Table 2.
Dataset | Top 30 marker genes |
Core marker genes |
||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
SVM | FloWPS p = 0.95 |
FloWPS p = 0.90 |
SVM | FloWPS p = 0.95 |
FloWPS p = 0.90 |
|||||||
AUC | FDR | AUC | FDR | AUC | FDR | AUC | FDR | AUC | FDR | AUC | FDR | |
GSE25066 (Hatzis et al., 2011; Itoh et al., 2014) |
0.70 | 0.28 | 0.76 | 0.10 | 0.77 | 0.13 | 0.73 | 0.26 | 0.76 | 0.25 | 0.76 | 0.23 |
GSE41998 (Horak et al., 2013) | 0.79 | 0.25 | 0.87 | 0.14 | 0.91 | 0.14 | 0.87 | 0.14 | 0.89 | 0.15 | 0.92 | 0.12 |
GSE9782 (Mulligan et al., 2007) | 0.73 | 0.28 | 0.78 | 0.22 | 0.76 | 0.17 | 0.68 | 0.33 | 0.71 | 0.33 | 0.72 | 0.34 |
GSE39754 (Chauhan et al., 2012) | 0.65 | 0.36 | 0.68 | 0.27 | 0.71 | 0.34 | 0.65 | 0.36 | 0.68 | 0.36 | 0.72 | 0.35 |
GSE68871 (Terragna et al., 2016) | 0.66 | 0.35 | 0.75 | 0.25 | 0.74 | 0.27 | 0.68 | 0.33 | 0.78 | 0.20 | 0.77 | 0.24 |
GSE55145 (Amin et al., 2014) | 0.84 | 0.19 | 0.86 | 0.11 | 0.90 | 0.11 | 0.77 | 0.24 | 0.81 | 0.19 | 0.82 | 0.06 |
TARGET-50 (Goldman et al., 2015; Walz et al., 2015) | 0.64 | 0.35 | 0.75 | 0.13 | 0.78 | 0.16 | 0.72 | 0.26 | 0.81 | 0.08 | 0.82 | 0.09 |
TARGET-10 (Goldman et al., 2015; Tricoli et al., 2016) | 0.85 | 0.16 | 0.86 | 0.14 | 0.87 | 0.12 | 0.87 | 0.13 | 0.94 | 0.07 | 0.94 | 0.04 |
TARGET-20 (Goldman et al., 2015) with busulfan and cyclophosphamide | 0.74 | 0.26 | 0.79 | 0.16 | 0.79 | 0.17 | 0.76 | 0.23 | 0.77 | 0.22 | 0.83 | 0.00 |
TARGET-20 (Goldman et al., 2015) w/o busulfan and cyclophosphamide | 0.73 | 0.28 | 0.76 | 0.30 | 0.76 | 0.27 | 0.74 | 0.26 | 0.77 | 0.13 | 0.79 | 0.11 |
Area-under-curve (AUC) and false discovery rate (FDR) values calculated for each version of a classifier are shown. All calculations were made using leave-one-out cross-validation approach.