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Abstract

Neuroinflammation has positive and negative effects. This review focuses on the roles of 

macrophage in the PNS. Transection of PNS axons leads to degeneration and clearance of the 

distal nerve and to changes in the region of the axotomized cell bodies. In both locations, resident 

and infiltrating macrophages are found. Macrophages enter these areas in response to expression 

of the chemokine CCL2 acting on the macrophage receptor CCR2. In the distal nerve, 

macrophages and other phagocytes are involved in clearance of axonal debris, which removes 

molecules that inhibit nerve regeneration. In the cell body region, macrophage trigger the 

conditioning lesion response, a process in which neurons increase their regeneration after a prior 

lesion. In mice in which the genes for CCL2 or CCR2 are deleted, neither macrophage infiltration 

nor the conditioning lesion response occurs in dorsal root ganglia (DRG). Macrophages exist in 

different phenotypes depending on their environment. These phenotypes have different effects on 

axonal clearance and neurite outgrowth. The mechanism by which macrophages affect neuronal 

cell bodies is still under study. Overexpression of CCL2 in DRG in uninjured animals leads to 

macrophage accumulation in the ganglia and to an increase in the growth potential of DRG 

neurons. This increased growth requires activation of neuronal STAT3. In contrast, in acute 

demyelinating neuropathies, macrophages are involved in stripping myelin from peripheral axons. 

The molecular mechanisms that trigger macrophage action after trauma and in autoimmune 

disease are receiving increased attention and should lead to avenues to promote regeneration and 

protect axonal integrity.
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1. Introduction: An overview of the molecular and cellular responses of 

the peripheral nervous system to axonal injury.

Neurons in the peripheral nervous system (PNS) are capable of regeneration after axotomy 

whereas neurons in the central nervous system (CNS) are generally not (for recent reviews 

see Curcio and Bradke, 2018; Hilton and Bradke, 2017; Scheib and Hoke, 2013). Because of 

this distinction, researchers interested in regeneration tend to focus on mechanisms that 

facilitate regeneration in the PNS or on those that prevent regeneration in the brain and 

spinal cord. Nevertheless, it should be recognized that, whereas, in the PNS, an injured 

axon’s regeneration to its original target can be quite precise (Nguyen et al., 2002), it is not 

always so (Langley, 1897; Lingappa and Zigmond, 2013; Purves and Thompson, 1979). In 

addition, the number of axons that reach their targets can be limited (Brushart, 2011; Gordon 

et al., 2009). Therefore, understanding factors that can enhance or that limit PNS 

regeneration is important for developing therapies for individuals with nerve injury (e.g., 

Gordon et al., 2003).

Regeneration of axons in vivo is not cell autonomous, rather it is highly influenced by non-

neuronal cells, in particular Schwann cells and macrophages. While axonal outgrowth does 

occur in neurons in dissociated cell culture (e.g., Frey et al., 2015), such cultures often 

contain appreciable numbers of non-neuronal cells, which may play a role even in vitro. 

Furthermore, the mechanisms of axon outgrowth in vivo and in vitro may not be identical. In 

this review article, we first briefly summarize the major changes that occur in the PNS after 

axonal injury. We then focus largely on the regulation of macrophage accumulation in the 

PNS examined in rodents, the effects of macrophages in nerve degeneration and 

regeneration, and the regulation of macrophage phenotype.

We will also review some of the techniques that allow functional studies on macrophage-

neuron interactions. The majority of the studies we will review involve studies on the events 

following axotomy of the sciatic nerve that take place in the distal nerve segment or in the 

lumbar (L) 4 and/or 5 DRG. In a few places, mention will be made of studies on microglia, 

the resident macrophages in the CNS.

The inflammatory response in the nervous system in response to injury, referred to as 

neuroinflammation, has been termed a “double-edged sword”, as it can produce both 

beneficial and detrimental effects (e.g., Bose and Cho, 2013; Morganti-Kossmann et al., 
2002; Stoll et al., 2002). In this review article, we will primarily discuss studies that 

demonstrate the beneficial effects of macrophages on degeneration and regeneration of 

neurons after axotomy; however, it is clear that in certain disease states macrophages can be 

involved in pathological changes (see Section 11).

1.1 Degeneration of the distal axon after axotomy.

When axons are injured by nerve transection or nerve crush, the distal nerve segment 

fragments and degenerates, and eventually myelin and axonal debris are cleared by a 

combination of phagocytosis and autophagy (Brosius Lutz et al., 2017; DeFrancesco-

Lisowitz et al., 2015; Jessen and Mirsky, 2016a). This process is termed Wallerian 
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degeneration due to its early description by Augustus Waller (1850). The molecular basis for 

axon degeneration has recently received a great deal of attention (Coleman and Freeman, 

2010; Farley et al., 2018; Freeman, 2014; Gerdts et al., 2016; Neukomm et al., 2017) and is 

assumed to be cell autonomous, but this process is only briefly discussed in this review.

Much of our knowledge of the biochemistry of axon degeneration was initiated from the 

serendipitous discovery at Oxford University in 1989 of a spontaneous mutant mouse strain 

unknowingly received from the laboratory’s normal animal supplier that had a very 

surprising phenotype. Following transection of the sciatic nerve, axonal degeneration and 

myelin clearance was approximately ten times slower than in wild type mice (Lunn et al., 
1989). Given that the accumulation of macrophages in the distal nerve segment of these 

animals was also slow (Brown et al., 1991; Hall, 1993; Lunn et al., 1989), the question arose 

as to whether the important locus of this mutation was in the neurons’ axons or in the 

animal’s macrophages. Through bone marrow transplantation experiments, it was shown that 

the slow axonal degeneration was an intrinsic property of the axons rather than a mutation in 

the monocytes (Perry et al., 1990). These mice were initially referred to as C57BL/Ola but 

are now called C57BL/Wld or just Wlds. A review of studies with these animals was 

published by Coleman and Freeman (2010).

Following such degeneration, the clearance of myelin and axonal debris is necessary for 

optimal regeneration because molecules from the degenerating axons are inhibitory to 

axonal outgrowth (Fournier and Strittmatter, 2001; Qiu et al., 2000; Schwab, 1996). 

Macrophages and Schwann cells play important roles in the removal of these inhibitory 

substances (e.g., David et al., 1990; Stoll et al., 1989; also see Section 8.1). In addition, 

recent studies have established that neutrophils also play a role (Lindborg et al., 2017). In 

support of the importance of this clearance is the finding that regeneration into peripheral 

nerve grafts is greatly facilitated if the grafts are predegenerated (Bedi et al., 1992; Hasan et 
al., 1996; Kerns et al., 1993; Krekoski et al., 2002).

Following transection of the sciatic nerve, initial myelin clearance measured by luxol fast 

blue staining is detectable by 3 days, and by 7 days the staining is reduced by 80% 

(Lindborg et al., 2017). The distal nerve segment undergoes additional cellular and 

molecular changes including the proliferation of Schwann cells, their differentiation into 

repair cells, and the expression of nerve growth factors (for review see Jessen and Mirsky, 

2016b; also see Section 8.2). In the CNS, Wallerian degeneration occurs very slowly and 

incompletely, and this has been proposed to be one reason for the general failure of 

regeneration in the CNS (for a review see Vargas and Barres, 2007).

1.2 The cell body response and the expression of regeneration-associated genes.

In addition to changes in the distal nerve segment, axotomy produces profound changes in 

the cell body of axotomized neurons, changes referred to as “the cell body response” or 

sometimes “the axon reaction” (Grafstein, 1975; Hanz and Fainzilber, 2006; Hendry, 1992; 

Lieberman, 1971; Plunet et al., 2002; Zigmond, 2012). Such changes were first described at 

the histological level as chromatolysis, which involves a breakdown of the layered rough 

endoplasmic reticulum and the movement of the nucleus from the center of the cell body to 

an eccentric position (Cragg, 1970; Johnson and Sears, 2013; Matthews and Raisman, 1972). 
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It has been speculated that these changes in the rough endoplasmic reticulum reflect a 

change from the synthesis of proteins for export (e.g., neuropeptides used as 

neurotransmitters or neuromodulators) to the synthesis of proteins for intracellular use (i.e., 

for regeneration) (Matthews and Raisman, 1972).

Early studies established that soon after axotomy there is an overall increase in RNA and 

protein synthesis (Watson, 1974). More recently, increases and decreases have been 

documented in the expression of particular mRNAs (Boeshore et al., 2004; Costigan et al., 
2002). These changes are thought to be triggered by changes in the expression of specific 

transcription factors including, for example, cJUN, STAT3, and ATF3 (BenYaakov et al., 
2012; Chandran et al., 2016; Smith et al., 2011). The decreases in neuronal gene expression 

include many proteins involved in synaptic transmission [e.g., in sympathetic neurons the 

enzyme tyrosine hydroxylase and subunits of ganglionic nicotinic receptors (Cheah and 

Geffen, 1973; Sun and Zigmond, 1996a; Zhou et al., 1998, 2001)], and the increases include 

proteins involved in nerve regeneration [e.g., the neuropeptide galanin (Hokfelt et al., 1994; 

Holmes et al., 2000; Zigmond, 1997, 2001)]. The genes whose expression is increased after 

axotomy are commonly referred to as “regeneration-associated genes”. Nevertheless, only a 

small subset of these genes have been proven to play an important role in regeneration 

(DeFrancesco-Lisowitz et al., 2015; Ma and Willis, 2015; Mahar and Cavalli, 2018).

1.3 Changes in satellite cells, afferent synapses, nerve activity, and cell survival.

In addition to changes in axotomized neurons themselves, changes also occur in their 

surrounding satellite cells, such as an increase in their proliferation and their expression of 

glial fibrillary acidic protein (GFAP) (Gehrmann et al., 1991; Hanani, 2005, 2010; 

Woodham et al., 1989), and in the accumulation of macrophages (Lu and Richardson, 1993; 

Schreiber et al., 1995). In a study on the guinea pig superior cervical ganglia (SCG), satellite 

cells were estimated to outnumber neurons by 6 to 1 in control ganglia and to increase by 

30% 1–3 weeks after axotomy (Purves, 1975). Satellite cells are thought to be the source of 

the gp130 cytokine leukemia inhibitory factor (LIF) found in ganglia after injury (Banner 

and Patterson, 1994; Sun et al., 1994), and, as discussed below, LIF is involved in injury-

induced changes in neuronal gene expression.

After axotomy, dramatic changes occur in the synapses onto axotomized autonomic and 

motor neurons, a process termed “synaptic stripping” (Blinzinger and Kreutzberg, 1968; 

Matthews and Nelson, 1975; Pilar and Landmesser, 1972; Purves, 1975). The functional 

significance of these changes is not clear; however, one can speculate that changes produced 

by afferent nerve activity might oppose changes that occur after axotomy. An example of 

this is the enzyme tyrosine hydroxylase, which increases in sympathetic neurons following 

preganglionic nerve stimulation (Biguet et al., 1989; Zigmond and Ben-Ari, 1977) but 

decreases in these neurons after axotomy (Cheah and Geffen, 1973; Sun and Zigmond, 

1996a). The mechanism behind these changes in neuron-neuron contact is also unclear. 

