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Abstract

Introduction: Electrophysiological measurements are used in longitudinal clinical studies to 

provide insight into the progression of amyotrophic lateral sclerosis (ALS) and the relationship 

between muscle weakness and motor unit degeneration. Here, we used a similar longitudinal 

approach in the SOD1(G93A) mouse model of ALS.

Methods: In vivo muscle contractility and motor unit connectivity assays were assessed 

longitudinally in SOD1(G93A) and wildtype mice from post-natal day 35 to 119.

Results: In SOD1(G93A) males, muscle contractility was reduced by day 35 and preceded motor 

unit loss. Muscle contractility and motor unit reduction were delayed in SOD1(G93A) females 

when compared with males, but as with males, muscle contractility reduction preceded motor unit 

loss.

Discussion: The longitudinal contractility and connectivity paradigm employed here provides 

additional insight into the SOD1(G93A) mouse model and suggests that loss of muscle 

contractility is an early finding that may precede loss of motor units and motor neuron death.
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Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder affecting approximately 

5 in 100,000 individuals [1, 2]. The disease is characterized by progressive loss of upper and 

lower motor neurons resulting in weakness, muscle denervation and atrophy, and eventual 

death, typically within 3–5 years of symptom onset.

Electrophysiological measures, including compound muscle action potential (CMAP) and 

motor unit number estimate (MUNE), allow in vivo assessment of the motor unit (MU) 

connectivity. Such measurements have been applied in clinical natural history studies of 

ALS to provide important insight into the interrelationship of muscle function and MU 

connectivity [3–7]. A powerful aspect of CMAP and MUNE measurements is that the 

functional status of the neuromuscular system can be tracked longitudinally to identify 

disease onset, severity, and rate of progression. Furthermore, MUNE can assess the response 

of the neuromuscular system to a therapeutic intervention, from the standpoint of 

preservation or regeneration of MU number as well as increased output from individual MUs 

(i.e., compensatory collateral reinnervation) [8–10]. As such, a number of clinical studies 

have leveraged electrophysiological measures to gain pathophysiological insight into 

longitudinal disease progression, including the timing and rate of MU loss, the ability of 

individual MUs to develop collateral sprouting, and the relationship between MU 

degeneration and onset of muscle weakness [4, 7, 11–13]. Dantes and McComas 

demonstrated ~50% losses of MUs six months after initial screening, followed by a rapid 

reduction in MUNE over one year—nearly halving every six months—before reduction 

slowed over the next 18 months [4]. This study also demonstrated a corresponding increase 

in the single motor unit potential (SMUP) amplitude, consistent with reinnervation by 

collateral axonal sprouting of surviving MUs—probably explaining why patients might 

present with absent or mild muscle weakness despite such a dramatic reduction in MUNE. 

Another early clinical study by Yuen and Olney measured CMAP and MUNE in addition to 

functional grip strength in ten ALS patients over the course of six months [7]. They reported 

a significant reduction in MUNE at three and six months after initial screening and single 

fiber EMG demonstrated increased mean fiber density of the abductor digiti minimi. During 

this time CMAP and grip strength did not reduce, which the authors argued as evidence for 

the compensatory ability of remaining motor neurons via collateral sprouting. Clinical 

studies that track the natural history of MU integrity during ALS, like the aforementioned, 

provide several useful insights, including potential treatment windows and underlying 

dynamic biological processes that could not otherwise be studied [14–17].

Overexpression of human SOD1 with a G93A mutation was used to develop the first mouse 

model of ALS in 1994 [18, 19]. A number of studies have investigated neuromuscular 

function in the SOD1(G93A) mouse model using either electrophysiological or 

physiological measures, [20–32]. Of particular interest are several cross-sectional disease 
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progression studies of MU dysfunction [21–23, 32]. Hegedus and colleagues demonstrated 

fast-twitch MU loss as early as post-natal day 40 (P40) utilizing in situ muscle contractile 

measurements [21]. Mancuso and colleagues also demonstrated pre-symptomatic CMAP 

amplitude reduction by P56 [32]. One of the challenges to understanding the pre-

symptomatic changes that occur in the MU has been the difficulty of following the 

relationships between physiological (muscle contractility; twitch torque and tetanic torque) 

and electrophysiological (MU connectivity; CMAP and MUNE) measures in individual 

animals over the course of the disease in a way that mimics the longitudinal clinical studies 

performed in humans. We have recently applied methodology to perform in vivo 
longitudinal assessments in mouse models of neuropathy [33], spinal muscular atrophy [34, 

35], and aging [36] and, here, have applied these methods to the SOD1(G93A) mouse.

