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Abstract

Metabolomics is a developing and promising tool for exploring molecular pathways underlying symptoms of
depression and predicting depression recovery. The Absolute/DQ™ p180 kit was used to investigate whether plasma
metabolites (sphingomyelins, lysophosphatidylcholines, phosphatidylcholines, and acylcarnitines) from a subset of
participants in the Combining Medications to Enhance Depression Outcomes (CO-MED) trial could act as predictors or
biologic correlates of depression recovery. Participants in this trial were assigned to one of three pharmacological
treatment arms: escitalopram monotherapy, bupropion-escitalopram combination, or venlafaxine-mirtazapine
combination. Plasma was collected at baseline in 159 participants and again 12 weeks later at study exit in 83 of these
participants. Metabolite concentrations were measured and combined with clinical and sociodemographic variables
using the hierarchical lasso to simultaneously model whether specific metabolites are particularly informative of
depressive recovery. Increased baseline concentrations of phosphatidylcholine C38:1 showed poorer outcome based
on change in the Quick Inventory of Depressive Symptoms (QIDS). In contrast, an increased ratio of hydroxylated
sphingomyelins relative to non-hydroxylated sphingomyelins at baseline and a change from baseline to exit
suggested a better reduction of symptoms as measured by QIDS score. All metabolite-based models performed
superior to models only using clinical and sociodemographic variables, suggesting that metabolomics may be a
valuable tool for predicting antidepressant outcomes.

Introduction

It has become increasingly clear that depression is
heterogeneous in its pathophysiology and treatment out-
comes. The development and validation of genetic, pro-
teomic, and/or metabolomic methodologies may be
essential in identifying the pathophysiology of disease
expression as well as precision medicine for depression.
Metabolomics has recently emerged as a particularly
valuable field of inquiry in psychiatry because unlike
genomics, it captures the dynamic nature of the disease,
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and unlike proteomics, it measures the final products of
complex interactions among numerous proteins, signaling
cascades, and cellular environments.".

Several groups have studied metabolomic differences in
depressed populations relative to healthy controls®™>.
Additionally, pharmacometabolomic changes following
medication treatment have been reported®™, although
these studies are limited to a small subset of medications,
including sertraline®”'%, citalopram/escitalopram®', and
ketamine/esketamine®. The collective knowledge of
metabolomic differences between depressed patients and
healthy controls remains difficult to interpret from these
studies because of several limitations: (1) most depressed
participants were taking medications, and the impact of
the various drugs are undefined; (2) several aspects of
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metabolomics research such as sample preparation,
choice of metabolite assays, and statistical analyses were
not standardized’; and (3) these studies did not account
for the heterogeneity of symptomatic presentations
despite the fact that metabolomic differences are very
likely symptom specific. These limitations have likely led
to the lack of uniformity in results between studies. One
solution is the employment of standard metabolomics kits
with a fixed array of metabolites that have been validated
across multiple laboratories'>". Although not without
their disadvantages, these kits encourage the study of the
same metabolites throughout the metabolomics commu-
nity and therefore may provide a better understanding of
study results as we continue to work toward standardized
and well-controlled methods.

In the present study, the AbsoluteIDQ™ p180 kit was
used to investigate metabolomic markers as predictors of
antidepressant responsiveness from a subset of partici-
pants in the Combining Medications to Enhance
Depression Outcomes (CO-MED) trial. This platform has
been utilized to study metabolomic changes among a wide
range of disease states including dementia'*™"’, dia-
betes'®'?, cardiovascular disease®®, and depression,
including one study which investigated effects of ketamine
or esketamine treatment®,

To our knowledge, this is the first paper to describe
pharmacometabolomic data from participants exposed to
a Serotonin and Norepinephrine Reuptake Inhibitor
(venlafaxine), a Norepinephrine-Dopamine Reuptake
Inhibitor (bupropion), or the atypical antidepressant,
mirtazapine. We utilized an exploratory approach and
sought to understand whether any baseline metabolites
act as predictors of depression recovery or if changes in
metabolite concentration before and after treatment were
biologic correlates of recovery. Metabolite values were
compared to participants’ clinical and sociodemographic
characteristics and Quick Inventory of Depressive
Symptomology (QIDS) scores, and then modeled using a
hierarchical lasso method to identify the relationships
between these variables*"*?, Using this approach, we were
able to identify metabolites that are potentially mean-
ingful biomarkers in subtypes of depression.