Blinzinger and Kreutzberg (1968) proposed that microglia are involved in the displacement 

of synaptic boutons onto axotomized facial motor neurons but that this process did not 

involve phagocytosis of presynaptic terminals. In the SCG, Matthews and Nelson (1975) 

proposed that satellite cells processes are responsible for the disruption of the afferent 
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synapses. A third view of this phenomenon was presented more recently by Perry and 

O’Connor (2010), who argued that non-neuronal cells were not involved but rather that 

synaptic stripping was a neuron autonomous event.

Although there are no synapses in DRG, nerve activity has also been proposed to be 

involved in nerve regeneration in sensory neurons; however, there is a discrepancy in the 

conclusions drawn about this area. Electrical stimulation of adult sensory neurons in culture 

inhibited neurite outgrowth, an effect based on the L-type calcium channel (Enes et al., 
2010). Transection of the sciatic nerve leads to decreased firing of sensory neurons and a 

downregulation of the pore forming subunit of the L-type calcium channel (Enes et al., 
2010). These authors proposed that “the cessation of electrical activity after peripheral lesion 

contributes to the regenerative response observed upon conditioning”. In apparent conflict 

with this conclusion are the findings of Gordon and colleagues that brief (1 hour) low-

frequency electrical stimulation of peripheral nerve in vivo enhances regeneration of sensory 

and motor axons (Al-Majed et al., 2000; Gordon, 2016). With regard to sensory neurons, but 

not motor neurons, when stimulation was continued for longer than 1 hour no enhancement 

of regeneration occurred (Geremia et al., 2007). Thus, the role of nerve activity on 

regeneration seems to depend on the exact parameters of stimulation that are used.

Axotomy can eventually lead to neuronal cell death, though this can be quite delayed 

(Purves, 1975). In the rat, according to Hendry (1992), there is little cell death in the 

axotomized SCG, although there is one report of apoptosis in a small number of neurons 

after axotomy very close to the ganglion (Hou et al., 1998). Purves (1975) reported in the 

guinea pig SCG that there was no neuronal loss during the first week after axotomy but that 

a decrease of approximately half of the neurons occurred between 1–3 months. One month 

after transection of the mouse sciatic nerve, there was about a 50% loss of neurons in the 

mouse L5 DRG (Lyu et al., 2017). It would be interesting to know whether those neurons 

that die are neurons that do not successfully reinnervate their target tissues.

Survival of facial motor neurons after axotomy is dependent on CD4+ T-cells (Serpe et al., 
2003). The number of these motor neurons decreased after axotomy in knockout mice for 

either CD4 or recombinase activating gene-2, which causes the loss of all B and T-cells. 

Replenishment of either mouse strain with CD4+ T-cells restored survival to wild type levels 

(Serpe et al., 2003). A small number of T-cells was found in the DRG and sympathetic 

ganglia after sciatic nerve transection (Hu and McLachlan, 2002, 2004); however, whether 

these T-cells promote survival of sensory and/or sympathetic neurons is not known.

1.4 Molecular signals triggering the changes in ganglia following axotomy.

In certain instances, the molecular and cellular changes reviewed above have been shown to 

result from either negative (downregulated) or positive (upregulated) biochemical signals 

(Ambron and Walters, 1996; Cragg, 1970; Purves and Nja, 1976; Zigmond, 2012). An 

example of a negative signal is nerve growth factor (NGF), a factor that is reduced in 

axotomized sympathetic neurons as a result of interruption of its retrograde transport from 

target tissues to neuronal cell bodies following axotomy (Hyatt Sachs et al., 2007; Korsching 

and Thoenen, 1985; Nagata et al., 1987; Nja and Purves, 1978). An example of a positive 

signal is LIF, which is barely detectable in the intact nervous system but is expressed 
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following axotomy both within ganglia, perhaps by satellite cells (Banner and Patterson, 

1994; Sun et al., 1994), and in Schwann cells in the distal nerve segment (Curtis et al., 
1994). The study by Curtis et al. (1994) demonstrated that LIF can be transported 

retrogradely by sensory and motor axons where it might be involved in neuronal gene 

expression.

Both NGF and LIF affect the expression of galanin in sympathetic and sensory neurons. 

Regulation of galanin expression is of particular interest because galanin is an example of a 

regeneration-associated gene that has been shown to play a role in sensory neuron 

regeneration after sciatic nerve injury (Holmes et al., 2000; Zigmond, 2001). Injections of 

rats with antiserum against NGF led to an increase in galanin expression in both SCG and 

DRG, thus mimicking the effects of axotomy (Shadiack et al., 2001). Axotomy of these 

ganglia in Lif knockout mice, on the other hand, reduced the increase in ganglionic galanin 

expression compared to that seen in WT mice after axotomy (Corness et al., 1996; Rao et 
al., 1993; Sun and Zigmond, 1996a, b). Further, it was established that there is an interaction 

between the effects of NGF and those of LIF. Somewhat surprisingly, when a pellet of LIF 

was placed adjacent to the SCG, no change in galanin expression occurred. However, if 

these animals were injected with anti-NGF, the increase in galanin that occurred was 

significantly greater than if the animals only received the antibody (Shadiack et al., 1998). 

These results suggest that LIF only induces galanin in neurons that no longer receive NGF 

from their target tissues, which is an indication that the axons have been injured (Shadiack et 
al., 1998). A similar interplay between LIF and NGF in the regulation of galanin was found 

in primary cultures of embryonic DRG neurons (Corness et al., 1998).

2. The two general classes of macrophages: Resident and infiltrating.

Macrophages play multiple roles in the PNS after axonal injury. In most tissues, including in 

the nervous system, two classes of macrophages are distinguishable: resident macrophages 

and infiltrating macrophages (Griffin et al., 1993). The former are present under homeostatic 

conditions, the latter infiltrate into tissues in response to injury or infection. In many tissues, 

resident macrophages originate from the yolk sac and fetal liver, enter tissues during 

embryonic development, and maintain their numbers through their longevity and local 

proliferation rather than through replacement by cells from the bone marrow (for reviews see 

Ginhoux and Guilliams, 2016; Hashimoto et al., 2013; Varol et al., 2015). Nevertheless, 

there are exceptions to this rule concerning cellular origin. For example, the resident 

macrophages in the adult intestine, which derive from the bone marrow (Bain et al., 2014).

The embryonic origin of microglia, the resident macrophages in the CNS, has recently 

received a great deal of attention (e.g., Li and Barres, 2017), whereas, resident macrophages 

in the PNS have been less studied recently. Using lineage-tracing techniques, microglia have 

been shown to originate from the yolk sac (Schulz et al., 2012). Whereas it might seem 

natural to assume that resident macrophages in the PNS have the same origin (e.g., see Ton 

et al., 2013), this is not the case. Vass et al. (1993) and Muller et al. (2010) asked whether 

macrophages derived from the transplanted cells contributed to the population of resident 

macrophages in the sciatic nerve and dorsal root ganglia (DRG) by using bone marrow 

transplantation from mice carrying a traceable cellular marker [(i.e., a histocompatibility 
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antigen or green fluorescent protein (GFP)]. They found that over a few months 50 – 60% of 

the resident macrophages were replaced by circulating monocytes. The developmental origin 

of the remaining host macrophages has not been determined. Interestingly, when Mueller et 
al. (2003) compared GFP+ macrophages with host GFP- macrophages, no differences were 

found in morphology, in staining for the macrophage antigens F4/80, CD68, Iba-1, or 

CD11b, or in phagocytosis of myelin basic protein.

Resident macrophages are found both in peripheral nerves and in ganglia (Gehrmann et al., 
1991). In the adult rat sciatic nerve, endoneurial resident macrophages were estimated to 

account for 2–6% of the total endoneurial cells (Mueller et al., 2003; Oldfors, 1980). In 

postmortem examination of human sensory and autonomic ganglia, it was reported that 5–

20% of the cells present were resident macrophages (Esiri and Reading, 1989).

Infiltrating macrophages originate from bone marrow-derived monocytes that enter tissues in 

response to injury or infection (Mildner et al., 2016). The ratio of infiltrating macrophages to 

resident macrophages in the sciatic nerve seven days after transection is about 3 to 1 

(Mueller et al., 2003). The most well characterized chemoattractive peptide (or chemokine) 

that brings monocytes into tissues is chemokine C-C motif ligand 2 [CCL2, formerly 

referred to as monocyte chemoattractive protein (MCP-1)]. This chemokine acts primarily 

through the receptor CCR2 on monocytes. In addition, there is a second population of 

monocytes in the circulation that do not express CCR2 and are referred to as “patrolling 

monocytes” (Auffray et al., 2007).

An open question in the field is whether resident and infiltrating macrophages have distinct 

functions after nerve injury or infection. One challenge in approaching this issue is to find 

markers by which these cells can be distinguished. Using bone marrow transplantation, 

Mueller et al. (2001) observed that resident macrophages began phagocytosing myelin 

within two days after sciatic nerve crush, which is before the influx of infiltrating 

macrophages. They also observed proliferation of the resident macrophages at this early 

time point. These data suggest that resident macrophages along with neutrophils (Lindborg 

et al., 2017) and Schwann cells (Stoll et al., 1989) are first responders after nerve injury. In 

the CNS, efforts have been made recently to distinguish between microglia and monocyte-

derived macrophages (e.g., Bennett et al., 2016; Butovsky et al., 2014; Greter et al., 2015), 

and evidence exists that these two cell types do perform different functions (see for example 

Kim and Cho, 2016; London et al., 2013; Yamasaki et al., 2014).

It is worth noting that resident macrophages in nerves are sensitive to irradiation. This 

feature is important because it means that during irradiation for bone marrow 

transplantation, both bone marrow precursor cells and resident macrophages would be 

reduced (Monaco et al., 1992).

3. Some issues regarding the detection of macrophages in tissues.

Macrophages are generally detected in neural tissue by either immunohistochemistry or flow 

cytometry. A variety of antibodies is used in such studies making it sometimes difficult to 

compare results from different groups. The most commonly used antibodies are those 

Zigmond and Echevarria Page 7

Prog Neurobiol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



against the antigens CD68 (ED1), F4/80, ionized calcium binding adaptor molecule 1 (Iba1), 

and CD11b (Mac-1). As in any study utilizing antibodies, an important question is how 

specific the antibody is to a particular cell type. A very extreme example of this problem was 

demonstrated in a study in which these four antibodies were examined by flow cytometry of 

fibrotic tissue from animals whose fibroblasts had been labelled with a reporter gene (GFP). 

All of the antibodies with the exception of F4/80 were found to cross react with GFP-labeled 

fibroblasts (Inoue et al., 2005).