Materials and methods

Animals

All procedures were performed in accordance with NIH Guidelines and approved by the 

Institutional Animal Care and Use Committee (IACUC) of the Ohio State University. A total 

of 54 mice were used in this study for reliability testing and for the longitudinal analysis of 

disease progression in the SOD1(G93A) mouse model. Adult wildtype and SOD1(G93A) 

(C57BL/6xSJL/J; No: 002726) mice used for longitudinal studies and pathology were 

obtained from Jackson Laboratories (Bar Harbor, ME). Wildtype C57BL/6 mice used for 

intra-rater reliability testing were obtained from Taconic Biosciences (Albany, NY). All 

procedures were performed with blinded raters.

Procedures

Behavioral assessments.—Body weight was recorded prior to performing grip strength 

and rotarod [37, 38]. For grip strength, the average right hindlimb grip strength, measured in 

grams, was calculated from five measurements per assessment using a standard grip meter 

(DEFII-002, Chatillon, Largo, FL, USA). Mice were positioned to allow only the right 

hindpaw to grasp the grid and were pulled towards the evaluator for the length of the grip 

meter [39]. Attempts that were ≥ ±10g different than the other attempts were discarded and 

re-performed. The average of three motor coordination tests was measured using an 

accelerating rotarod (LE8205, Panlab Harvard Apparatus) starting at 5RPM. Trials were 

stopped if 120s passed without a fall.

Anesthesia and animal preparation.—Mice were anesthetized (isoflurane inhalation, 

1.5–3%) during electrophysiological and muscle physiological recordings. Lubricant 

ointment was applied to the eyes to prevent corneal drying. All measurements were 

performed on the right hindlimb which was shaved with electric clippers prior to studies. 

Electrophysiological procedures were performed on a heated platform set at 37°C (World 

Precision Instruments, Sarasota, FL). During muscle contractility procedures, a warm water 

bath HTP-1500 Heat Therapy Pump set at 37°C was used to maintain temperature of the 

testing stage (Androit Medical Systems, Loudon, TN). Procedures under anesthesia were 

typically less than 20 minutes.
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Electrophysiology.—CMAP and MUNE were recorded as previously described [34, 35, 

40]. Briefly, an active ring electrode was placed superficially over the right triceps surae 

(gastrocnemius and soleus) and a reference ring electrode was placed superficially over the 

metatarsals of the right hindpaw (Alpine Biomed, Skovlunde, Denmark). A ground electrode 

was placed on the tail (Carefusion, Middleton, WI). The sciatic nerve was stimulated (0.1ms 

pulse, 1–10mA intensity) using two insulated monopolar needles (28G) (Teca, Oxford 

Instruments Medical, NY). CMAP amplitudes were recorded following supramaximal 

stimulation (20mV sensitivity, 10Hz low filter, 10kHz high filter). Baseline-to-peak 

amplitudes were used for comparison of CMAP amplitudes and peak-to-peak amplitudes 

were used for calculation of MUNE. SMUP was calculated by taking the average of 10 

incremental submaximal responses (50µV-500µV sensitivity, 10Hz low filter, 10kHz high 

filter). MUNE was calculated by dividing the average SMUP amplitude (peak-to-peak) into 

the maximum peak-to-peak CMAP amplitude. Single fiber electromyography (SFEMG) was 

recorded, as previously described, in a separate cohort of SOD1(G93A) males (n=3 animals, 

19 single muscle fiber action potentials) and wildtype males (n=3 animals, 13 single muscle 

fiber action potentials) at P35 [41].

Muscle contractility.—Following electrophysiological recordings, mice underwent 

triceps surae plantarflexion torque assessment using an in vivo muscle contractility 

apparatus (Model 1300A, Aurora Scientific Inc, Canada) (Supplemental Figure 1 and 

Supplemental Methods) as previously detailed [36]. Briefly, the right hindpaw was taped to 

the force sensor and positioned at 90°. The hindlimb was extended to position the knee in 

the locking position and secured at the femoral condyles. Two disposable monopolar 

electrodes were inserted near the tibial nerve, just posterior to the knee (Natus Neurology, 

Inc, Middleton, WI). Maximum plantarflexion twitch torque was recorded following a 

single, supramaximal stimulation (200µs square wave pulse). Maximum tetanic contraction 

torque was assessed following a train of supramaximal square wave stimulations at 200µs 

duration delivered at 125Hz stimulation frequency.