Methods and materials
Study overview and participants

This study is based on data and plasma samples col-
lected from the CO-MED trial, which recruited 665
treatment-seeking depressed participants who were ran-
domly assigned to one of three treatment arms:
escitalopram  monotherapy, bupropion-escitalopram
combination, and venlafaxine-mirtazapine combina-
tion?®. From the total CO-MED trial population, a subset
of participants further consented to provide baseline
plasma samples (n = 168) and 12-week follow-up plasma

Page 2 of 11

samples (n =103). Of the baseline group, 9 did not have
an exit QIDS score and were removed from the analysis;
of the follow-up group, 20 had metabolite data below the
limit of detection, leaving a total of 159 subjects in the
baseline group and 83 subjects in the follow-up group
available for analysis (all of whom had complete meta-
bolomics and clinical data).

The CO-MED trial used broad inclusion and exclusion
criteria to recruit from both psychiatric and primary care
clinics, which were chosen to ensure adequate minority
representation and a diverse participant group®. All
study-related procedures or assessments were completed
only after obtaining written informed consent from par-
ticipants. The CO-MED trial was reviewed and approved
by the Institutional Review Boards at UT Southwestern
Medical Center at Dallas, the University of Pittsburgh
Data Coordinating Center, each participating regional
center, and all relevant clinical sites. Additionally, the
study was monitored by an independent data safety and
monitoring board. Further details of the CO-MED trial
can be found through clinicaltrials.gov identifier
NCT00590863.

Assessments

At baseline, participants provided clinical and socio-
demographic information. These included age, gender,
race, Hispanic ethnicity, onset of depression before age 18
years, presence of suicidal ideations at baseline, presence
of comorbid medical conditions, presence of anxious
features (derived from HRSD;, (Hamilton Rating Scale for
Depression-17))**, melancholic features (derived from
clinician-rated IDS (IDS-C))**, atypical features (e.g.,
mood reactivity, leaden paralysis, weight gain or increased
appetite, hypersomnia, and interpersonal sensitivity—all
derived from IDS-C)**, and baseline depression severity.

At baseline and follow-up at 12 weeks, participants
completed the 16-item QIDS-Self-Report (QIDS-SR) scale
which was the primary depression symptom severity
outcome measure in the CO-MED trial. Each QIDS-SR
item is scored from O to 3. The total score is calculated
from nine domains that define a major depressive episode
based on responses to each item. The score ranges from 0
to 27, with higher scores indicating greater depression
severity”®. It correlates highly (0.86-0.93) with HRSD;,*".
In previous reports, the reported Cronbach’s a of QIDS-
SR has ranged from 0.86 to 0.87%°.

Metabolomic assay

At baseline and week 12, peripheral venous samples
were collected in EDTA tubes (purple top) and shipped to
the Biologic Core of National Institute of Mental Health
Repository and Genomics Resource (NIMH RGR)
(RUCDR Infinite Biologics, Piscataway, NJ, USA) follow-
ing the standard operating procedures set by the NIMH
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RUCDR. Plasma was extracted on receipt and aliquoted
into 12 tubes of 500 ul each and stored at —80°C. Our
group obtained plasma samples from the NIMH RGR,
which were transported on dry ice. There were no freeze
and thaw cycles for these samples. The levels of meta-
bolite markers were measured by the Center of Metabo-
lomics, Institute of Metabolic Disease, Baylor Scott and
White Research Institute (Dallas, TX, USA). All samples
were run at the same time, and researchers were blinded
to treatment allocation and outcomes.