Another example is that antibodies to CD11b, which are commonly used to label 

macrophages, also label neutrophils (Barrette et al., 2008). Nevertheless, macrophages and 

neutrophils can be distinguished in at least two ways. Neutrophils can also be labelled with 

antibodies to Ly6G (lymphocyte antigen 6 complex locus G6D), whereas macrophages are 

not (e.g., Lindborg et al., 2017). Also relevant is the time after injury at which the antibody 

to CD11b is used, as the time course of infiltration of neutrophils is much quicker and of 

shorter duration than that of macrophages (Lindborg et al., 2017).

Another important question is whether different antibodies label the same population of 

macrophages or whether there is heterogeneity among macrophages with respect to binding 

these probes. In an IHC study on the sciatic nerve, CD68 and Iba-1 co-localized to the same 

cells (Mueller et al., 2003). On the other hand, in flow cytometry studies on the sciatic nerve 

and dorsal root ganglia (DRG), cells characterized as CD11b+ and Ly6G− were significantly 

more numerous than cells that were both CD11b+ and F4/80+ (Lindborg et al., 2017). The 

latter result raises questions as to how best quantitate the total number of macrophages in a 

tissue and whether different macrophage subsets defined by particular antibodies subserve 

different physiological functions. Interestingly, in our study on the rat superior cervical 

sympathetic ganglion, we found that antibodies to CD163 (ED2) stained macrophages in 

intact ganglia (i.e., resident macrophages), while antibodies to CD68 (ED1) only stained 

macrophages after axotomy (i.e., infiltrating macrophages) (Schreiber et al., 1995).

4.1 Sites of macrophages accumulation within the PNS after an injury: 

The distal nerve segment.

Until recently, studies on macrophages in the PNS after axotomy focused almost entirely on 

those that accumulated in the distal segment of peripheral nerves after axotomy (Fig. 1). 

Ramon Y Cajal, in his classic book Degeneration and Regeneration of the Nervous System, 

described the arrival of blood cells into the distal nerve segment and their participation in the 

phagocytosis of axonal debris (Ramon y Cajal, 1928). Cajal’s interpretation of what he 

observed turned out to be extremely accurate as will be discussed later in this review.

“…we might conjecture that the decomposition of the axon and myelin liberate positive 

chemotactic substances capable of attracting the wandering cells. Perhaps these enticing 

substances are produced by the rejuvenated cells of Schwann. At any rate this attractive 

action reaches its maximum from the fifth to the eighth day, at the critical period for the 

breaking up of the nerve fibre” (page 97 of Ramon y Cajal, 1928).
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A summary of other early studies in this field can be found in Griffin and George (1993) and 

Perry’s monograph Macrophages and the Nervous System (Perry, 1994). The former give 

credit for the identification of resident macrophages in peripheral nerve to Arvidson (1977) 

who injected animals with horseradish peroxidase and found it in the mouse sciatic nerve 

concentrated in cells with the ultrastructural features of macrophages.

Accumulation of macrophages in the distal segment of the transected sciatic nerve can be 

seen at 3 days, peaks at about 14 days, and is low but still detectable at 56 days. At 3 days, 

macrophages are more concentrated in the epineurium than in the endoneurium but by 14 

days the opposite is true (Taskinen and Roytta, 1997). Although macrophage accumulation 

is greatest in the distal segment of the sciatic nerve after an injury, a minor accumulation 

also occurs proximal to the lesion (Taskinen and Roytta, 1997).

Very little is known about the eventual exit of macrophage from the PNS. However, in one 

study, elimination from the injured sciatic nerve was found to occur via a combination of 

local apoptosis and lymphatic elimination to lymph nodes and spleen (Kuhlmann et al., 
2001).

4.2 . Sites of macrophages accumulation within the PNS after an injury: 

Peripheral ganglia.

A second, more recently recognized site of macrophage accumulation after axotomy is the 

peripheral ganglion (Fig. 1). After transection of the sciatic nerve, macrophages were shown 

to accumulate in lumbar DRG (Lu and Richardson, 1993) and after transection of the 

internal and external carotid nerves, in the SCG (Schreiber et al., 1995). Accumulation of 

macrophages in the DRG is seen 4 days after axotomy and is still detectable at 32 days (Lu 

and Richardson, 1993). In the SCG, macrophage accumulation is seen by 2 days after 

axotomy, reaches a peak at 8 d, and is sustained until 14 days, which was the latest time 

examined (Schreiber et al., 1995). Although macrophage accumulation in the lumbar DRG 

after unilateral sciatic nerve transection is primarily ipsilateral, a much smaller increase is 

also seen in the contralateral DRG. No change is seen in cervical DRG, making it unlikely 

that macrophage accumulation results from systemic inflammation (Lu and Richardson, 

1993).

In one study using the spared nerve procedure (in which the peroneal and tibial branches of 

the sciatic are transected but the sural nerve is left intact), macrophages in the L4 and L5 

DRG were localized with respect to the sizes of nearby sensory neurons (Vega-Avelaira et 
al., 2009). Following surgery, the retrograde tracer fluorogold was injected into the cut 

nerves to identify neurons in the DRG that had been axotomized. Macrophages were found 

to form “ring-like” structures preferentially around large diameter axotomized neurons, with 

many fewer rings formed around non-axotomized neurons and around small diameter 

axotomized neurons.

Prior to these findings in the PNS, studies in the brainstem demonstrated that microglia 

accumulate around the cell bodies of axotomized neurons that undergo regeneration. 

Following transection of two cranial motor nerves (i.e., the facial and hypoglossal nerves), 
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microglia were activated near the cell bodies of the affected neurons (Graeber et al., 1988; 

Schiefer et al., 1999; Svensson et al., 1994). Although facial and hypoglossal neuronal cell 

bodies are located within the CNS, they are considered peripheral neurons based on their 

projection into the periphery and their ability to regenerate after axotomy. When two 

intrinsic CNS pathways that do not normally regenerate, the thalamic reticular nucleus and 

the red nucleus, little or no microglial activation was seen (Shokouhi et al., 2010). 

Interestingly, if these neurons were induced to regenerate by providing them with a 

peripheral nerve graft, microglial activation was seen around the axotomized cell bodies 

(Shokouhi et al., 2010).

1. Axotomy of the central process of DRG neurons does not mimic the 

effects of axotomy of their peripheral process.

Unlike sciatic nerve transection, transection of dorsal roots does not lead to macrophage 

accumulation in the DRG (Kwon et al., 2013). In an influential paper published in 1970 

entitled “What is the signal for chromatolysis” Cragg speculated on what signals triggered 

the cell body response (Cragg, 1970). In this paper, he discussed the intriguing fact that, 

whereas a DRG neuron responds with chromatolysis to injury to its peripheral process, this 

does not occur in response to injury to its central process (for references on this phenomenon 

see Cragg, 1970; Lieberman, 1971). This distinction was found not only for DRG neurons 

but also for visceral sensory neurons in the nodose ganglion (Lieberman, 1969). 

Subsequently, Oblinger and Lasek (1984) reported that whereas crushing of the peripheral 

process of DRG neurons leads to regeneration of these peripherally projecting axons, 

crushing of the dorsal roots does not lead to regeneration of the centrally projecting axons. 

Since then, it has been shown that some of the molecular changes that occur after lesioning 

the peripheral process do not occur after lesioning the central process, including increased 

expression of growth associated protein 43 (GAP43) (Chong et al., 1994; Schreyer and 

Skene, 1993) and cJun (Broude et al., 1997). Another example of a gene that does not 

increase after transecting a dorsal root is CCL2 (Kwon et al., 2015). For a more complete 

profile of the gene changes that occur after cutting the dorsal root and how they compare to 

those seen after sciatic nerve axotomy see Stam et al. (2007).

2. The chemoattractive molecules that bring macrophages into the PNS.

Chemokines (or chemotactic cytokines) are small peptides that attract leukocytes into 

injured or infected tissue (Ransohoff, 2009; Ransohoff et al., 2007; Rollins, 1997). A 

number of cell types can secrete these molecules. Chemokines act on G-protein-coupled 

receptors found on leukocytes. Whereas the primary study of chemokines has concerned 

their chemotactic properties, they can produce other effects, an example of which will be 

noted later in this review.

CCL2 is the major chemokine for monocytes, and it binds with highest affinity to the 

receptor CCR2 (Charo and Ransohoff, 2006; Deshmane et al., 2009). CCR2 is expressed by 

monocytes and macrophages (Abbadie et al., 2003; Mack et al., 2001); however, as will be 

discussed later, it is also expressed after injury by sensory neurons (Jung et al., 2008; White 

et al., 2005) and satellite glial cells (Takeda et al., 2017). In Ccl2 −/− or Ccr2 −/− animals, 
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decreased macrophage accumulation occurs in the distal sciatic nerve and in the DRG after 

nerve injury (Lindborg et al., 2017; Niemi et al., 2013; Siebert et al., 2000). Neutralizing 

antibodies to CCL2 suppressed macrophage accumulation in the distal sciatic nerve and 

inhibited clearance of myelin (Perrin et al., 2005). Similarly, antibodies to CCR2 (i.e., 

MC-21) decrease monocyte/macrophage accumulation in the blood and in the sciatic nerve 

(Lindborg et al., 2017).

After axotomy, Ccl2 mRNA increases in the sciatic nerve. At first it is detectable at the 

injury site; however, over time it is seen throughout the distal nerve segment (Carroll and 

Frohnert, 1998). In the proximal nerve segment, the message is only expressed adjacent to 

the injury site. In the distal sciatic nerve, Ccl2 mRNA is expressed within 12 hours after 

nerve transection or crush and reaches peak values between 1–3 days (Carroll and Frohnert, 

1998; Cheepudomwit et al., 2008; Toews et al., 1998). In the nerve, CCL2 is mainly 

expressed in Schwann cells (e.g., Subang and Richardson, 2001; Taskinen and Roytta, 

2000). Ccl2 mRNA levels also increased in the sciatic nerve when unmyelinated nerve fibers 

were lesioned selectively by injecting neonatal animals with the neurotoxin capsaicin, 

though the duration of this effect was shorter lived than after axotomy, which injures both 

myelinated and unmyelinated axons (Cheepudomwit et al., 2008).

