lowering effects of three classes of antidiabetics, DPP-4i, GLP-1r and SGLT2i, as add-ons to
metformin may be evaluated using an MBMA approach.

• Long-acting GLP-1r appears to be more useful than other drugs for T2DM patients inadequately controlled with metfor-
min monotherapy.

Introduction
Type 2 diabetes mellitus (T2DM) is characterized by a chronic
hyperglycaemic state due to decreases in insulin secretion
and sensitivity [1, 2]. The estimated prevalence of diabetes
worldwide is more than 400 million, and the total number of
patients with diabetes is predicted to increase to 629 million
by 2045 [3]. Appropriate glycaemic control based on
haemoglobin A1c (HbA1c) and fasting plasma glucose (FPG)
is required in order to prevent various complications, such as
retinopathy, nephropathy, and neuropathy [4, 5]. The
American Diabetes Association (ADA) and the European
Association for the Study of Diabetes (EASD) recommend
metformin as first-line monotherapy for most T2DM patients
[6]. Metformin is a biguanide that decreases blood glucose
concentrations by inhibiting gluconeogenesis in the liver [7].
Secondary failure may occur after long-term metformin
therapy [8–11].Therefore, theADAandEASDrecommenddual
therapy with metformin and other antidiabetic drugs if
glycaemic control is not achieved. There is an extensive list of
pharmacological therapies available for the second-line
adjunctive treatment of T2DM, including sulfonylureas (SU),
thiazolidines (TZD), dipeptidyl peptidase-4 inhibitors
(DPP-4i), glucagon-like peptide-1 receptor agonists
(GLP-1r), sodium glucose cotransporter 2 inhibitors
(SGLT2i), and basal insulins. DPP-4i, GLP-1r and SGLT2i,
whichhavenovelmechanismsof action, are less likely tocause
weight gain and hypoglycaemia [12–14]; therefore, the use of
these drugs is increasing. In Japan, the share of DPP-4i in the
total oral antidiabetic drugs market reached 69% in 2015
[15]. In terms of dual therapy with metformin monotherapy,
since few randomized controlled trials (RCTs) have directly
compared the efficacy of these drugs, a consistent consensus
regarding themost appropriate drugs as add-ons is lacking.

A model-based meta-analysis (MBMA) is an extension of a
traditional meta-analysis. A traditional meta-analysis has the
following limitations: (1) it may only be applicable when di-
rect head-to-head RCTs exist, and (2) observation periods
and doses are limited to specific ranges. In contrast, MBMA,
which involves a meta-analysis using mathematical models,
has the capacity to perform indirect comparisons even
though head-to-head RCTs are lacking. In addition, MBMA
may incorporate longitudinal and dose–response data,
thereby allowing for the quantification of dose–response rela-
tionships and time courses of effects. Therefore, MBMA is
more flexible than a traditional meta-analysis and is expected
to provide more information [16, 17].

The aim of the present study was to develop a population
pharmacodynamic (PPD) model that quantitates the FPG-
and HbA1c-lowering effects of DPP-4i, GLP-1r and SGLT2i
as add-ons to metformin monotherapy in T2DM patients
using an MBMA approach.

Methods

Literature search
The ‘targeted drugs’ in the present study included DPP-4i
(sitagliptin, vildagliptin, alogliptin, linagliptin, teneligliptin,
anagliptin, saxagliptin, trelagliptin and omarigliptin),
GLP-1r (liraglutide, exenatide, lixisenatide and dulaglutide),
and SGLT2i (ipragliflozin, dapagliflozin, luseogliflozin,
tofogliflozin, canagliflozin and empagliflozin), which are all
approved in Japan. A systematic literature search of PubMed,
the Cochrane library (CENTRAL/CCTR: Cochrane Central
Register of Controlled Trials), and ClinicalTrials.gov (https://
clinicaltrials.gov/)was conductedon3March2016.Thewords
used in the search were (‘metformin’ OR ‘targeted drugs’)
AND (‘diabetes’ OR ‘diabetic’). Details of the search terms
are provided in Supplementary Table S1. Only clinical trials
satisfying the following inclusion criteria were included in
the analysis: (1) randomized double-blind clinical trials,
(2) patients diagnosed with T2DM, (3) targeted drugs added
to metformin monotherapy because of inadequate
glycaemic control, (4) HbA1c or FPG values used as clinical
indicators, and (5) published in English. We excluded trials
focusing on specific populations, such as renal failure and
paediatric subjects. MBMA was conducted according to
PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) [18].