Plasma samples were analyzed using the targeted
metabolomic AbsoluteI/DQ™ p180 kit (Biocrates Life Sci-
ences AG, Innsbruck, Austria). This metabolomic plat-
form provides the simultaneous determination of 188
metabolites which includes 40 acylcarnitines, 42 amino
acids and biogenic amines (not included in this analysis),
90 glycerophospholipids, 15 sphingolipids, and sum of
hexoses. Metabolites were determined either liquid
chromatography or flow injection analysis (FIA) coupled
to tandem mass spectrometry. Given that this technical
difference may bias results toward one class of metabolite
and that biogenic amines have more established relevance
with depression that is better suited for separate a priori
hypothesis testing, they were not included in this analysis.
FIA analysis of 40 acylcarnitines, 90 glycerophospholipids,
15 sphingolipids, and sum of hexoses were quantitated by
a one-point internal standard with which included (nine
isotope-labeled acylcarnitines, one isotope-labeled hexose,
one nonlabeled lysophosphatidylcholine (LysoPC), two
nonlabeled PCs, one nonlabeled SM, for a total of 14
internal standards). Therefore, quantitation of lipids and a
subset of acylcarnitines which did not have analyte-
specific internal standards were “semi-quantitative.” MS
analysis was carried out on AB Sciex 5500QTRAP (Foster
City, CA, USA) equipped with a Shimadzu Nexera ultra-
high pressure liquid chromatograph system (Kyoto,
Japan). Reported concentrations were within the quanti-
fication range validated for each metabolite. Four P180
kits were used to analyze the entire cohort. Each plate
contained three quality control (QC) levels, supplied with
the kit, with the following replicates included in each run:
low =1 replicate, intermediate = 4 replicates, and high =
1 replicate. Data were normalized for batch effects by the
mean of the intermediate QC 2 across all plates using
MetIDQ™  software package. Concentrations of all
metabolites were reported as pmol/L. This targeted
metabolomics method has been validated in six testing
laboratories to have a median inter-laboratory coefficient
of variation of 7.6%, with 85% of metabolites with a
median inter-laboratory variation of <20%"°.

Statistical analysis
The hierarchical lasso was used to model improvement
in depression severity. This method is designed to perform
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variable selection amongst a large number of potentially
correlated main effects and two-way interactions. The
baseline sample and the subset of those with baseline and
exit plasma were modeled separately. In each case, models
were generated with the change in QIDS-SR from baseline
to exit as the outcome variable, defined as QIDS-SR at exit
minus QIDS-SR at baseline (meaning a negative change
indicates a better outcome). The least absolute shrinkage
and selection operator, or lasso™, is a form of penalized
regression that performs variable selection by shrinking
some of the regression parameters to 0. The hierarchical
lasso®?® is an extension of this technique with more
modeling flexibility: it allows all two-way interactions into
the model selection process while forcing the model to
maintain a hierarchical structure—that is, if a two-way
interaction is retained, either one or both of the main
effects is also included—allowing for more complex rela-
tionships between variables. The final model still retains
the form of y=Xp, but some of the 5 will be set to 0.
Given there are no distributional assumptions involved,
standard errors and tests of significance are not available
for the regression parameters, nor is it appropriate to
report a more traditional metric like adjusted R* (because
of the bias induced by penalization, looking at only the
variance explained is not desirable unless you already have
a very good estimate of the bias); however, the final model
is still a linear model, and because variable selection is
performed, any retained variables are assumed to be
influential in the sense that they contribute to the pre-
diction of the change in QIDS-SR score.

A total of six models were generated using the hier-
archical lasso. First, two metabolite-free models were
generated that were identical, except for the number of
included participants (baseline-only cohort and baseline-
plus-exit cohort). The remaining four models included
clinical/sociodemographic variables alongside metabo-
lites. This included two metabolite scenarios: one using
individual metabolites (146 total) and one using ratios/
sums of the individual metabolites (24 total). In our
metabolite-free, individual metabolite and ratios and sums
models, there were 18, 42, and 164 candidate variables
and 171, 903, and 13,530 candidate interactions, respec-
tively. While these numbers are large relative to the
sample sizes, Lim and Hastie®® demonstrate the efficacy of
the hierarchical analysis on a molecular dataset with over
100 million potential interactions.

Specific ratios and sums were chosen based on biologic
relationships, as recommended in the AbsoluteIDQ™ p180
kit product manual. For each of these, a model was gen-
erated using either baseline metabolites from the baseline-
only cohort or a calculated percent change of metabolites
from the baseline-plus-exit cohort. The calculated
percent change was defined as: [metabolite].; — [meta-
bolite]paseline)/ [metabolite]yaseline:  All models were fit
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using the glinternet package®® in R 3.2.2*°. Continuous
variables were re-scaled to have mean 0 and standard
deviation 1, and the penalty term was chosen via 10-fold
cross-validation.