NMJ imaging and quantification.—To investigate the morphological correlates of loss 

of muscle contractility and reduced MU connectivity, the soleus muscle was collected from a 

separate cohort of SOD1(G93A) (3 males/3 females) and wildtype (3 males/3 females) mice 

for endpoint studies at P70 and fixed in 4% paraformaldehyde (PFA) at room temperature 

(RT) for 30min [42, 43]. Muscles were teased into fibers using size 55 forceps (Fine Science 

Tools) then incubated in blocking buffer (10% goat serum/4% BSA/3% triton-X 100/PBS) at 

RT for 2hr. An overnight (O/N) primary antibody (α-NF-200, Abcam, Ab72996, [1:5,000]) 

incubation at 4°C was performed followed by three 10min washes with PBS before 

receiving a 2hr incubation with secondary antibody (Alex 594 goat α-Chicken, Life 

Technologies, A11042, [1:1,000]) and α-α-Bungarotoxin-488 (Life Technologies, B13422, 

[1:1,000]) at RT. Samples then underwent three 10min washes with PBS at RT before being 

mounted onto Superfrost positively charged glass slides (Fisher Scientific) and sealed using 

Fluoromount-G (Southern Biotech). Samples were imaged at 20x and 40x magnification 

using a Leica confocal microscope (Leica DM IRE2) with Leica software (version 2.1). 

Images were viewed in FIJI (LOCI, University of Wisconsin-Madison) to quantify NMJ 
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innervation, the co-labeling of NF-200 and α-Bungarotoxin. 95–120 NMJs per muscle 

sample (per mouse) were scored as fully innervated, partially innervated or denervated.

Experiments:

Intra-rater testing.—Intra-rater reliability was assessed for electrophysiology and muscle 

contractility. Sixteen wildtype mice (C57BL/6J; 7 males and 9 females) were assessed by an 

observer (CGW), with one day between trials. Reliability was reported using the intra-class 

correlation coefficient (ICC), which was defined as poor (ICC≤0.5), moderate 

(0.5<ICC≤0.75), good (0.75<ICC≤0.9) or excellent (ICC>0.9) [44].

Assessment of longitudinal SOD1(G93A) disease progression.—Raters (AEC, 

ABR) performed behavioral assessments weekly from P35 to P119 in a total of 20 mice [5 

male/5female wildtype (C57BL/6J) and 5 male/5 female SOD1(G93A) (C57BL/6xSJL/J)]. 

Mice that displayed loss of the righting reflex for 30 seconds were euthanized for tissue 

harvesting and muscle wet weight recording [45]. Additional SOD1(G93A) (n=6) and 

wildtype (n=6) mice were sacrificed at P70, and right triceps surae muscles were collected, 

weighed and processed for NMJ quantification. A single evaluator (CGW) performed the 

longitudinal electrophysiological and muscle contractility.

Statistics

Intra-rater variability analyses were used to assess the degree of agreement between the 

electrophysiology and muscle contractility across all mice, over time. The R package irr (R 

version 3.3.2, The R Foundation for Statistical Computing) was used to perform these 

analyses.

A mixed effects model was used to model the mean of each of the six outcome variables for 

the longitudinal experiments. Fixed effects were included for the two groups, SOD1 mutants 

and wild type, and gender. A random intercept was used to account for repeated measures 

within mouse. Backward selection was used starting from an initial model with up to 3-way 

interactions. A square root transformation was used for CMAP, SMUP and MUNE. 

Furthermore, a quadratic time trend was included for CMAP, MUNE, and normalized twitch 

torque. Group means were compared at each time point at the 0.05 level using Holm’s 

Method to adjust for multiplicity within each outcome [46]. When group effects differed 

significantly by gender, comparisons were made within each gender. SAS 9.4 (Cary, NC) 

was used for the analysis. Unpaired t-test was performed using Graphpad Prism software 

(version 6) to compare jitter, muscle weight and NMJ quantification. Pearson’s correlation 

coefficients were calculated to determine correlations between: muscle contractility and MU 

connectivity, behavioral measurements and muscle contractility, and behavioral 

measurements and MU connectivity. Correlation coefficient strengths were interpreted using 

prior guidelines, negligible (0.0≤r≤0.3), weak (0.3<r≤0.5), moderate (0.5<r≤0.7), strong 

(0.7<r≤0.9) and very strong (0.9<r≤1.0) [47]. Statistical significance was set at p<0.05.
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Results

Intra-rater reliability of CMAP, twitch torque and tetanic torque

CMAP and twitch measurements were moderately reliable with ICCs of 0.62 and 0.68, 

respectively, while tetanic measurements demonstrated good reliability with an ICC of 0.81.

Reduction of muscle contractility and of motor unit connectivity are early features in 
SOD1(G93A) mice

Muscle contractility and MU connectivity were assessed longitudinally from P35 to P119 in 

SOD1(G93A) (5 males/5 females) and wildtype (5 males/5 females) mice (Tables 1 and 2).