We extracted the following information from eligible
studies: mean and median values of HbA1c and FPG at each
time point, sample size, dosage, duration of T2DM, duration
of metformin therapy, age, sex, race (e.g., Caucasians, Asians,
and others), body mass index (BMI) and body weight.
Graphical data were converted to numerical data using
GetData Graph Digitizer® version 2.26 (http://getdata-graph-
digitizer.com).

Model development
A PPD analysis was performed using NONMEM 7.3.0 (Icon
Development Solutions, Ellicott City, Maryland) with first-
order conditional estimation with interaction method
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(FOCE-INTER). Graphical processing of the NONMEMoutput
was performed with R (version 3.3.2).

In the present study, a physiological indirect response
model was established to describe the time courses of FPG
and HbA1c [19]. Overall model structures for FPG and HbA1c
are shown as follows:

Kin;FPG ¼ BaselineFPG�Kout;FPG
� �� 1þDPFPG�Timeð Þ

FPG (DPP-4i and GLP-1r):

dFPG
dt

¼ Kin;FPG� 1� Eplacebo
� �� 1� Edrug

� �� Kout;FPG�FPG

FPG (SGLT2i):

dFPG
dt

¼ Kin;FPG� 1� Eplacebo
� �� Kout;FPG� 1þ Edrug

� ��FPG

HbA1c:

dHbA1c
dt

¼ Kin;HbA1c� FPG=BaselineFPGð Þλ � Kout;HbA1c�HbA1c

where Kin,FPG and Kout,FPG are the FPG production rate con-
stant and FPG elimination rate constant, respectively.
Changes in HbA1c were modelled as secondary changes de-
pendent on the baseline ratio of FPG (FPG/BaselineFPG), with
the HbA1c production rate constant (Kin,HbA1c) and HbA1c
elimination rate constant (Kout,HbA1c). The description of
HbA1c production also included the use of the power func-
tion λ [20–22]. Kin,HbA1c is defined by Kin,HbA1c = BaselineHbA1c

× Kout,HbA1c. BaselineFPG and BaselineHbA1c represent FPG and
HbA1c levels before the initiation of dual therapies, respec-
tively. BaselineFPG and BaselineHbA1c in the xth biomarker of
the jth arm of the ith study are given by:

Baselinex;i;j ¼ TVBx� exp ηB;x;i þ
κx;i;jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nx;i;j=100
p

 !

where TVBx is the estimated typical baseline FPG and HbA1c.
ηB and κ are the random effects of inter-study variabilities
(ISV) and inter-arm variabilities (IAV) [23], respectively. ISV
and IAV were assumed to be symmetrically distributed as ran-
dom variables withmean zero and variance ωISV

2 and ωIAV
2 . IAV

was weighted by the inverse of the square root of the number
of patients in the study arm (Nij) normalized to 100 patients.
The reason why IAV was included in this analysis was that
IAV is purely the product of a small sample size, because in
a randomized trial with an infinite sample size, there are no
random differences across arms. Disease progression for FPG
was assumed to be a proportional increase with a slope pa-
rameter (DPFPG) relative to the baseline. An exponential error
model was used to describe ISV on DPFPG. The placebo effect
to FPG levels (Eplacebo) was described by a constant model.
An exponential error model was used to describe ISV on
Eplacebo. The drug effect (Edrug) to FPG levels was as follows:

Edrug ¼ Emax�Dose
ED50 þDose

where Emax is the maximum treatment effect ranging be-
tween 0 and 1; ED50 is the dose resulting in 50% of Emax.
The model included the individual potency (ED50) of each

drug, but assumed the same Emax for drugs with the same
mechanism of action. The drug effect was assumed to be con-
stant across studies, i.e., ISV on Edrug was not estimated. These
models indicate that DPP-4i and GLP-1r inhibit FPG produc-
tion, and SGLT2i stimulates FPG elimination. An additive er-
ror model was used to describe residual error variability
(RUV). RUV was weighted by the inverse of the square root
of the number of patients in the study arm normalized to
100 patients. Ideally for mean data, residual variability needs
to be weighted by the precision of the mean (the inverse of
squared standard errors). However, since we did not obtain
standard errors in many studies, residuals were weighted by
the sample size.

After establishing the basic models, covariate modelling
was conducted. Age, sex, race, BMI and body weight were se-
lected as candidates for the covariate. Covariate selection was
conducted based on clinical plausibility and differences in
the objective function value (OFV) estimated by NONMEM
between hierarchical models. Forward inclusion and back-
ward exclusion were used to develop the covariate model. Sig-
nificance levels for forward inclusion and backward exclusion
were set at 0.01 and 0.001, respectively.