Because the sample size was small and we anticipated a
number of the metabolites to represent noise with respect
to the outcome variable, we were concerned that one
instance of cross-validation may give results that were
unstable. As such, cross-validation was repeated 20 times
(meaning the regression parameter estimates were re-
calculated each time) and cross-validation error averaged
for model stability. Further, we bootstrapped this entire
process a total of 200 times in the hopes of increasing the
generalizability of our results in the absence of external
validation. For more details on the analysis decisions and
methodology used, please see the Supplemental methods.

To determine whether including individual metabolites
or ratios and sums of metabolites improved predictive
ability above and beyond simply using clinical and
demographic features, we tracked the average cross-
validated squared error loss (SEL)*® across the boot-
strapped samples; smaller values indicate better model fit.
In addition to comparing the three paradigms (demo-
graphic only, ratios/sums of metabolites, individual
metabolites), we also include the comparison of a naive
model (i.e., using the mean change in QIDS-SR score as
our prediction for every participant) to gauge relative
efficiency. Lastly, we report the average percentage of
times that each variable (or interaction) was retained
across the bootstrapped samples.

Results

Baseline and baseline-to-exit changes in plasma sphin-
gomyelins and phosphatidylcholines after antidepressant
treatment were identified as influential in predicting
change in QIDS score using the hierarchical lasso to
estimate the linear models. Models including metabolites
showed improvement over models only including clinical
and sociodemographic features.

Clinical and sociodemographic variables of the
subgroup of CO-MED participants who provided
blood specimens at baseline (n=159) and study exit
(n =83) compared to those who provided neither (n=
506) (Table 1) did not show statistically significant dif-
ferences among these clinical and demographic variables,
except for age. The mean age was 47.0 years old in the
cohort who provided baseline and exit specimen, but 42.1
years old in the rest of the CO-MED participants, with a
false discovery adjusted p value of <0.001 (Table S1).
Therefore, besides age, the plasma subgroups are clinically
and demographically representative of the larger CO-
MED cohort.

Next, we generated metabolite-free models to deter-
mine the relative magnitude of effect of the non-
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metabolite variables and to validate whether this model-
ing approach would agree with other literature on these
non-metabolite features (Fig. 1). After 200 bootstrap
repetitions, each using 20 repeats of 10-fold cross-vali-
dation, several variables were retained in most or all of the
iterations and there was a stark drop off in the frequency
of variable retention after 80% (Figure S2). The presence
of comorbid axis 1 and 3 disorders and suicidal behavior
were all predictors of smaller changes in QIDS (less
improvement). In contrast, higher baseline QIDS, and
statin use were predictive of larger changes in QIDS.
Treatment arm was also retained, suggesting some minor
differences in recovery based on the antidepressant regi-
men. While this is in contrast with remission rates of the
complete CO-MED cohort, it is consistent with the
changes in QIDS scores seen across treatment arms. The
vast majority of variables, including age, were minimally
influential and therefore not included (retained) most of
the models. A truncated list of retained clinical and
sociodemographic variables in the participant cohort who
provided plasma specimens are displayed in Table 2
alongside the average frequency of retention across of the
repeated cross-validation and bootstrap replications. The
entire list of variables for all analyses is presented in Table
S2. Two metabolite-free models were generated: first with
the cohort who gave plasma only at baseline, and second
with the cohort who also gave blood at study exit. Given
the slight difference in clinical features and demographics
between baseline and baseline-plus-exit cohorts, there
were some differences in variable selection ranking and
average regression coefficients between these two analyses
(Table 2a, b, respectively). Nonetheless, the average
regression coefficients were consistent with respect to
magnitude and direction. As an example of how to
interpret the information contained in these tables: con-
sider baseline QIDS-SR in Table 2, with an average
regression coefficient of —2.75. This means that for every
standard deviation increase in QIDS-SR (since the con-
tinuous variables were standardized prior to analysis), on
average we expect the change in QIDS to increase by 2.75
points. This variable was retained in 100% of the cross-
validation repetitions and bootstrap replications, sug-
gesting it is very likely to contain signal. In other words,
people who are more depressed at baseline will (on
average) lose more points on the QIDS-SR scale (Fig. 1).