Mixed effects models for longitudinal muscle contractility and MU connectivity reduction 

were used from age P35 to P119 in separate cohorts of male and female mice (Figure 1 and 

Figure 2, Supplemental tables 1 and 2). Reduced muscle contractility preceded MU 

connectivity reduction in both male and female SOD1(G93A) mice. Normalized twitch 

torque in SOD1(G93A) males (0.087mN-m/g, 95% CI: 0.073–0.101mN-m/g) was reduced 

compared to wildtype males (0.117mN-m/g, 95% CI: 0.103–0.131mN-m/g) at the start of 

the study (P35) (Figure 1A). Normalized tetanic torque was also reduced at P35 in 

SOD1(G93A) males (0.48mN-m/g, 95% CI: 0.42–0.54mN-m/g) compared to wildtype 

males (0.59mN-m/g, 95% CI:0.53–0.65mN-m/g) (Figure 1B). Normalized twitch torque was 

reduced at P63 in SOD1(G93A) female mice (0.099mN-m/g, 95% CI: 0.088–0.111mN-m/g) 

compared to wildtype female mice (0.121mN-m/g, 95% CI: 0.110–0.132mN-m/g), whereas 

normalized tetanic torque was reduced by P56 in SOD1(G03A) females (0.45mN-m/g, 95% 

CI: 0.41–0.50mN-m/g) relative to wildtype females (0.54mN-m/g, 95% CI: 0.49–0.58mN-

m/g) (Figure 1A-B).

CMAP reduction occurred at P42 in SOD1(G93A) males (31.0mV, 95% CI: 25.4–37.2mV) 

compared to wildtype male mice (44.6mV, 95% CI: 37.8–51.9mV) and at P91 in 

SOD1(G93A) females (25.7mV, 95% CI: 21.1–30.8mV) compared to wildtype females 

(39.2mV, 95% CI: 33.4–45.5mV) (Figure 2A). MUNE reduction in SOD1(G93A) males 

(252, 95% CI: 205–304) relative to wildtype males 368, 95% CI: 310–430) occurred at P49 

and at P77 in SOD1(G93A) females (205, 95% CI: 164–251) compared to wildtype females 

(323, 95% CI: 271–381) (Figure 2B). There was no observed sexual dimorphism in SMUP, 

with increases occurring at P70 for both SOD1(G93A) males and females (252.0µV, 95% 

CI: 236.6–267.9µV) relative to wildtype males and females (218.7µV, 95% CI: 204.3–

233.5µV) (Figure 2C). Single fiber electromyography (SFEMG) was performed to exclude 

the possibility that failure of NMJ transmission could be the explanation for early 

contractility reduction in SOD1 mice. Separate cohorts of SOD1(G93A) males and wildtype 

males were studied with SFEMG in the gastrocnemius at P35 to assess NMJ integrity. There 

was no difference in jitter between SOD1(G93A) males (8.02±2.29µs; range: 4.01–12.27µs 

and wildtype males (8.38±2.45µs; range 5.07–12.57µs) (p=0.669). Table 3 summarizes and 

compares onset of MU degeneration and reduced muscle contractility.
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Muscle atrophy occurs after loss of muscle contractility

We assessed wet triceps surae muscle mass (normalized to body mass) to examine whether 

the early findings of reduced muscle contractility and loss of MU connectivity were 

associated with coexistent loss of muscle mass. Separate groups of wildtype and 

SOD1(G93A) were sacrificed at P70, in addition to the longitudinal cohorts at P119, and 

their right triceps surae muscles were harvested and weighed (Figure 3). There was no 

change in the relative percentage of denervated soleus NMJs between SOD1(G93A) and 

wildtype mice at P70 (Supplemental Figure 2). Despite reduction of both muscle 

contractility and MU connectivity there were no overt differences in normalized triceps 

surae wet mass at P70 between wildtype and SOD1(G93A) mice (Figure 3A). At P119, 

normalized triceps surae wet mass was reduced in SOD1(G93A) mice compared to wildtype 

mice (Figure 3A). When we organized normalized triceps surae wet mass by sex at P70, 

there was no difference in normalized triceps surae mass between SOD1(G93A) males 

relative to wildtype males nor was there difference between SOD1(G93A) female and 

wildtype female (Figure 3B). At P119, normalized triceps surae mass was reduced in 

SOD1(G93A) males compared to wildtype males as well as in SOD1(G93A) females 

compared to wildtype females (Figure 3B).