In addition to accumulating in the distal nerve segment, macrophages accumulated in 

sensory and sympathetic ganglia after axotomy. Strikingly, although Ccl2 mRNA in the 

distal nerve is expressed by glial cells, in axotomized sensory and sympathetic ganglia and 

in the axotomized facial motor nucleus, Ccl2 is expressed by axotomized neurons (Flugel et 
al., 2001; Schreiber et al., 2001; Tanaka et al., 2004). These increases in ganglia can be 

detected within 6 hours after axotomy (Flugel et al., 2001; Niemi et al., 2013; Schreiber et 
al., 2001). In the DRG, CCL2 protein is found specifically in neurons and not in satellite 

cells after axotomy or after administration of chemotherapeutic agents like paclitaxel (Liu et 
al., 2016; Tanaka et al., 2004; Zhang et al., 2016). When facial skin inflammation was 

produced by injection of Freund’s adjuvant, CCL2 immunoreactivity was localized in the 

trigeminal ganglion in both small and medium diameter sensory neurons (Takeda et al., 
2017). Following chronic constriction injury of the sciatic nerve, a common model of 

neuropathic pain, CCL2 was most commonly expressed in P2X3- positive non-peptidergic 

C-fibers, with a lower percentage found in calcitonin gene-related peptide (CGRP)-positive 

and NF200-positive neurons (Thacker et al., 2009). The level of Ccl2 mRNA was reduced 

by 40% in DRG from capsaicin-treated animals, corroborating the fact that a portion of the 

message is contained in nociceptive neurons (Van Steenwinckel et al., 2011). A small 

increase in Ccl2 was seen in the contralateral DRG after unilateral injury to the sciatic nerve 

(Tanaka et al., 2004). In most studies, very low amounts of Ccl2 mRNA or protein were 

detected in sham-operated rat or mouse DRG (e.g., Jung et al., 2008; Subang and 

Richardson, 2001; Tanaka et al., 2004); however, Dansereau et al. (2008) reported that both 

were constitutively expressed in small and medium sized DRG neurons from male Sprague-

Dawley rats. Many of these neurons also expressed CGRP or substance P. It is unclear how 

to reconcile this discrepancy.

An interesting question with regard to the differential expression of CCL2 in subtypes of 

DRG neurons is how locally or how diffusely does the chemokine act. Specifically, are there 
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more macrophages surrounding the neurons with the highest expression of CCL2, i.e., the 

small diameter P2X3-positive neurons? This could have implications for which neurons are 

affected by cytokines released by infiltrating macrophages. Although this question has not 

be addressed in detail, the study by Vega-Avelaira et al. (2009) suggests somewhat 

surprisingly that macrophages are preferential located surrounding large diameter DRG 

neurons.

In addition to its role in attracting macrophages into DRG, CCL2 from sensory neurons acts 

in the dorsal horn of the spinal cord. The chemokine is expressed in large granules in DRG 

cell bodies and is transported into neurites in culture and into the dorsal horn in vivo. 

Depolarization or nerve stimulation leads to the release of CCL2 in vitro and in vivo in the 

dorsal horn (Jung et al., 2008; Thacker et al., 2009; Van Steenwinckel et al., 2011). Data 

from several studies indicate that this release of CCL2 in the spinal cord plays an important 

role in neuropathic pain.

The signal(s) by which axotomy triggers the increase in CCL2 expression in Schwann cells 

or sensory neurons is not known. Incubation of rat Schwann cells in culture with TNF-α 
(Subang and Richardson, 2001) or the gp130 cytokines LIF or IL-6 (Tofaris et al., 2002) 

leads to an increase in expression of Ccl2 mRNA. Macrophage accumulation in the sciatic 

nerve after axotomy is reduced in Lif−/− mice; however, this may not be due to a direct effect 

of LIF on Ccl2 mRNA levels as LIF can have a chemotactic effect on its own on isolated 

macrophages (Sugiura et al., 2000).

In a recent paper, Wang et al. (2018) examined the role of Sarm1 in Ccl2 induction. Sarm1 

was originally identified as a key molecule in axonal degeneration and nerve transection 

(Osterloh et al., 2012) and has since been implicated in the neuropathies produced by 

administration of the chemotherapeutic agent paclitaxel and by feeding mice with a high fat 

diet (Turkiew et al., 2017). Wang et al. (2018) reported that Sarm1 acting via JUN kinase 

and phospho-JUN is also involved in triggering the expression of several chemokines in 

DRG neurons including CCL2. At this point, what is not known is what activates this 

signaling cascade following axotomy.

CCL2 may not be the only chemokine that brings monocytes into nervous tissue. Injections 

of CCL3 (macrophage inflammatory peptide-1α) and CX3CL1 (fracktalkine) directly into 

the fifth lumbar DRG leads to macrophage accumulation in the ganglion comparable to that 

which occurred after sciatic nerve lesion or after injection of CCL2 (Kwon et al., 2015). It is 

noteworthy that no increase in Cx3cl1 mRNA was found in the distal sciatic nerve after 

axotomy (Lindborg et al., 2017). Currently there is no evidence as to whether these 

chemokines, or any chemokine other than CCL2, is involved in bringing monocytes into the 

DRG in vivo. In the distal sciatic nerve, however, neutralizing antibodies to both CCL2 and 

CCL3 diminished macrophage accumulation (Perrin et al., 2005). In addition, Cobos et al. 
(2018), in an RNAseq study, reported increases in the DRG of a number of chemokines after 

injury including CCL4, CCL7, CCL9, and CCL12; however, the effects of these molecules 

on immune cell infiltration in vivo remains to be tested.
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Another question to consider is whether CCR2 is the only receptor through which CCL2 

acts to bring monocytes into nervous tissue? When macrophage accumulation in the sciatic 

nerve was measured in Ccr2 knockout mice by flow cytometry, there was still an increase in 

macrophages 7 days after axotomy, albeit a substantially smaller increase than seen in wild 

type mice (Lindborg et al., 2017). This increase could result from an involvement of a 

second receptor that can bind CCL2, perhaps CCR4 (Kwon et al., 2015; Power et al., 1995), 

or from proliferation of resident macrophages (e.g., Leonhard et al., 2002; Schreiber et al., 
2002).

3. Methods employed to deplete macrophages.

An important approach to elucidating the function of macrophages in the nervous system is 

the examination of the effect of blocking or reducing monocytes and macrophages in 

nervous tissue (e.g., Lund et al., 2017). Several methods have been employed in such 

studies, and these are described below. In addition, an example is given for each method 

where effects on nerve degeneration and/or regeneration were studied.

Clodronate liposomes.

A method was introduced by Van Rooijen to deplete circulating monocytes and therefore 

reduce macrophage accumulation in tissues by injecting animals intravenously with 

liposomes encapsulating the compound clodronate (dichloromethylene diphophonate) (van 

Rooijen, 1989; Van Rooijen and Sanders, 1994). The liposomes are taken up by monocytes/

macrophages via phagocytosis, the liposomal membrane is broken down, and the clodronate 

causes the death of the cells. Clodronate inhibits mitochondrial oxygen consumption via 

inhibition of the ADP/ATP translocase (Lehenkari et al., 2002). It is reported that there is no 

change in circulating neutrophils (Ferenbach et al., 2012; Van Rooijen and Sanders, 1994), 

though they are also phagocytic cells, but the molecular basis for this cellular specificity has 

not been determined. In some but not all tissues, resident macrophages are also targets of the 

liposomes (e.g., Yue et al., 2017). In the sciatic nerve, Bruck et al. (1996) claim that the 

resident macrophages are not depleted by clodronate and that this is because the liposomes 

do not cross the blood-nerve barrier; however, no evidence is provided for this mechanism. 

In one recent experiment, the liposomes were injected directly into the trigeminal ganglion, 

and a local depletion of macrophages occurred (Batbold et al., 2017).

In a study on the mouse spleen, depletion of macrophages could be seen within 24 hours 

after a single injection and recovery to normal levels took about 4 weeks (van Rooijen and 

van Nieuwmegen, 1984). Differences in the time course of macrophage repopulation have 

been reported in different tissues and between mouse and rat (Van Rooijen et al., 1990). Our 

laboratory and some colleagues have found depletion of macrophages in the PNS by 

clodronate liposomes to be quite variable, perhaps due to uncertainty as to the best dose to 

use and the time course of the onset and recovery for maximum macrophage depletion. In a 

recent publication, Brosius Lutz et al. (2017) reported that they were unable to reduce 

macrophages by more than 50% using clodronate. Nevertheless, it was also recently reported 

that a single injection led to a marked depletion of monocytes in the blood and macrophages 

in the axotomized DRG, and this depletion was still observable 8 days after the injection 
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(Cobos et al., 2018). In terms of their physiological consequences, clodronate liposomes 

have been shown to reduce significantly myelin clearance after sciatic nerve injury (Bruck et 
al., 1996).

Transduction with a viral thymidine kinase transgene followed by ganciclovir.

Barrette et al. (2008) expressed a mutated herpes simplex virus thymidine kinase— known 

as a “suicide gene”--under the CD11b promoter. When these animals are injected with 

ganciclovir, a nontoxic nucleoside, the nucleoside is phosphorylated by thymidine kinase, 

and the resulting compound inhibits DNA polymerase leading to cell death in dividing cells. 

In their transgenic animals, Barrette et al. (2008) found decreases in myelin clearance, nerve 

regeneration, and functional recovery after sciatic nerve injury. A limitation of this approach 

is that CD11b expression is not limited to macrophages but also occurs in neutrophils 

(Barrette et al., 2008). In fact, thus far, no truly macrophage specific promoter has been 

identified (Abram et al., 2014; Hume, 2011).

Chemokine knockout animals.

Monocytes and macrophages have been reduced by using mice in which the genes for the 

chemokine Ccl2 (Lu et al., 1998) or its primary receptor Ccr2 (Boring et al., 1997) have 

been knocked out. These mutants have been used to decrease macrophage accumulation in 

the sciatic nerve and in sensory and sympathetic ganglia (Kwon et al., 2015; Lindborg et al., 
2017; Niemi et al., 2013; Niemi et al., 2017; Siebert et al., 2000). In Ccr2 knockout mice, 

the conditioning lesion response following sciatic nerve transection was abolished (Niemi et 
al., 2013; see Section 8.2). These animals, however, showed normal Wallerian degeneration 

(Lindborg et al., 2017; Niemi et al., 2013)

Depletion of complement with cobra venom factor.

Complement can be depleted by intravenous administration of cobra venom factor. When the 

sciatic nerve was crushed a day later, a reduction of CD68+ macrophage accumulation was 

seen in the distal nerve segment (Dailey et al., 1998; Vriesendorp et al., 1998; Vriesendorp 

et al., 1995, 1997). Complement-depleted animals showed decreased myelin clearance and 

decreased sciatic nerve regeneration (Dailey et al., 1998).

Use of neutralizing antibodies.

MC-21 is a monoclonal antibody raised against CCR2, whereas MC-67 is an isotype control 

antibody (Mack et al., 2001; Maus et al., 2002). A single injection of MC-21 depleted 

CCR2-positive monocytes and macrophages in the blood and spleen respectively by 8–24 

hours. Monocytes were almost back to normal by 72 hours (Bruhl et al., 2007). After four 

daily injections of MC-21, monocyte depletion was sustained for 5 days; however, by 8 days 

monocyte recovery had occurred probably by a humoral immune response against the 

antibody. Monocytes were decreased in the blood and macrophages in the distal sciatic nerve 

compared to animals given MC-67 (Lindborg et al., 2017). Injections of MC-21 (like the use 

of Ccr2 knockout animals) did not reduce Wallerian degeneration (Lindborg et al., 2017).

Neutralizing antibodies against the chemokine CCL2 administered directly into the lesioned 

sciatic nerve substantially decreased the accumulation of macrophages (Perrin et al., 2005). 
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Similarly, intrathecal injection of antibodies to CCL2 inhibited macrophage accumulation in 

the DRG following injection of the cancer chemotherapeutic drugs bortezomib and 

paclitaxel (Liu et al., 2016; Zhang et al., 2016).