Model validation
During model building, changes in OFV, Akaike information
criterion (AIC), relative standard errors and goodness-of-fit
(GOF) plots were used for model evaluation. GOF was investi-
gated using plots of the observation vs. population prediction
(PRED) and individual predictions (IPRED), conditional-
weighted residuals (CWRES) vs. the treatment duration [24],
CWRES vs. PRED, and absolute individual weighted residuals
(IWRES) vs. IPRED. In order to assess the robustness of the fi-
nal PD model, a prediction-corrected visual predictive check
(pcVPC) was conducted. An 80% prediction interval (PI) was
defined for pcVPC from the 10th and 90th percentiles of sim-
ulated dependent data at each time point and was then com-
pared with original data. One thousand simulations were
performed for pcVPC. pcVPC was performed with the soft-
ware package Perl-speaks-NONMEM version 4.8.1.

Simulation
Using the final models, we simulated reductions in FPG and
HbA1c 90 days after the initiation of add-on therapy. The
dosage was set to the recommended dose of each drug in
Japan. Parameter uncertainty, obtained from the variance–
covariance matrix of the final model, was implemented in
the simulations. The typical time courses of FPG and HbA1c
for the three drugs (vildagliptin, exenatide and canagliflozin),
which were selected from each drug class, were simulated.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are
hyperlinked to corresponding entries in http://www.
guidetopharmacology.org, the common portal for data
from the IUPHAR/BPS Guide to PHARMACOLOGY [25],
and are permanently archived in the Concise Guide to
PHARMACOLOGY 2017/18 [26–28].
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Results

Data analysis
A total of 2397 publications were found in the initial litera-
ture search. After screening and eligibility evaluations, 76
studies (31 585 patients) were eligible for the analysis, includ-
ing 55 studies on DPP-4i (eight drugs), 10 on GLP-1r (four
drugs), and 18 on SGLT2i (four drugs). However, some
targeted drugs (e.g., trelagliptin, luseogliflozin and
tofogliflozin) were not included in the analysis because trial
data were not available. Detailed literature search results are
shown in the PRISMA flow diagram (Figure S1), and a study
design summary is provided in Supplementary Table S2. The
total numbers of FPG and HbA1c were 873 and 1086, respec-
tively. The medians (ranges) for the baseline values of FPG
and HbA1c were 165 mg dl�1 (138–244 mg dl�1) and 8.0%
(7.0–9.3%), respectively. The characteristics of each targeted
drug are summarized in Table 1.

PPD models
Figure 1 shows a constructed indirect response model that de-
scribes changes in FPG and HbA1c levels over time for all
treatments. Table 2 shows the population PPD parameter esti-
mates of FPG and Hb1Ac. Estimated typical BaselineFPG, Kout,

FPG, Eplacebo, and DPFPG were 165mg dl�1, 0.0936/day, 0.0168,
and 0.0204/year, respectively. The dose–response relation-
ship for each drug was characterized by the Emax model with
a different Emax for each drug class and a different ED50 for ev-
ery drug within each class. ED50 for teneligliptin was fixed to
0 in the final model because the estimate was close to 0, lead-
ing to convergence difficulties. The relationship between FPG
and HbA1c was nonlinear and described by a power function
with a different λ for the placebo and each drug class. Esti-
mated typical BaselineHbA1c and Kout,HbAc were 7.96% and

Figure 1
The final population pharmacodynamic model describing the time
course of fasting plasma glucose (FPG) and haemoglobin A1c
(HbA1c)DPP-4, dipeptidyl peptidase-4; GLP-1, glucagon-like pep-
tide-1; Kin,FPG, FPG production rate constant; Kin,HbA1c, HbA1c pro-
duction rate constant; Kout,FPG, FPG elimination rate constant; Kout,

HbA1c; HbA1c elimination rate constant; SGLT2, sodium glucose
cotransporter 2

Table 2
Population PPD parameter estimates

Parameter Mean RSE (%)