Correlations between MU connectivity, muscle contractility, and behavioral assessments

Correlations were analyzed between electrophysiological measures, muscle contractility, and 

grip strength at week 15. MUNE showed a very strong positive correlation with absolute 

twitch torque and absolute tetanic torque (Figure 4A and 4C), but MUNE showed no 

significant correlation with normalized twitch and tetanic torque (Figure 4B and 4D). CMAP 

demonstrated a strong positive correlation with both absolute twitch torque (r=0.84, p<0.01) 

and absolute tetanic torque (r=0.76, p<0.05) and moderately positive correlated with both 

normalized twitch torque (r=0.68, p<0.05) and normalized tetanic torque (r=0.65, p<0.05) 

(not shown). Grip strength was strongly correlated with CMAP (r=0.82, p<0.01) and MUNE 

(r=0.71, p<0.05) and moderately correlated with absolute twitch torque (r=0.66, p<0.05) 

(not shown). There was no significant correlation for grip compared with absolute tetanic 

torque (r=0.579, p=0.079), normalized twitch torque (r=0.513, p=0.130) and normalized 

tetanic torque (r=0.516, p=0.127) (not shown).

Discussion

In the SOD1(G93A) mouse model, overt behavioral disease onset is typically observed at 

approximately P90 [18, 48]. However, behavioral measurements used in SOD1(G93A) mice 

are limited in their ability to directly and accurately measure MU integrity. A number of 

physiological and pathological cross-sectional studies that directly assess the MU 

demonstrated earlier phenotypic features relative to typical behavioral disease onset [20, 21, 

23, 32, 49]. Fast fatigable muscles have increased vulnerability to denervation and are less 

efficient at maintaining NMJ collateral reinnervation [49]. Accordingly, in situ contractility 

analyses of isolated fast fatigable muscles by Hegedus and colleagues demonstrated MU loss 

and corresponding contractile weakness in male mice as early as P40 [21]. Similarly, our 

results identified reduction of muscle contractility as early as P35 using non-invasive muscle 

contractility measurements. In contrast to prior studies, muscle contractility was assessed in 
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the intact triceps surae muscle, which includes the gastrocnemius, a muscle predominantly 

comprised of fast-fatigable muscle fibers, and the soleus, predominantly composed of slow-

fatigue resistant muscle fibers. Using intact muscle groups with mixed muscle fiber types 

closely mirrors clinical muscle testing in patients in which multiple muscles are tested 

together [50].

Our results show that reduced contractility occurs before reduction of MU connectivity in 

both SOD1(G93A) males and females. Importantly, in vivo muscle contractility 

measurements require intact and functioning motor axons, neuromuscular junctions and 

muscle excitability contraction coupling. Therefore, it was important to consider whether 

early NMJ degeneration might explain early twitch and tetanic muscle contraction torque 

losses. We found several results in our study arguing against this possibility. First, we 

assessed NMJ transmission using SFEMG which is the most sensitive measure of NMJ 

transmission in vivo [41]. SFEMG at P35 (when the twitch and tetanic muscle contractions 

were reduced) was unchanged in mutant versus wildtype male mice. Furthermore, twitch 

and CMAP responses are both measured following a single supramaximal nerve stimulation, 

and our results showed that reduced twitch occurred prior to CMAP was reduced in both 

SOD1(G93A) males and females by 7 days and 28 days respectively. Together, the 

discrepant twitch and CMAP findings, along with our SFEMG results, support excitation-

contraction decoupling, and not NMJ transmission failure, as the cause of early contractility 

reduction. Lastly, if muscle contractility precedes MU connectivity reduction, we would 

expect to also see no muscle atrophy related to denervation. In our studies, wet muscle 

weight did not reveal triceps surae (gastrocnemius and soleus) atrophy at P70 when muscle 

contractility was already reduced, suggesting that loss of muscle contractility was not simply 

related to muscle size.

Our findings of early reduction of muscle contractility (prior to SFEMG abnormalities and 

CMAP and MUNE reduction) suggest early subsarcolemmal abnormalities resulting in 

excitation-contraction decoupling. Prior studies have suggested muscle specific defects in 

ALS patients and SOD1(G93A) mice [51–54]. Increased oxidative stress in the sarcolemma 

and the sarcoplasmic reticulum have also been observed in SOD1(G93A) mice [54, 55]. The 

increased oxidative stress may result in muscle excitation-contraction decoupling, possibly 

through abnormalities of calcium regulation, myofilament function or ATP production [55, 

56]. One protein critical for excitation-contraction coupling which may be negatively 

impacted to produce early contractile reduction is sarcoplasmic reticulum Ca2+ ATPase 

(SERCA). SERCA pump activity is diminished following increased oxidative stress, with 

the intracellular Ca2+ imbalances resulting in muscle contractile weakness [57, 58].

Sexual dimorphism observed in our studies is consistent with previous reports that 

SOD1(G93A) males exhibit earlier disease onset compared to their female counterparts in 

C57BL/6xSJL/J mice [59, 60]. Sex differences appear to be background strain specific. Male 

SOD1(G93A) mice on the strain used in this work (C57BL/6xSJL/J) as well as SJL have 

been shown to present earlier symptom onset compared to females, whereas male 

SOD1(G93A) on C57BL/6 exhibit no sexual differences [59]. A previous study utilized 

mice generated from SOD1(G93A) C57BL/6xSJL/6 crossed with wildtype C57BL/6 mice 

and demonstrated no sex-specific differences in MU number loss or in muscle contractile 
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force deficits [22]. The potential differences in the background strains of SOD1(G93A) mice 

used may account for the discrepant results.