Pharmacological agents.

Minocycline has been used because of its actions on monocytes and microglia. Kwon et al. 
(2013) found that minocycline inhibits the conditioning lesion effect on DRG neurons and 

hypothesized that this action was due to its inhibition of macrophages accumulation in the 

DRG. However, minocycline produces other effects in the nervous system which could 

affect nerve regeneration, including actions on Schwann cells and on revascularization, not 

all of which are necessarily secondary to its effects on macrophages and microglia (Keilhoff 

et al., 2007; Keilhoff et al., 2008; Stirling et al., 2005).

Colony-stimulating factor-1 acting on the colony-stimulating factor-1 receptor plays an 

important role in the differentiation, proliferation, and survival of macrophages (Hume and 

MacDonald, 2012; Jenkins and Hume, 2014; Naito et al., 1997). In peripheral nerve, the 

main source of colony-stimulating factor-1 is endoneurial fibroblasts (Groh et al., 2012). 

PLX5622, a colony-stimulating factor-1 receptor inhibitor, can be given either by gavage or 

in laboratory chow. When the drug was given 2 days before partial sciatic nerve ligation, 

macrophage accumulation in the nerve was decreased 3 days after the lesion (Lee et al., 
2018). However, this decrease was only about 50% and was restricted to M1like 

macrophages (i.e., CD86+CD206-, see Section 9). Prolonged treatment with the inhibitor for 

3 or 9 months led to an approximately 70% decrease in macrophages in the femoral 

quadriceps nerve in wild type mice and in a mutant mouse model of Charcot-Marie-Tooth 

disease and to a reduction in the clinical symptoms of the disease (Klein et al., 2015).

8.1 Function of macrophages in the PNS after injury: Are infiltrating 

macrophages necessary for the clearance of myelin and axonal debris?

It is commonly stated that monocyte-derived macrophages are essential for clearance of 

myelin and axonal debris. For example, in their review article, Gaudet et al. (2011) stated 

that “hematogenous macrophages are essential for effective myelin phagocytosis”. While 

there is no doubt that macrophages phagocytose myelin after axotomy (e.g., Bruck, 1997; 

Monaco et al., 1992; Perry et al., 1987; Scheidt and Friede, 1987), infiltrating macrophages 

do not appear to be necessary for clearance of myelin or axonal debris. Thus, in Ccr2 
knockout mice, there is efficient clearance of myelin and of the neurofilament light protein 

in the distal sciatic nerve after axotomy even though there is a dramatic reduction in the 

infiltration of macrophages into the nerve in these animals (Fig. 2 and Niemi et al., 2013). 

Subsequent studies established a role for neutrophils in PNS Wallerian degeneration and 

indicate that the implications from two key papers in the field need to be reconsidered. 

Barrette et al. (2008) reported a large decrease in myelin clearance in mice expressing 

thymidine kinase on the CD11b promoter after the animals were given ganciclovir. The 

authors observed reduced myelin clearance after axotomy and concluded that “overall, these 

findings suggest that CD11b macrophages are primarily, although perhaps not entirely, 

responsible for the phagocytosis and removal of myelin debris and its inhibitory effects” 
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(Barrette et al., 2008). However, as already noted, the CD11b promoter is active in both 

monocytes/macrophages and granulocytes. While the authors showed that their procedure 

decreased macrophages in the distal nerve, they found also a striking reduction in Gr-1+ 

granulocytes (a population that includes neutrophils). In contrast, the Ccr2 knockout mice 

we have studied, which display normal myelin clearance, are selective for monocyte/

macrophage depletion (Auffray et al., 2007; Nahrendorf et al., 2007). A second relevant 

study is that of Perry et al. (1995), who irradiated mice to deplete blood monocytes, and 

observed normal clearance of myelin basic protein from the distal sciatic nerve 5 days after 

injury, though clearance was slower at later time points (Perry et al., 1995). However, 

irradiation would be expected to deplete both monocytes and neutrophils (Heylmann et al., 
2014). Since the authors did not examine the levels of specific bone-marrow derived cells in 

the blood, it is unclear what the relative impact their procedure had on monocytes and 

neutrophils and how complete their depletion of either was. Nonetheless, Perry et al. (1995) 

interpreted their findings as resulting solely from macrophage depletion.

8.2 Function of macrophages in the PNS after injury: Promotion of 

regeneration.

Lu and Richardson (1991) reported that causing inflammation in the DRG by injecting the 

ganglion with the bacterium Corynebacterium parvum increased regeneration in the dorsal 

root after it had been crushed. A milder increase in regeneration was seen if macrophages 

were injected directly into the DRG. Interestingly, the bacterial injection did not lead to 

regeneration of axons in the sciatic nerve after the sciatic nerve was crushed.

Our studies on the relationship of macrophages to nerve regeneration began with studies on 

the Wlds mouse. In addition to delayed Wallerian degeneration, these mice have impaired 

regeneration (Bisby and Chen, 1990; Brown et al., 1991; Chen and Bisby, 1993). It has 

generally been assumed that the decrease in regeneration is the direct consequence of the 

delayed Wallerian degeneration and the delayed infiltration of macrophages into the distal 

nerve segment. However, in addition, these mice do not show an increase in macrophage 

infiltration into the DRG when examined 7 days after sciatic nerve axotomy (Niemi et al., 
2013). The decrease in macrophage accumulation was accompanied by a decrease in the 

axotomy-induced expression of CCL2. We also examined macrophage accumulation under 

these conditions in mice in which the chemokine receptor CCR2 was knocked out. We found 

that there was no axotomy- induced macrophage accumulation in the DRG (Niemi et al., 
2013). To examine whether there was any relationship between macrophage infiltration in 

sensory ganglia and nerve regeneration, we turned to the conditioning lesion response.

The conditioning lesion response involves an increase in the rate of axonal regeneration after 

a nerve lesion as a result of a prior lesion to that nerve. McQuarrie and Grafstein (1973) 

discovered that regeneration in the sciatic nerve after a nerve crush (referred to as a test 

lesion) is enhanced if the axons received a prior lesion (a conditioning lesion) distal to the 

site of the ensuing test lesion. This conditioning lesion effect was shown to occur in both 

sensory and motor axons (McQuarrie, 1978; McQuarrie et al., 1977). McQuarrie et al. 
(1978) reported that, in contrast, the rate of regeneration actually decreases in sympathetic 
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axons in the sciatic; however, a later study on sympathetic-cholinergic axons that innervate 

the sweat gland established that these neurons do show acceleration of regeneration after a 

conditioning lesion (Navarro and Kennedy, 1990).

Though conditioning lesion experiments were initially performed entirely in vivo, the effect 

of an in vivo conditioning lesion can subsequently be studied in either explant or dissociated 

cell culture. Both sensory and sympathetic neurons were shown to increase their neurite 

outgrowth in these cultures (Fig. 3; Edstrom et al., 1996; Hu-Tsai et al., 1994; Niemi et al., 
2013; Shoemaker et al., 2005). In our study in Wlds and Ccr2 knockout mice (Niemi et al., 
2013), we examined the conditioning lesion effect in explant DRG to minimize any impact 

of delayed Wallerian degeneration. In both mutant mouse strains, no conditioning lesion 

response was seen (see Fig. 3 for Ccr2 data).

Having established a correlation between macrophage accumulation in DRG and neurite 

outgrowth, we next overexpressed CCL2 in DRG of intact mice in an attempt to cause 

macrophage infiltration in the absence of nerve injury. Intrathecal injection of AAV5-CCL2 

or AAV5-yellow fluorescent protein (YFP) were made between lumbar segments 5 and 6. 

YFP labeling was found in sensory neurons in all of the lumbar DRG. Ccl2 mRNA 

expression increased in the L5 DRG after a week and plateaued at a maximal level at 3 and 4 

weeks (Niemi et al., 2016). Even though axotomy was not performed in these animals, 

macrophage accumulation was seen in this ganglion between 2 and 4 weeks. To determine 

the effect of this accumulation on the growth capacity of the neurons, outgrowth was 

examined in explant and dissociated cell cultures. Neurite outgrowth from AAV5-CCL2 

administered mice was enhanced in both culture systems compared to neurons from AAV5-

YFP mice (Fig. 4). Administration of AAV5-CCL2 to Ccr2 knockout mice also led to an 

increased expression of CCL2 but no accumulation of macrophages in the DRG and no 

increase in neurite outgrowth. Incubation of wild type neurons with recombinant CCL2 had 

no effect on neurite outgrowth in either culture system, indicating that the chemokine did not 

stimulate outgrowth by acting directly on DRG neurons (Fig. 4).

We next looked at the expression of eight regeneration-associated genes in the DRG: LIF, 

IL-6, GAP-43, c-Jun, ATF3, galanin SMAD1 and Sox11. Strikingly, the only one of these 

that increased in the CCL2 overexpressing animals was LIF. Since LIF acts through gp130 

to activate JAK2, which phosphorylates STAT3, we looked at STAT3 phosphorylation in 

DRG neurons and found that it was increased. To see if this activation of STAT3 was 

important in producing the change in neurite outgrowth in cell culture, we blocked this step 

using either of two inhibitors: AG490 and STATTIC. AG490 reduced the increase in neurite 

length seen in CCL2 overexpressed neurons by about 50%, and STATTIC abolished the 

increase (Niemi et al., 2016).

A different approach to studying the relationship of macrophages to the conditioning lesion 

was taken by Kwon et al. (2013). These researchers administered minocycline intrathecally 

through an osmotic minipump, which decreased macrophage accumulation in the DRG and, 

in addition, decreased the conditioning lesion effect measured 7 days later in dissociated cell 

culture. As mentioned earlier in this review, minocycline does have actions beyond its 

effects on macrophages. Interestingly, Kwon et al. (2013) reported that minocycline 
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decreased the axotomy-induced expression of IL-6, a cytokine that has been shown to 

increase in sensory neurons after axotomy (Murphy et al., 1995). While it is possible that 

macrophages trigger IL-6 expression by sensory neurons, it is noteworthy that IL-6 was not 

induced in ganglia when macrophages accumulated in the DRG after CCL2 overexpression 

(Niemi et al., 2016).

In a subsequent paper, Kwon et al. (2015) examined CCL2 knockout mice and showed that 

there was no accumulation of macrophages in the DRG and that no conditioning lesion 

effect was seen in cell cultures. They also injected directly into the DRG in intact wild type 

mice each of three chemokines: CCL2, CCL3 and fractalkine. Each of these chemokines had 

an identical ability to lead to macrophage accumulation; however, only CCL2 led to a 

conditioning lesion effect. When the macrophages that accumulated in response to these 

chemokines were examined for M1 and M2 markers (see Section 9), the CCL2 group 

expressed some M2 markers but no M1 markers. CCL3 and fractalkine, on the other hand, 

expressed some M1 markers and no M2 markers. Finally, CCL2 seems to have an effect on 

macrophages in addition to its role as a chemoattractant. When neurons were cocultured 

with peritoneal macrophages, addition of a neutralizing antibody to CCL2 largely abolished 

the increase in neurite length normally seen in these co-cultures. Whether this effect 

represents an effect on macrophage polarization is unknown.