BaselineFPG (mg dl�1) 165 1.0

Kout, FPG (/day) 0.0936 33.9

BaselineHbA1c (%) 7.96 0.6

Kout, HbA1c (/day) 0.0393 14.3

Eplacebo 0.0168 23.2

λplacebo 0.893 15.0

DPFPG (/year) 0.0204 17.9

DPP-4 inhibitors

Emax, DPP-4i 0.116 5.2

ED50, sitagliptin (mg day�1) 11.0 41.9

ED50, vildagliptin (mg day�1) 9.51 55.6

ED50, alogliptin (mg day�1) 2.36 52.1

ED50, linagliptin (mg day�1) 1.80 26.7

ED50, teneligliptin (mg day�1) 0 fixed –

ED50, anagliptin (mg day�1) 31.4 33.8

ED50, saxagliptin (mg day�1) 1.47 48.2

ED50, omarigliptin (mg day�1) 3.15 66.7

λDPP-4i 0.831 3.7

GLP-1 receptor agonists

Emax, GLP-1r 0.266 6.4

ED50, liraglutide (mg day�1) 0.377 34.7

ED50, exenatide BID (mg day�1) 0.0120 12.7

ED50, exenatide QW (mg week�1) 0.498 9.2

ED50, lixisenatide (mg day�1) 0.0392 21.8

ED50, dulaglutide (mg week�1) 0.328 5.4

λGLP-1r 0.777 8.7

SGLT2 inhibitors

Emax, SGLT2i 0.199 13.6

ED50, ipragliflozin (mg day�1) 14.3 52.5

ED50, dapagliflozin (mg day�1) 4.06 35.5

ED50, canagliflozin (mg day�1) 30.0 28.1

ED50, empagliflozin (mg day�1) 4.54 62.3

λSGLT2i 0.654 5.2

Inter-study variability and inter-arm variability

ISV on BaselineFPG (%) 8.4 13.2

ISV on Kout, FPG (%) 105.4 19.0

ISV on BaselineHbA1c (%) 4.4 10.1

ISV on Kout, HbA1c (%) 48.3 67.6

ISV on Eplacebo (%) 113.1 16.6

ISV on DPFPG (%) 92.1 22.4

(continues)
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0.0393/day, respectively. None of the covariates were found
to significantly improve the PPD model.

Model validation
GOF plots show the high predictive performance of the con-
structedmodels, and systematic deviations were not observed
(Figure S2). pcVPCs for each drug class are shown in Figure 2.
These models captured most of the observed data, indicating
the good predictive performance of the models. These results
suggest that the final models adequately describe the time
courses for the FPG- and HbA1c-lowering effects of the
targeted drugs.

Simulation
Based on the final models, we simulated reductions in FPG
and HbA1c 90 days after the initiation of add-on therapy
(Figure 3). The dosage was set to the recommended dose of
each drug in Japan. Parameter uncertainty was implemented
in the simulations because some parameters (e.g., ED50 for

Table 2
(Continued)

Parameter Mean RSE (%)

IAV on BaselineFPG (%) 2.6 10.7

IAV on BaselineHbA1c (%) 1.2 15.8

Residual error variability

Additive error FPG (mg dl�1) 3.35 4.4

Additive error HbA1c (%) 0.0721 9.3

DPFPG, the coefficient of disease progression; DPP-4i, dipeptidyl
peptidase-4 inhibitors; ED50, dose resulting in 50% of Emax; Emax,
maximum drug effect; Eplacebo, placebo effect; FPG, fasting plasma
glucose; GLP-1r, glucagon-like peptide-1 receptor agonists; IAV,
inter-arm variability; ISV, inter-study variability; Kout, FPG, FPG
elimination rate constant; Kout, HbA1c, HbA1c elimination rate
constant; RSE, relative standard error; SGLT2i, sodium glucose
cotransporter 2 inhibitors

Figure 2
Prediction-corrected visual predictive check plots for fasting plasma glucose (FPG) of the placebo (A), dipeptidyl peptidase-4 inhibitors (DPP-4i)
(B), glucagon-like peptide-1 receptor agonists (GLP-1r) (C), and sodium glucose cotransporter 2 inhibitors (SGLT2i) (D) as well as haemoglobin
A1c (HbA1c) of the placebo (E), DPP-4i (F), GLP-1r (G) and SGLT2i (H). Red solid lines represent the observed median. Blue solid and dashed lines
represent the predicted median and 80% prediction intervals, respectively. Open circles represent observed data, and the symbol size is propor-
tional to the number of subjects in each studyQW, once weekly; BID, twice daily
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omarigliptin and empagliflozin, Table 2) were estimated with
poor precision. Among these drugs, GLP-1r (exenatide QW,
liraglutide and dulaglutide) showed superior FPG- and
HbA1c-lowering effects (�22.2, �19.7 and �19.4% for FPG,
and �16.8, �14.7 and �14.7% for HbA1c, respectively).
FPG- and HbA1c-lowering effects were similar between DPP-
4i and SGLT2i. Median reductions in FPG were �10.9 to
�14.4% for SGLT2i and �9.6 to �12.6% for DPP-4i. Median
reductions in HbA1c were �6.9 to �9.2% for SGLT2i and
�7.6 to �10.0% for DPP-4i. The typical time courses of FPG
and HbA1c of the three drugs, which were selected from each
drug class, were simulated and are shown in Figure 4.