Baseline phosphatidylcholine and sphingomyelin
metabolites are predictors of change in QIDS

Baseline concentrations of metabolites were incorpo-
rated into the hierarchical lasso analysis alongside the
clinical/sociodemographic factors. Analyses were con-
ducted both with individual metabolites (Table 3a) and
with the ratios and sums of metabolites (Table 3b). PC aa
C38:1 was the most influential individual metabolite
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Table 1 Clinical and sociodemographic characteristics of CO-MED trial participant subgroups based on plasma
collection

Variable Baseline cohort (n = Baseline-and-exit cohort  Non-plasma cohort (1= Non-plasma or baseline-only
159) (n=83) 506) cohort (n = 582)
Age 442 (SD=119) 470 (SD=108) 422 (SD=133) 421 (SD=132)
Gender (female) 71% (n=113) 71% (n = 59) 67% (n = 339) 68% (n = 393)
Race (white) 67% (n=106) 70% (n = 58) 63% (n=319) 63% (n=367)
Race (black) 25% (n = 40) 20% (n=17) 27% (n=136) 27% (n=159)
Race (other) 8% (n=13) 10% (n=38) 10% (n = 51) 10% (n = 56)
Hispanic 17% (n=27) 18% (n=15) 15% (n=74) 15% (n = 86)
BMI 320 (SD=9.2) 323 (SD=88) 30.7 (SD=287) 308 (SD=2838)
Comorbid axis 1 disorders 1.1 (SD=14) 1.0 (SD=13) 12 (SD=13) 12 (SD=13)
Comorbid axis 3 disorders 19 (SD=123) 2.1 (SD=123) 18 (SD=13) 18 (SD=123)
Baseline statin use 17% (n=27) 22% (n=18) 11% (n =54) 11% (n=63)
Baseline NSAID use 40% (n = 64) 39% (n=32) 39% (n = 198) 40% (n = 230)
Remission 42% (n = 67) 48% (n = 40) 37% (n = 188) 37% (n=215)
Response 58% (n=92) 58% (n = 48) 54% (n = 275) 58% (n=319)
Escitalopram-placebo 30% (n=47) 25% (n = 48) 35% (n=177) 35% (n = 203)
treatment
Venlafaxine-mirtazapine 37% (n = 59) 39% (n=32) 32% (n=161) 32% (n=188)
treatment
Bupropion-escitalopram 33% (n = 53) 36% (n = 30) 33% (n = 168) 33% (n=191)
treatment
Escitalopram-placebo 61.7% (n=29) 61.9% (n=13) 55.4% (n = 98) 56.2% (n=114)
response
Venlafaxine-mirtazapine 55.9% (h=33) 62.5% (n = 20) 52.2% (n=84) 51.6% (h=97)
response
Bupropion-escitalopram 56.6% (n =30) 50% (n=15) 554% (nh=93) 56.5% (n = 108)
response
Baseline QIDS 155 (SD=4.1) 14.7 (SD=3.9) 154 (SD=423) 156 (SD=43)
Exit QIDS 73 (SD=523) 6.8 (SD=438) 76 (SD=5.1) 76 (SD=52)
Ever attempted suicide 9% (n=14) 12% (n = 10) 9% (n = 45) 9% (n = 49)
Suicidal ideation 16% (n = 26) 17% (n=14) 17% (n = 84) 17% (n = 96)
Abuse before age 18 years 56% (n = 89) 54% (n = 45) 48% (n = 242) 49% (n = 286)
(emotional, physical, or
sexual),
Onset before age 18 years 42% (n = 66) 41% (n = 34) 46% (n = 230) 45% (n = 262)
Melancholic features 31% (n = 49) 29% (n = 24) 35% (n=178) 35% (n = 203)
Atypical features 17% (n = 27) 17% (n = 14) 15% (n = 76) 15% (n = 89)
Anxious features 72% (n=115) 75% (n =62) 76% (n = 382) 75% (n =435)

(average regression coefficient 0.23), suggesting that sphingomyelin predicted greater changes in QIDS with an
higher baseline levels predict smaller changes in QIDS. In  average regression coefficient of —0.31. Incorporation of
contrast, the ratio of hydroxysphingomyelin to total baseline metabolite values into the model did affect the
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relative influence of the clinical/sociodemographic vari-
ables, but most of the same variables were again retained,
including comorbid axis 1 and 3 disorders, and baseline
QIDS.