9. Macrophage polarization.

As with macrophages in other tissues, the macrophage population in the peripheral ganglia 

and their respective nerves after injury is heterogeneous. Upon exposure to a number of 

stimuli, resident and recruited macrophages alter their genomic/proteomic signature to 

produce a spectrum of phenotypes and functions. Despite its inherent complexity, this 

spectrum has been historically separated into two “polarizing” phenotypes- M1 and M2. 

Traditionally, M1 macrophages are associated with pro-inflammatory functions and 

neurodegenerative outcomes, while M2 macrophages are broadly seen as anti-inflammatory 

and promoting repair. In this section, we discuss how M1 and M2 macrophages are 

characterized as well as reviewing studies that describe their distribution in the PNS after 

injury and their roles in Wallerian degeneration and subsequent regeneration.

9.1 Background on macrophage polarization.

Prior to the use of the M1/M2 nomenclature, macrophage phenotype/function was 

commonly described as classically- and alternatively-activated, respectively. This 

classification was based on activity from distinct helper T-cell populations (i.e., Th1/Th2), 

which are thought to influence macrophage polarization based on the cytokines they release 

following an immune response (Martinez and Gordon, 2014). For example, Th1 cells secrete 

IFNγ, a cytokine which leads to classical activation of macrophages. Classically activated 

macrophages are typically seen as pro-inflammatory, due to their expression of pro-

inflammatory cytokines [IL-1β, IL-6, tumor necrosis factor (TNFα)] and noxious agents 

(nitric oxide, reactive oxygen species, and matrix metalloproteinases) (Fig. 5A). On the 

other hand, Th2 dependent release of IL-4 and IL-13 promotes alternative activation of 

macrophages, a state characterized by release of anti-inflammatory cytokines (i.e., IL-10, 
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TGF-β), and the upregulation expression of extracellular matrix proteins, growth factors and 

arginase (Fig. 5; Martinez and Gordon, 2014; Wynn and Vannella, 2016).

The M1/M2 nomenclature was first introduced by Mills et al. (2000). However, the author’s 

designation of M1 and M2 revolved not on how Th1/Th2 cytokines influenced different 

macrophage phenotypes, but on an intrinsic property of macrophages to adopt specific 

phenotypes in response to these cytokines. Specifically, the authors utilized mouse strains 

with different Th1/Th2 profiles and determined how macrophages processed arginine in 

response to IFNγ stimulation. For example, in response to IFNγ, cultured peritoneal 

macrophages from Th1 dominant mouse strains (C57Bl/6 and B10D2) produced the 

inflammatory marker nitric oxide, a toxic byproduct of arginine and nitric oxide synthase. 

Conversely, macrophages from the Th2 dominant mouse strain, BALB/C, produced 

ornithine, a byproduct of arginine and arginase commonly associated with tissue repair. 

Additionally, the authors also reported an increase in anti-inflammatory marker TGFβ in 

BALB/C, but not in C57BL/6 or B10D2 mice following stimulation with IFNγ. While the 

study from Mills et al. (2000) suggests that polarization is not a T-cell dependent process, 

others have suggested this theory requires more investigation (Murray et al., 2014).

Recently, it has been demonstrated that other proteins/molecules outside of the Th1/Th2 

paradigm provoke similar M1/M2 phenotypes in macrophages. For example, the gram-

negative bacterial endotoxin and Toll-like receptor-4 (TLR4) agonist lipopolysaccharide 

(LPS) is capable of inducing an M1 phenotype. Additionally, several ligands produce 

similar, yet distinct M2-like phenotypes (i.e., M2a, M2b, M2c, and M2d) that are each 

defined by stimulus, genetic/proteomic signature, and function. For comprehensive reviews 

on M2 subtypes, refer to the following articles (Martinez and Gordon, 2014; Pinhal-Enfield 

et al., 2003; Rőszer, 2015).

Currently, it is generally agreed that too much emphasis has been put on macrophages 

strictly adopting an M1 or M2 phenotype when activated (Martinez and Gordon, 2014; 

Murray, 2017). Indeed, macrophages are continuously influenced by a blend of M1 and M2 

associated signals in their microenvironment, suggesting macrophage phenotype is not 

strictly bipolar or fixed but, in fact, highly fluid and can exist on a spectrum. In vitro studies 

demonstrate that macrophage populations are capable of transitioning between M1 and M2 

phenotypes (Davis et al., 2013; Khallou-Laschet et al., 2010; Van den Bossche et al., 2016), 

albeit the transition from M1 to M2 is more difficult than the reverse (Van den Bossche et 
al., 2016). Additionally, macrophages can express both M1/M2 markers in response to 

pathological conditions (Bazzan et al., 2017; Lee et al., 2018; Vogel et al., 2013). This added 

complexity not only makes it difficult to define subpopulations of M1 and M2 macrophages 

in vivo, but also makes it challenging to infer accurate comparisons between in vivo and in 
vitro experiments. However, the simplicity of this over-generalized nomenclature and lack of 

acceptable agreed-upon alternatives (particularly for in vivo studies), leads to its continued 

use. Therefore, for the purpose of this review, we will continue to use the M1 and M2 

nomenclature.

Zigmond and Echevarria Page 19

Prog Neurobiol. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



9.2 Presence of M1 and M2 macrophages in the PNS after injury.

Earlier in the review, we described how macrophage accumulation following a peripheral 

nerve injury occurs at both the distal portion of the injured nerve as well as the respective 

ganglia (Lu and Richardson, 1993; Schreiber et al., 1995; Siebert et al., 2000). The 

phenotype of these macrophages can inform whether M1 and M2 macrophages are relevant 

at these locations and their potential influence on Wallerian degeneration and subsequent 

regeneration (Fig. 5B). Historically, phenotype is determined based on genomic and/or 

proteomic signatures. A number of such markers, which consists of cell surface proteins, 

cytokines, chemokines and enzymes have been reviewed by others (Martinez and Gordon, 

2014; Murray, 2017; Murray et al., 2014).

At the onset of macrophage infiltration, Ydens et al. (2012) reported upregulation of certain 

M1 (Il-6, Il-1β) and M2 (Il-4ra, Il-13ra1) genes in the distal stump. At the protein level, the 

authors show that while M1 marker iNOS is not upregulated, M2 marker arginase is 

upregulated at all time points (3, 7, 14 days) after axotomy. Other studies using similar 

surgical and technical paradigms, also report increases in Tnfα (M1) and Il10 (M2) in the 

distal stump at these time points (Nadeau et al., 2011; Siqueira Mietto et al., 2015). 

Recently, Tomlinson et al. (2018) expanded on these results by looking at temporal gene 

expression from macrophages isolated from distal sciatic nerves at various time points. In 

terms of specific genes, the authors report that M1 marker Nos2 is upregulated at day 3, yet 

is significantly decreased by day 14, while M2 marker Retnla (Fizz1) is upregulated at day 

14 compared to day 5. Interestingly, both results conflict with that seen from Ydens et al. 
(2012), which showed no change in these specific genes. While the different techniques used 

to quantify gene expression between the two studies could explain the different results, it is 

also likely that the use of whole sciatic nerve tissue by Ydens et al. (2012) diluted cell 

specific changes.

Phenotypic assessment of each individual macrophage to specifically quantify M1 and M2 

macrophages from the injured sciatic nerve at various time points after sciatic nerve 

transection yielded similar results. Lee et al. (2018) found that at all time points measured 

after injury (3, 14, 28 days), four populations of macrophages existed based on the cell 

surface expression of CD86 (M1) or CD206 (M2). At day 3, the majority of macrophages 

presented with an M1 phenotype (CD86+/CD206-). By day 14 however, the majority of 

macrophages were not specific to M1 or M2 (CD86-/CD206- or CD86+/CD206+). Similarly, 

Nadeau et al. (2011) reported an early increase in M1 macrophages 1–2 days after injury. At 

day 3 however, M1 macrophages were replaced by M2 macrophages with this phenotype 

maintaining dominance from days 3–7. However, it should be noted that Nadeau et al. 
(2011) did not include any macrophages that were of mixed phenotype in their analysis. 

Overall, while these data suggest that macrophage phenotype in the distal stump may shift 

from M1 to non-M1 or M2 within the first 2 weeks after injury, it also suggests that the 

majority of macrophages that accumulate within the first 2 weeks after injury may be of a 

mixed phenotype. This begs the question of whether a specific phenotype is responsible for 

Wallerian degeneration. Studies that seek to answer this question will be discussed in 

Section 9.4.
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In terms of the macrophages that accumulate in the DRG following sciatic nerve injury, 

Kwon et al. (2015) measured M1 and M2 associated gene expression in macrophages that 

had been separated from axotomized DRG and found increases in Cd206 and Arg-1, M2 

associated genes, with no changes in the M1 associated genes Cd36, iNos, and Il2. Niemi et 
al. (2016) found significant elevation of three M2 associated genes (Cd206, Arg-1, Ym1) in 

whole DRG after axotomy compared to upregulation of just one M1 associated gene (Cd86). 

In a study using IHC, the vast majority of CD68+ macrophages in the DRG 3 and 7 days 

after axotomy were positive for the M2 marker CD206 (Lindborg et al., 2018). This result 

was similar to a study by Komori et al. (2011), which showed a significant elevation of M2 

positive macrophages (CD206+, Arg-1+, or CD163+) in the DRG 3 days after partial sciatic 

nerve ligation compared to that of the uninjured contralateral DRG. The number of 

macrophages positive for M1 markers iNOS or CD86 was unchanged. Each of these studies 

suggests a predominant M2 macrophage phenotype in the DRG following sciatic nerve 

injury.

Role of polarized macrophages in the injured PNS: In vitro studies.—Studies in 
vitro have also provided understanding on how macrophage phenotype affects myelin 

phagocytosis and DRG regeneration. In the majority of in vitro studies, bone marrow-

derived macrophages are polarized over 24–48 hours using LPS/IFNγ (M1) and IL-4 (M2). 

For experiments using M1/M2 bone marrow-derived macrophages, it is possible to 

distinguish them by the signal used to polarize them [e.g., M(LPS-IFNγ) and M(IL-4)] 

instead of M1 and M2 respectively, as multiple signals can be used to obtain an “M2” 

phenotype (Murray et al., 2014). With respect to Wallerian degeneration, Vereyken et al. 
(2011) showed that M(LPS-IFNγ) macrophages consumed a greater amount of fluorescent 

myelin than M(IL-4) macrophages, suggesting that M(LPS-IFNγ) have a greater propensity 

for myelin phagocytosis. Additionally, Kroner et al. (2014) reported that M(LPS) 

macrophages down-regulate M1 markers and upregulate M2 markers upon myelin 

phagocytosis, suggesting a shift from M1 to M2 may occur during Wallerian degeneration. 