Our paradigm is strengthened by the capacity for repeat measures of muscle contractility and 

MU connectivity in individual animals. Previous studies of MU reduction in SOD1(G93A) 

mice were performed via a cross-sectional paradigm [21–23, 32]. While such cross-sectional 

analyses allow examination of aggregate differences over time, these do not permit 

consideration of disease trajectories of individual mice. Utilizing a longitudinal approach 

allowed us to assess disease progression in individual mice over time and legitimize the 

approach to use statistical modeling of the disease time course to properly account for 

heterogeneity between mice. Our results suggest that longitudinal assessments of in vivo 
muscle contractility in conjunction with MU connectivity may be a powerful readout for pre-

clinical drug testing in this model as well as other models of neuromuscular disease.

The development of meaningful outcome measures for ALS is critically important. The 

methodology for measuring muscle contractility presented herein as a physiological 

outcome measure shares qualities of a good physiological biomarker, in that it is 

reproducible, minimally-invasive, easy to obtain and has the capacity to make longitudinal 

measures [61]. Rater reliability results are in line with intra-rater reliabilities of muscle 

function and MU connectivity measurements in clinical studies (ICCs ranging from 0.55 to 

0.99) [62–67] and pre-clinical studies utilizing MU connectivity measurements in mice 

(ICCs ranging from 0.56 to 0.76) [68]. Muscle contractility measurements following nerve 

stimulation could be performed alongside current strength tests in people with ALS, such as 

hand-held dynamometers, with the added benefit of not being impacted by the strength of 

the evaluator [69].

In conclusion, when combined with longitudinal MU connectivity measurements, muscle 

contractility measurements allow a more complete analysis of MU innervation and 

functional status in degenerative models. Early muscle contractility dysfunction occurred 

prior to MU connectivity deficits and may precede neuronal death in SOD1(G93A) mice. 

Thus, the design and execution of pre-clinical studies using SOD1(G93A) mice can be 

enhanced through this paradigm. Moreover, we believe that muscle contractility outcome 

measures have the potential to be directly applied in patients to detect early changes in 

contractility.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations:

ALS amyotrophic lateral sclerosis

CMAP compound muscle action potentia

ICC intra-class coefficient

MU motor unit

MUNE motor unit number estimation

O/N overnight

PFA paraformaldehyde

RT room temperature

SFEMG single fiber electromyography

SMUP single motor unit potential

SOD1 Cu/Zn superoxide dismutase
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Figure 1. 
SOD1(G93A) males demonstrate earlier muscle contractility reduction than SOD1(G93A) 

females. (A) Modeled twitch torque (normalized to body mass) (mN-m/g) outcomes of 

wildtype (WT) male mice (blue square, n=5), wildtype female mice (orange x, n=5), 

SOD1(G93A) male mice (red triangle, n=5) and SOD1 female mice (purple circle, n=5). (B) 

Modeled tetanic torque (normalized to body mass) (mN-m/g) outcomes in wildtype and 

SOD1(G93A) cohorts, organized by gender. Shaded regions depict 95% confidence interval.
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Figure 2. 
SOD1(G93A) males demonstrate earlier MU connectivity reduction than SOD1(G93A) 

females. (A) Longitudinal modeled CMAP (mV) of wildtype male mice (blue square, n=5), 

wildtype female mice (orange x, n=5), SOD1(G93A) male mice (red triangle, n=5) and 

SOD1 female mice (purple circle, n=5). (B) Modeled SMUP (µV) of wildtype mice (blue 

square, n=10) and SOD1(G93A) mutants (red triangle, n=10). (C) Modeled MUNE of 

wildtype male mice, wildtype female mice, SOD1(G93A) male mice and SOD1(G93A) 

female mice. Shaded regions depict 95% confidence interval. Abbreviations: compound 

muscle action potential (CMAP), single motor unit potential (SMUP), motor unit number 

estimation (MUNE), and wildtype (WT).
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Figure 3. 
Normalized triceps surae wet mass at P70 and P119. (A) Normalized triceps surae mass at 

P70 (wildtype: 0.0082g±0.0008g, n=6 vs SOD1(G93A): 0.0075g±0.00130g, n=6; p=0.123) 

and P119 (wildtype: 0.0065g±0.0003g, n=10 vs SOD1(G93A): 0.0037g±0.0009g, n=9). (B) 

Normalized triceps surae wet mass by gender at P70 (wildtype males: 0.0081g±0.0003g, 

n=3 vs SOD1(G93A) males: 0.0069g±0.0016g n=3, p=0.19; wildtype females: 0.0084g

±0.0011g, n=3 vs SOD1(G93A) females: 0.0083g±0.0006g, n=3, p=0.52) and P119 

(wildtype males: 0.0066g±0.0003g, n=5 vs SOD1(G93A) males: 0.0035g±0.0014g, n=4; 

wildtype females: 0.0064g±0.0002g, n=5 vs SOD1(G93A) females: 0.0039g±0.0004g, n=5). 