Change in phosphatidylcholine and
hydroxysphingomyelin metabolites are biologic correlates
of change in QIDS score

The relative changes of various metabolites from base-
line to study exit were also modeled alongside demo-
graphics using the hierarchical lasso (Table 4a, b). Again,
a phosphatidylcholine, this time LysoPC a C20:3, was
retained as the most influential individual metabolite.
Furthermore, the ratio of hydroxysphingmyelin to total
sphingomyelin was again retained as the most influential
ratios or sums of metabolite class.

Metabolite and clinical/sociodemographic models
outperform naive model

The relative performances of each model are presented
in Table 5 using the median SEL. In both cohorts, the
demographic and clinical variable-only models vastly
outperform the naive models. In all cases adding meta-
bolites further improved the median SEL (and hence
model performance). For the baseline-only cohort models,
the individual metabolite model had the smallest median
error (median SEL 7.5 versus 8.7 for the metabolite-free
model). In contrast, when looking at changes in meta-
bolites from baseline to exit, the ratios/sums of metabolite
classes generated models with the smallest median error
(Table 5b). Distributions of the average SEL values across
the bootstrap replicates are shown in Figure S3.

Discussion

Using a novel and rigorous statistical approach that
simultaneously models hundreds of clinical, socio-
demographic, and metabolite variables, this study has
identified sphingomyelin and phosphatidylcholine bio-
markers that are informative of depression recovery.
Increased baseline and changes in the ratio of hydroxy-
sphingomyelin to total sphingomyelin predicted better
depression recovery. Baseline levels of the individual
metabolites LysoPC a C18:2 was also beneficial, whereas
baseline PC aa C38:1 and changes in LysoPC a C20:3 were
detrimental. Although clinical features, specifically base-
line severity and comorbid axis 3 disorders, were the most
predictive model features, all models including metabo-
lites outperformed models excluding them.

To our knowledge, this study is the first metabolomic
investigation of depression recovery to use a specialized
form of penalized regression such as the hierarchical
lasso. Prior metabolomic analyses in depression are lim-
ited due to the use of statistical testing that assumes
independent observations of metabolites, despite a sig-
nificant degree of metabolite correlation. In contrast, the
lasso observes all variables simultaneously, minimizing
false discovery and increasing generalizability of the
results. For these reasons, the lasso is an increasingly
common tool in genetic research®>*', but only recently
has begun to see use in metabolomic studies'”'®,

The validity of the hierarchical lasso for our metabo-
lomic analysis is supported by the results of our
metabolite-free models. While metabolomics research on
depression is still in infancy, there is a wealth of literature
on depression outcomes in relation to clinical and
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Table 2 Predictors of change in QIDS using clinical and
sociodemographic variables

A. Baseline-only cohort—Demographic variables-only model
(n=159)

Variable/ Average regression Frequency of
interaction coefficient® retention in model
Comorbid axis 3 1.34 100.0
disorders

Baseline QIDS —2.75 100.0

Hispanic —-0.39 99.0

Prior suicide 0.94 98.8

attempt

Female gender —0.13 985
Comorbid axis 1 0.67 98.2
disorders

Atypical features 1.02 98.1

B. Baseline and exit cohort—demographic variables-only model
(n=283)

Baseline QIDS —1.61 100.0
Baseline suicidal 145 984
ideation

Comorbid axis 3 062 973
disorders

Statin user —0.38 97.3
Comorbid axis 1 0.60 972
disorders

Atypical features 033 96.2
BMI 0.62 96.1

Models were generated using either the baseline-only cohort (A) or the baseline
and exit cohort (B) with baseline clinical and sociodemographic variables. The
most influential variables or variable interactions are presented by relative
magnitude of effect