Conversely however, Wang et al. (2015) reported that BMDMs treated with recombinant 

MCS-F, another M2 stimulus, followed by myelin debris led to both reduced expression of 

M2 markers (YM1, FIZZ-1, Arg-1, CD206) and elevated expression of M1 markers (CD86, 

iNOS) measured by western blot. As reviewed by Kopper and Gensel (2018), these 

conflicting results are likely due to differences in experimental protocol, specifically whether 

exposure of macrophages to myelin occurs prior or after polarization.

In assessing regeneration, Kigerl et al. (2009) were the first to describe that neurite 

outgrowth from dissociated DRGs grown in conditioned media (CM) from M(LPS/IFNγ) or 

M(IL-4) macrophages was elevated compared to media from unstimulated macrophages. 

Interestingly, the type of growth was different in the two groups, with M(LPS/IFNγ) 

eliciting shorter highly branched extensions and M(IL-4) promoting longer neurites with less 

branching, analogous to the elongating axonal growth seen during successful regeneration. 

Additionally, the authors demonstrated that unlike M(LPS/IFNγ) CM, the growth promoting 

effects of M(IL-4) CM were present on inhibitory substrates (chondroitin sulfate 

proteoglycans and myelin). However, it should be noted that the growth promoting effect of 

M(LPS/IFNγ) CM on permissive substrates is not seen by all investigators. While Hervera 
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et al. (2018) corroborate neurite outgrowth induced by M(LPS/IFNγ) CM, other groups 

report either no change between M(LPS/IFNγ) CM and control media, or that M(LPS/

IFNγ) CM actually decreases DRG neurite outgrowth and branching compared to 

unstimulated CM (Gaudet et al., 2016; Kroner et al., 2014). It is important to note that these 

discrepancies could be due to differences in methodology between these studies. They 

include the time DRG spent in culture prior to addition of CM (1–3 days), time spent in CM 

(24–48 hours), time macrophages spent under polarizing conditions (24 hours vs 7 days), or 

whether DRG were grown on glass coverslips or in microfluidic devices. Indeed, Smith and 

Skene (1997) showed early on that growth and branching patterns differed between 24 and 

48 hours in culture, highlighting a need for consistency between studies.

9.3 Role of polarized macrophages in the injured PNS: In vivo studies.

In peripheral nerve injury, complete ablation of macrophages via pharmacological or genetic 

approaches is detrimental to both Wallerian degeneration and subsequent regeneration 

(Barrette et al., 2008; Bruck et al., 1996; Dailey et al., 1998; Liu et al., 2000). While not 

completely understood, it is thought that these processes are related to the “destroy” and 

“repair” stereotype historically attributed to M1 and M2 macrophages, respectively.

As previously mentioned, IFNγ and LPS are well-characterized inducers of the M1 

phenotype. Genetic ablation of the LPS receptor TLR4 leads to decreased inflammatory 

cytokine production and macrophage recruitment, impaired Wallerian degeneration and 

delayed functional recovery compared to WT mice after sciatic nerve transection (Boivin et 
al., 2007; Hsieh et al., 2017; Wu et al., 2013). Conversely, an intra-neural injection of LPS 

into the transected sciatic nerve of rats not only enhanced macrophage recruitment to the 

distal nerve, but also accelerated myelin phagocytosis and functional recovery compared to 

PBS injection (Boivin et al., 2007). While loss of IFNγ on Wallerian degeneration was not 

assessed, Tomlinson et al. (2018) reported that mice deficient in the IFNγ receptor 

(Ifngr1−/−) displayed no differences in axon regeneration or functional recovery 8 weeks 

after sciatic nerve transection. It should be noted, however, that assessment of regeneration 

at 8 weeks after axotomy does not take into consideration a possible difference in the rate of 

regeneration which would require assessment at earlier time points (Barrette et al., 2008; 

Mokarram et al., 2012; Siqueira Mietto et al., 2015). Interestingly, mice deficient in secreted 

factors commonly associated with M1 macrophages show a similar phenotype to that of 

TLR4-deficient mice. Specifically, a delay in macrophage recruitment, Wallerian 

degeneration and structural regeneration were found in mice where Nos2, Il-1β or Tnfα 
activity were ablated via genetic or pharmacological mechanisms (Levy et al., 2001; Liefner 

et al., 2000; Perrin et al., 2005).

In respect to M2 specific stimuli, there is no evidence on how IL-4 and IL-13 ablation 

affects macrophage infiltration, Wallerian degeneration, and regeneration following sciatic 

nerve axotomy or crush. While Tomlinson et al. (2018) did report that IL-4 deficient mice 

had no deficits in sciatic nerve regeneration 8 weeks after injury, the 8 week time point 

assessed is not optimal due to reasons described above. Uceyler et al. (2007), using the 

chronic constriction injury (CCI) model of neuropathic pain, reported that IL-4 deficient 

mice experience persistent elevation of both TNFα and IL-1β in the distal sciatic nerve 4 
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weeks following CCI. Whether this persistent upregulation of proinflammatory cytokines 

caused by IL-4 deficiency affects Wallerian degeneration or regeneration requires study. In 

terms of M2 macrophage secreted factors, published studies have only focused on IL-10. 

While the authors did not assess the effect on Wallerian degeneration, Siqueira Mietto et al. 
(2015) reported that IL-10 deficiency resulted in prolonged M1 marker expression and 

downregulated M2 marker expression in macrophages, along with prolonged expression of 

pro-inflammatory cytokines in the distal stump of the sciatic nerve. IL-10 deficiency also 

resulted in both functional and structural deficits in regeneration compared to WT mice. 

However, Atkins et al. (2007) only reported increases in functional recovery, but not 

structural regeneration, 6 weeks following sciatic nerve axotomy and exogenous application 

of 125 ng IL-10. Assessment of regeneration at earlier time points may yield an effect on 

rate of regeneration as previously described. Further studies looking at macrophage specific 

deletion in IL-10 in these outcomes measures, as well as other M2 macrophage specific 

factors (e.g., TGF- β, arginase) are needed.

Overall, these data would suggest that M1 macrophages are more involved in Wallerian 

degeneration, while M2 macrophages are more involved in the regenerative process. 

However, this hypothesis cannot be confirmed until additional in vivo studies are done. First, 

it is still unclear whether specifically ablating M2 macrophages impairs Wallerian 

degeneration. Second, while ablation of multiple M1-related factors does result in decreased 

Wallerian degeneration and subsequent regeneration, it is unclear: 1) how the M1/M2 

population is affected; 2) whether lack of Wallerian degeneration is due to loss of the M1 

phenotype or to the overall impaired macrophage recruitment reported; and 3) whether lack 

of regeneration is simply due to decreased Wallerian degeneration.

Studies where macrophages are manipulated on a local scale suggest a regenerative effect of 

M2 macrophages. For example, Mokarram et al. (2012) devised a nerve conduit to fit 

between the two ends of the axotomized sciatic nerve and continually released IL-4. 

Interestingly, supplementing with IL-4 led to increased numbers of macrophages that were 

positive for M2 markers (CD163, CD206) compared to that of control matrix or matrix 

supplemented with IFNγ. This led to an increase in the number of regenerated fibers that 

extended the length of the conduit (Mokarram et al., 2012). In another study using a similar 

nerve conduit, Lv et al. (2017) demonstrated that supplementing the matrix with collagen VI 

also elevated numbers of M2 macrophages within the conduit, which boosted both structural 

and functional recovery after sciatic nerve transection.

10. Molecular mechanisms of macrophage action in the PNS.

Macrophage release of nitric oxide has been implicated in the breakdown of myelin after 

axotomy (Levy et al., 2001; Panthi and Gautam, 2017). Phagocytosis of myelin by 

macrophages includes both opsonized and non-opsonized myelin (for review see 

Rotshenker, 2011). Myelin opsonized by complement components is phagocytosed by 

binding to the complement receptor type 3 (Bruck and Friede, 1991; DeJong and Smith, 

1997; Vriesendorp et al., 1995). Antibodies bound to myelin lead to myelin phagocytosis via 

macrophage Fc receptors (DeJong and Smith, 1997; Smith, 1999). A third receptor used by 

macrophages in myelin phagocytosis is the scavenger receptor-AI/II (da Costa et al., 1997).
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Less is known about the molecular mechanisms underlying the regeneration-promoting 

effects of macrophages. Neuroinflammation within the DRG has been shown to increase the 

expression of certain regeneration-associated genes. Following the injection of 

Corynebacterium parvum into the ganglion, increases in expression of GAP-43 and cJUN 
were found in the sensory neurons (Lu and Richardson, 1995). The increase in GAP-43 
mRNA that occurs after sciatic nerve axotomy was blocked by intrathecal administration of 

minocycline, perhaps by blocking macrophage infiltration (Kwon et al., 2013). As already 

mentioned, overexpression of CCL2 led to an increase in Lif mRNA (Niemi et al., 2016).

In a previous review article, we listed a number of molecules secreted by macrophages that 

could be involved in promoting DRG regeneration (DeFrancesco-Lisowitz et al., 2015). The 

only one of these for which there is strong evidence is oncomodulin, which can be released 

by macrophages and neutrophils. Oncomodulin has been proposed to underlie the promotion 

of regeneration by axotomized retinal ganglion cells that is produced as a result of 

inflammation in the eye (Kurimoto et al., 2013; Leon et al., 2000; Yin et al., 2009). 

However, an alternate interpretation of this phenomenon has been proposed involving a role 

for LIF and ciliary neurotrophic factor released by retinal astrocytes (Leibinger et al., 2009). 

Kwon et al. (2013) reported that the stimulation of sensory neuron outgrowth seen in co-

cultures with macrophages can be blocked by a neutralizing antibody to oncomodulin. In a 

submitted manuscript currently under review, we have shown that the conditioning lesion 

effect seen in wild type mice in the DRG in vivo is not seen in mice in which the gene for 

oncomodulin had been knocked out.

In the 1980s, Hans Thoenen’s laboratory proposed a novel function for macrophages after 

axotomy in addition to myelin clearance, namely that they stimulate the induction of NGF. 

This relationship was suggested by the finding that IL-1β released by macrophages triggers 

NGF induction in the sciatic nerve (Bandtlow et al., 1987; Guenard et al., 1991; Heumann et 
al., 1987; Lindholm et al., 1987; Thoenen et al., 1988). The induction occurs in Schwann 

cells and fibroblasts (Heumann et al., 1987). Cell culture experiments indicated that NGF 

was induced by IL-1β in fibroblasts but not in Schwann cells (Matsuoka et al., 1991). 

Whether macrophages alter Schwann cell expression of NGF via a different cytokine is not 

known.

More recently, Barrette et al. (2008) reported that reduction of circulating monocytes and 

granulocytes in a transgenic mouse leads to a nearly complete block of NGF induction and 

of the other three neurotrophins (BDNF, NT3, and NT4/5) following axotomy; however, 

whether it is macrophages or granulocytes that are involved in this process is unknown. In 

addition, in conflict with earlier findings, Barrette et al. (2008), using in situ hybridization 

together with an antibody to GR1 (which recognizes both a subset of monocytes/

macrophages and granulocytes) reported that the neurotrophins were expressed by these 

myeloid cells and not by other non-neuronal cells such as Schwann cells. The basis for the 

discrepancy as to which cells in the nerve expressed these growth factors is unclear.