Discussion
The aim of the present study was to quantitate the
hypoglycaemic effects of DPP-4i, GLP-1r and SGLT2i as add-
on treatments to metformin monotherapy in T2DM patients
using MBMA.

We demonstrated that GLP-1r was associated with greater
reductions in FPG and HbA1c than the other treatments
tested within the approved dosages in Japan (Figure 3). The
significant superiority of GLP-1r to DPP-4i as add-on therapy
to metformin has been suggested in most RCTs. For example,
exenatide (2 mg week�1) resulted in significantly greater

improvements in HbA1c than sitagliptin (100 mg day�1) in
the DURATION-2 study [29]. Furthermore, the network
meta-analysis (NMA) conducted by Zintzaras et al. indicated
a higher proportion achieving the HbA1c goal with GLP-1r
than other combination therapies with metformin [30]. The
DURATION-8 study, which compared the efficacy and safety
of exenatide (2 mg week�1) vs. dapagliflozin (10 mg day�1),
showed that reductions in HbA1c at week 12 were greater in
patients given exenatide [31].

In comparisons between long- and short-acting GLP-1r,
treatments with long-acting GLP-1r (i.e., exenatide QW,
dulaglutide and liraglutide) have been associated with greater
reductions in FPG and HbA1c (Figure 3); long-acting GLP-1r
provide relatively stable drug concentration–time profiles in
the long term, leading to stable glycaemic control [32–34].
The NMA conducted by Kayaniyil et al. showed that the ad-
ministration of exenatide QW led to a slightly higher propor-
tion of patients achieving the glycaemic target than
exenatide BID and lixisenatide [35].

The present study developed a PPD model that combined
with the physiological relationship between FPG and HbA1c.
During the model building process, we combined the mecha-
nism of action of each drug class into the model: DPP-4i and
GLP-1r inhibit FPG production, and SGLT2i stimulates FPG
elimination. A large number of physiological models have
been developed to describe the relationship between FPG
and HbA1c. Our PPD parameters were similar to those

Figure 3
Reductions in FPG (A) and HbA1c (B) 90 days after the initiation of add-on therapy. Each square and bar represent the median and 90% con-
fidence interval from model simulation (n = 1000) for each drug. Red, green, and blue squares and bars represent changes from the baseline in
FPG for GLP-1r, SGLT2 and DPP-4, respectively. The dosage was set to the recommended dose of each drug in JapanQW, once weekly; BID,
twice daily
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reported previously [21, 22]. The FPG progression rate was es-
timated to be 2.04%/year and was similar to that reported by
Stringer et al. (1.7%/year) [22]. In the present study, disease
progression for FPG was assumed to be a proportional in-
crease with DPFPG. Several different disease progression
models have been investigated (e.g., log-linear and exponen-
tial), but were not found to be superior.

The relationship between FPG and HbA1c was found to
be nonlinear and was described by a power function with
a different λ for the placebo and each drug class. Our esti-
mated λ was similar to values reported in previous studies
(0.74 and 0.71) [20, 21]. The nonlinear relationship be-
tween FPG and HbA1c may result from the contribution of
postprandial glucose because the value for HbA1c is the
result of FPG and postprandial glucose [36]. In addition,
previous studies demonstrated that mean plasma glucose
(the arithmetic mean of FPG and postprandial glucose) cor-
related better with HbA1c than FPG alone [37, 38].

This MBMA has several limitations. For example, covar-
iate information obtained from the literature was limited.
Some information, such as the metformin dose and dura-
tions of T2DM and metformin monotherapy, was not con-
sistently reported; therefore, we were unable to include
these as candidates for the covariate analysis. Since this in-
formation may contribute to patient heterogeneity, the re-
sults of the covariate analysis need to be interpreted with
caution.

In conclusion, this MBMA quantified the hypoglycaemic
effects of DPP-4i, GLP-1r and SGLT2i when they were added
to metformin monotherapy. The simulations based on PPD
models suggested that long-acting GLP-1r (i.e., exenatide
QW, liraglutide and dulaglutide) were more effective than
other drugs for T2DM patients inadequately controlled with
metformin monotherapy.
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