Error bars denote standard deviation. n.s.=no significance, *** = p<0.001.
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Figure 4. 
Correlations of muscle contractility with MUNE. (A-B) Correlation of Motor Unit Number 

(MUNE) with (A) absolute twitch torque and (B) normalized twitch torque. (C-D) 

Correlation of MUNE with (C) absolute twitch torque and (D) normalized tetanic torque. 

Abbreviations: motor unit number estimation (MUNE).
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Table 1

Longitudinal outcome measurements in SOD1(G93A) and wildtype male mice.

Age
(PND)

CMAP (mV)
(±StDv)

MUNE
(±StDv)

SMUP (µV)
(±StDv)

Normalized
Twitch (mN-m/g)

(±StDv)

Normalized
Tetanic (mN-m/g)

(±StDv)

35
45.0 (8.0) 383 (109) 250.4 (26.6) 0.127 (0.02) 0.59 (0.064)

34.02 (8.3) 323 (119) 258.7 (73.2) 0.093 (0.027) 0.48 (0.12)

42
41.7 (4.7) 376 (118) 233.8 (73.3) 0.096 (0.014) 0.57 (0.089)

30.46 (3.8) 359 (127) 184.2 (49.3) 0.083 (0.018) 0.46 (0.17)

49
46.8 (13.1) 433 (158) 208.2 (49.4) 0.123 (0.018) 0.57 (0.080)

45.38 (5.0) 367 (70) 236.7 (46.2) 0.079 (0.011) 0.38 (0.054)

56
43.8 (6.9) 390 (47) 204.3 (34.2) 0.142 (0.016) 0.59 (0.06)

34.28 (2.8) 317 (78) 201.2 (12.7) 0.083 (0.016) 0.34 (0.046)

63
30.0 (16.5) 239 (106) 211.8 (29.7) 0.089 (0.043) 0.40 (0.21)

25.84 (13.9) 200 (113) 226.3 (56.1) 0.057 (0.035) 0.26 (0.15)

70
29.4 (9.1) 293 (148) 213.0 (69.9) 0.102 (0.039) 0.45 (0.21)

23.9 (17.7) 147 (132) 318.1 (87.6) 0.074 (0.029) 0.38 (0.14)

77
31.5 (9.0) 255 (118) 230.4 (61.7) 0.146 (0.011) 0.59 (0.088)

17.46 (15.1) 105 (81) 302.5 (68.0) 0.057 (0.034) 0.25 (0.14)

84
43.3 (11.4) 481 (150) 170.8 (51.4) 0.138 (0.012) 0.58 (0.093)

14.2 (8.9) 105 (87) 240.2 (63.0) 0.060 (0.032) 0.21 (0.049)

91
42.3 (12.7) 390 (99) 199.9 (50.0) 0.144 (0.011) 0.59 (0.080)

12.46 (7.3) 102 (103) 227.9 (107.8) 0.046 (0.027) 0.19 (0.12)

98
44.9 (3.6) 397 (88) 184.9 (45.8) 0.123 (0.01) 0.57 (0.036)

11.06 (8.7) 78 (73) 291.4 (108.2) 0.037 (0.014) 0.16 (0.038)

105
49.9 (9.8) 385 (86) 249.0 (43.4) 0.135 (0.019) 0.60 (0.090)

9.72 (10.4) 77 (107) 228.5 (55.6) 0.031 (0.020) 0.14 (0.081)

112
48.5 (9.3) 409 (100) 205.5 (75.2) 0.118 (0.01) 0.58 (0.029)

9.95 (12.3) 59 (64) 293.0 (50.3) 0.031 (0.015) 0.17 (0.072)

119
42.1 (5.0) 407 (145) 200.1 (59.1) 0.131 (0.001) 0.60 (0.050)

9.0 (8.4) 45 (42) 351.3 (100.0) 0.037 (0.023) 0.18 (0.074)

SOD1(G93A) male mice (shaded, n=5); wildtype male mice (unshaded, n=5). Mean outcome measurements with standard deviation (StDv) in 
brackets. Twitch and tetanic outcome measurements were normalized to mouse body mass. Abbreviations: Compound muscle action potential 
(CMAP), motor unit number estimation (MUNE), single motor unit potential (SMUP), and post-natal day (PND).
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Table 2

Longitudinal outcome measurements in SOD1(G93A) and wildtype female mice.