While it is often assumed that the increase in growth factors like NGF expressed in the distal 

nerve stump promotes regeneration that is not necessarily the case. Several studies have 

concluded that NGF does not promote regeneration of sensory or sympathetic neurons in 
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vivo (e.g., Diamond et al., 1987; Diamond et al., 1992; Gloster and Diamond, 1992). In fact, 

treatment of rats with an antiserum against NGF has been shown to cause the expression of 

the regeneration-associated genes ATF3 and galanin and to produce a conditioning lesion 

like stimulation of neurite outgrowth in sympathetic neurons (Hyatt Sachs et al., 2007; 

Shadiack et al., 2001; Shadiack et al., 1998; Shoemaker et al., 2006).

In a recent article, Hervera et al. (2018) proposed a novel and complex hypothesis for how 

macrophages promote regeneration. According to these researchers, (1) there is a CX3CR1-

dependent infiltration of macrophages into the nerve, (2) these cells release exosomes 

containing enzymes that produce reactive oxygen species, (3) these exosomes are 

endocytosed by axons and retrogradely transported to the neuronal cell body where they 

release reactive oxygen species, (4) these molecules oxidize and thereby inactivate 

phosphatase and tensin homologue (PTEN) resulting in activation of the 

phosphatidylinositol 3-kinase/Akt signaling pathway which promotes regeneration. In some 

of these studies, bone marrow-derived macrophages stimulated with LPS were used, thereby 

producing an M1-like macrophage.

However, this proposed mechanism is in apparent conflict with other findings. As already 

noted, in a previous study, no increase in expression of Cx3cl1, the sole known ligand for 

CX3CR1, was found in the distal sciatic nerve after axotomy (Lindborg et al., 2017). Also, 

as reviewed in a previous section, studies in culture have generally reported that M2-like 

macrophages but not M1-like macrophages promote the elongating form of neurite 

outgrowth in DRG neurons, which is characteristic of regeneration (Kigerl et al., 2009). In 

fact, Kroner et al. (2014) reported that bone marrow-derived macrophages treated with LPS 

decreased neurite outgrowth by DRG neurons. Further testing of the exosome hypothesis 

will be instructive.

11. Involvement of macrophages in diseases of the PNS: The example of 

Guillain Barré syndrome (GBS) and experimental autoimmune neuritis 

(EAN).

As noted at the beginning of this review article, neuroinflammation is sometimes referred to 

as a “double-edged sword”. An example in terms of macrophages is that macrophage 

phagocytosis of myelin during Wallerian degeneration in the PNS promotes nerve 

regeneration; however, in certain diseases of the PNS, macrophages attack myelin causing 

demyelination. For example, macrophages have been implicated in autoimmune 

demyelinating polyneuropathies (Kiefer et al., 1998), disorders previously thought to be 

caused largely by T cells (e.g., Soliven, 2014). GBS, an inflammatory peripheral neuropathy, 

can be divided into two subtypes: acute inflammatory demyelinating 

polyradiculoneuropathy and acute motor axonal neuropathy (Cashman and Hoke, 2015). 

Acute inflammatory demyelinating polyradiculoneuropathy is the most common variant in 

Western countries (Soliven, 2014) and involves both “CD4+ T cell-mediated inflammation 

and macrophage-induced demyelination” (Shen et al., 2018). Kiefer et al. (2001) observed 

that the “pathological hallmark of the demyelinating autoimmune neuropathies, mainly GBS 

and CIDP (authors’ note: this stands for chronic inflammatory demyelinating 
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polyneuropathy) is a process termed macrophage-mediated demyelination, where 

macrophages virtually strip off the myelin sheath from the axon leaving behind a nude, 

demyelinated axon”.

EAN is an animal model of GBS (Shen et al., 2018; Soliven, 2012) that “duplicates the 

clinical, pathological and electrophysiological features of GBS in humans” (Zhu et al., 
2002). EAN is produced either by injection of animals with peripheral nerve myelin or 

fragments of myelin protein or by adoptive transfer of T cells activated by peripheral myelin. 

A role for macrophages in EAN was demonstrated by depleting circulating monocytes/

macrophages with clodronate liposomes (Jung et al., 1993; Katzav et al., 2013), which 

produced a decrease in the clinical and morphological symptoms of EAN.

An increase in CCL2 mRNA was found in lumbar and sacral spinal nerve in the preclinical 

stage of EAN (Fujioka et al., 1999). In addition, RANTES (Regulated on Activation Normal 

T cell Expressed and Secreted), which is chemotactic for T-cells and CCL3 (which is 

chemotactic for both macrophages and neutrophils) are expressed (Fujioka et al., 1999). 

Infiltration of lymphocytes, monocytes, and, to a somewhat lesser extent, neutrophils occurs 

(Ballin and Thomas, 1969) . Macrophages were also seen in peripheral nerves from 

postmortem tissue and from biopsies from GBS patients (Kiefer et al., 2001). In Wallerian 

degeneration, macrophages are predominantly of the M2 subtype (Nadeau et al., 2011), 

while it appears that it is M1 macrophages that are involved in causing EAN (e.g., Zhang et 
al., 2009).

12. Conclusions.

Many think of neuroinflammation only as having destructive impact on the nervous system. 

However, as we have reviewed here, neuroinflammation plays very constructive roles in the 

PNS after nerve transection or crush. In the distal nerve segment after axotomy, non-

neuronal cells express chemokines for macrophages and neutrophils, and they attract these 

immune cells into the degenerating nerve. Both macrophages and neutrophils play important 

roles in clearing myelin and axonal debris and thereby facilitate subsequent regeneration. At 

the same time, the axotomized neuronal cell bodies also express macrophage chemokines 

and attract macrophages to the vicinity of these cell bodies. This latter finding raises the 

question of what the role of these phagocytic cells might be near neuronal cell bodies. We 

propose that these macrophages increase the growth capacity of the axotomized neurons. 

With respect to the conditioning lesion response, under conditions in which macrophages do 

not accumulate near axotomized neurons, the conditioning lesion is abolished. Under 

conditions in which macrophage accumulation near neurons is enhanced, a conditioning 

lesion-like effect is promoted. What the macrophages secrete to produce such an effect is not 

certain, but one possibility is oncomodulin. As noted at the beginning of this review, 

although regeneration occurs in the PNS, it is slow and incomplete. It has been proposed 

recently that, if the molecular mechanism underlying the conditioning-lesion effect were 

understood, it might be possible to elicit this response via a non-destructive means and 

facilitate regeneration in patients soon after a peripheral nerve injury (Senger et al., 2018).
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Abbreviations:

ATF3 activating transcription factor 3

CCL2 chemokine C-C motif ligand 2

CCR2 C-C chemokine receptor type 2

CNS central nervous system

DRG dorsal root ganglion

EAN experimental autoimmune neuritis

GAP-43 growth associated protein- 43

GBS Guillain Barré syndrome

GFAP glial fibrillary acidic protein

GFP green fluorescent protein

LIF leukemia inhibitory factor

L lumbar

Ly6G lymphocyte antigen 6 complex locus G6D

MCP-1 monocyte chemoattractant protein-1

NGF nerve growth factor

PNS peripheral nervous system

STAT3 signal transducer and activator of transmission 3

TNFα tumor necrosis factor-α

YFP yellow fluorescent protein
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Highlights

• After axotomy macrophage were seen only as being involved in Wallerian 

degeneration.

• In addition, macrophages accumulate around axotomized neuronal cell 

bodies.

• Macrophages enter into distal nerves and ganglia in response to the 

chemokine CCL2.

• Macrophages in peripheral ganglia play a role in the conditioning lesion 

response.

• Progress is being made in understanding the mechanisms of these 

macrophage actions.
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Fig. 1. 
A diagram of a hypothetical peripheral neuron following axonal transection or crush 

showing the two sites of macrophage accumulation.. The lower part of the figure shows the 

degeneration of the distal axonal segment, the trans-differentiation of Schwann cells, the 

secretion by the Schwann cells of the chemokine CCL2, and the attraction of macrophages 

to the distal degenerating segment. This is the classical view of macrophage accumulation 

after axotomy. The upper part of the figure shows that macrophages also accumulate around 
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the axotomized neuronal cell body and these neurons themselves secrete the chemokine 

CCL2 following axotomy.
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Fig. 2. 
Seven days after unilateral transection of the sciatic nerve, myelin in the distal nerve 

segment was stained with luxol fast blue. (a) Ipsilateral nerves from wild type and Ccr2 
knockout mice retained about 20% of the myelin reactivity seen in contralateral control 

nerves. On the other hand, the ipsilateral distal nerves from Wlds mice retained about 80% 

of the myelin seen in contralateral controls. Micrographs from sections of the ipsilateral (e-
g) and contralateral (b-d) from wild type (WT) (b,e), Wlds (c,f) and Ccr2 knockout (d,g). 

*p<0.05, **p<0.001. Scale bar, 20 µm. From Niemi et al., 2013.
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Fig. 3. 
Seven days after sciatic nerve transection, a conditioning lesion effect was seen in explanted 

DRGs from wild type but not from Ccr2 mice measured at 24 (a) and 48 (b) hours. Phase 

micrographs are shown of DRG explants from wild type (WT) (c) and Ccr2 (d) ater 48 hours 

in culture. Arrows point to endings of individual neurites. *p<0.05, **p<0.001, Scale bars, 

100 µm. From Niemi et al., 2013.
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Fig. 4. 
CCL2 overexpression causes a conditioning lesion-like increase in neurite outgrowth by 

DRG neurons from mice that received 3 weeks earlier an injection of AAV5-CCL2. Neurite 

outgrowth was measured in explant (A-C) and in cell (D-F) cultures. In contrast, if CCL2 

(200 ng/ml) was added directly to such cultures, no effect on neurite outgrowth was seen (G-
L). *p<0.05, **p<0.001. Scale bar, 100 µm. From Niemi et al., 2016.
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Fig. 5. 
A. Diagram showing the polarization of macrophages in vitro by LPS and IFNγ to an M1-

like phenotype and by IL-4 and IL-13 to an M2-like phenotype. The color spectrum between 

the two subtypes indicates the spectrum of macrophage phenotypes that are thought to exist 

in vivo. M1 macrophages express nitric oxide synthase (iNOS) and secrete TNFα, IL-6, 

reactive oxygen species (ROS), IL-1β, NO (nitric oxide), and matrix metalloproteinases 

(MMPs). M2 macrophages express arginase and secrete IL10, TGF-β, and extracellular 

matrix molecules (ECM). B. Questions remain as to the exact function of M1 (pink)- and 
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M2 (blue)-like macrophages on the axotomized neuronal cell bodies and the distal nerve 

segment.
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