Age
(PND)

CMAP (mV)
(±StDv)

MUNE
(±StDv)

SMUP (µV)
(±StDv)

Normalized
Twitch (mN-m/g)

(±StDv)

Normalized
Tetanic (mN-m/g)

(±StDv)

35
50.6 (9.4) 373 (75) 249.3 (50.1) 0.112 (0.005) 0.53 (0.017)

45.8 (11.8) 387 (32) 219.7 (45.1) 0.109 (0.018) 0.50 (0.081)

42
33.4 (16.3) 262 (121) 245.7 (70.5) 0.097(0.036) 0.41 (0.17)

38.0 (21.4) 275 (123) 233.5 (54.7) 0.079 (0.014) 0.38 (0.12)

49
41.7 (16.6) 287 (110) 253.7 (55.7) 0.113 (0.023) 0.57 (0.10)

34.1 (12.9) 291 (173) 211.9 (43.8) 0.096 (0.031) 0.42 (0.097)

56
37.3 (14.3) 309 (108) 211.2 (26.2) 0.119 (0.020) 0.52 (0.088)

33.5 (11.0) 236 (101) 248.8 (52.0) 0.097 (0.019) 0.44 (0.074)

63
38.4 (8.2) 291 (55) 252.5 (46.5) 0.119 (0.019) 0.51 (0.095)

31.9 (8.3) 203 (76) 257.7 (68.1) 0.092 (0.030) 0.40 (0.081)

70
40.1 (9.0) 311 (117) 240.4 (62.9) 0.123 (0.036) 0.62 (0.11)

34.5 (13.8) 219 (58) 256.5 (86.3) 0.102 (0.026) 0.45 (0.12)

77 44.6 (6.8) 277 (30) 260.9 (61.2) 0.127 (0.021) 0.60 (0.068)

33.3 (10.1) 174 (77) 333.3 (90.9) 0.094 (0.013) 0.40 (0.14)

84 41.5 (6.8) 339 (141) 231.5 (67.1) 0.134 (0.014) 0.62 (0.11)

32.0 (8.9) 196 (40) 266.4 (52.6) 0.106 (0.019) 0.47 (0.11)

91 38.5 (9.5) 407 (94) 176.53 (28.3) 0.135 (0.012) 0.58 (0.062)

31.2 (14.9) 194 (90) 301.5 (110.6) 0.090 (0.014) 0.43 (0.079)

98 42.4 (8.8) 400 (91) 172.5 (26.3) 0.119 (0.016) 0.55 (0.059)

21.2 (9.5) 156 (76) 264.7 (73.3) 0.081 (0.017) 0.36 (0.086)

105 39.6 (5.8) 391 (103) 178.8 (37.3) 0.119 (0.015) 0.56 (0.11)

21.7 (8.9) 125 (23) 291.6 (77.9) 0.072 (0.034) 0.28 (0.14)

112
45.5 (14.7) 319 (35) 218.9 (48.8) 0.115 (0.010) 0.55 (0.022)

14.7 (4.0) 83 (17) 329.8 (118.2) 0.062 (0.023) 0.26 (0.061)

119
44.9 (14.3) 347 (47) 225.0 (30.4) 0.134 (0.014) 0.64 (0.043)

13.8 (1.9) 70 (14) 328.0 (82.9) 0.052 (0.022) 0.23 (0.081)

SOD1(G93A) female mice (shaded, n=5); wildtype female mice (unshaded, n=5). Mean outcome measurements with standard deviation (StDv) in 
brackets. Twitch and tetanic outcome measurements were normalized to mouse body mass. Abbreviations: Compound muscle action potential 
(CMAP), motor unit number estimation (MUNE), single motor unit potential (SMUP), and post-natal day (PND).
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Table 3

Onset of muscle contractility and MU connectivity reduction

Post-natal Day

SOD1(G93A)
vs WT 35 42 49 56 63 70 77 84 91 98 105 112 119

Twitch
Males 0.0079→

Females - - - - 0.0427→

Tetanic
Males 0.0119→

Females - - - 0.0326→

CMAP
Males - 0.04→

Females - - - - - - - - 0.018→

SMUP
Males - - - - 0.0244→

Females - - - - 0.0244→

MUNE
Males - - 0.0382→

Females - - - - - - 0.0157→

Abbreviations: wildtype (WT), compound muscle action potential (CMAP), single motor unit potential (SMUP), motor unit number estimation 
(MUNE). Dashes represent no significant difference, arrows indicate that difference was significant for duration of study.
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