@Average regression coefficient, as calculated by hierarchical lasso, represents
the relative magnitude of effect a variable or variable’s interaction has on
predicting change in QIDS. Positive values predictive a smaller change in QIDS,
whereas negative values predict a larger change in QIDS (greater decrease)

sociodemographic factors. In our two clinical-
sociodemographic-only models, retained variables were
consistent between both models and with other literature
on disease prognosis. High baseline QIDS score predicted
an overall greater decrease at exit’>. The influence of
other demographic variables, such as comorbid axis 1 and
axis 3 disorders predicting worse QIDS outcomes, is
supported by previous literature too>>*. Interestingly,
while comorbid axis 3 disorders had a negative effect on
the outcome, statin use was protective. This is in agree-
ment with a meta-analysis of 9187 patients showing that
statin users were 32% less likely to become depressed™.
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After incorporation of metabolites into the hierarchical
lasso model, most of the same influential clinical-
sociodemographic variables were retained, as were sev-
eral metabolites. Although all classes of metabolites
examined (sphingomyelins, phosphatidylcholines, and
acylcarnitines) were represented in at least some of the
models, phosphatidylcholines and sphingomyelins were
consistently the most influential. Increased levels of
hydroxylated sphingomyelins appeared to be beneficial at
baseline, as did changes at exit relative to baseline.
Hydroxylated sphingomyelins have been identified in
most human tissue, but are the most well studied in the
brain and skin®. Fatty acid 2-hydroxylase is the primary
enzyme responsible for converting SM to OH-SM, and
mutations in this gene have been linked to neurologic
conditions including leukodystrophy and hereditary
spastic paraplegia®®, but have not yet been associated with
psychiatric disorders®”.

It has also been reported that peripheral sphingomye-
linase activity is increased in depression and attenuated by
the tricyclic antidepressants imipramine, amitriptyline®,
and desipramine®. Increased plasma levels of the meta-
bolites of sphingomyelin degradation, ceramides, have
also been implicated in depression and may play a role in
hippocampal apoptosis*®. Further findings on ceramides
in depression are reviewed elsewhere*'. While sphingo-
myelinase activity and/or ceramide(s) concentration were
not measured in this study, it is plausible that in depres-
sion, sphingomyelin degradation preferentially impacts
hydroxylated species, which would explain the association
with increased hydroxylated species and depression
recovery.

The link between plasma sphingomyelins to those in the
brain is also undefined, but in neurons and glia, they are
critical for signal transduction as key components of lipid
rafts. Hydroxylated sphingomyelins are chemically more
polar than their non-hydroxylated counterparts, promot-
ing fluidization of lipid rafts. In vitro, fluidization of lipid
rafts through cholesterol depletion leads to increased Gos-
adenylyl cyclase coupling® and increased cAMP signal-
ing, a key second messenger that regulates brain-derived
neurotrophic factor, synaptic plasticity, and neurogenesis.
Furthermore, in vitro and in vivo, chronic antidepressant
treatment leads to increased Gog-adenylyl cyclase cou-
pling via alterations in lipid rafts*>~**. In post-mortem
human brain tissue, individuals with completed suicide
versus other cause of death demonstrated decreased Ga,-
adenylyl cyclase coupling, again suggesting that lipid raft
composition is important in the severity of depression
symptoms, including suicidal behavior*®. In addition,
statin use had a protective effect in our models, which as a
cholesterol-lowering drug may be exerting similar effects
of lipid raft fluidization and therefore augment cAMP
signaling.
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Table 3 Predictors of change in QIDS using baseline
metabolites

A. Baseline-only cohort—individual metabolites model (n = 159)

Variable(s)/ Average regression  Frequency of
interaction coefficient® retention in model
Baseline QIDS —2.04 100.0
Comorbid axis 3 061 99.3
disorders

NSAID user 042 98.8

Anxious features 061 96.1

Onset before age 18 0.50 946

years

PC aa (381 0.23 934

LysoPC a C18:2 —0.25 933

B. Baseline-only cohort—ratios and sums of metabolites model (n =
159)

Comorbid axis 3 1.13 100.0
disorders

Baseline QIDS —2.57 100.0
Ratio of OH-SM to SM —0.31 986
Escitalopram treatment —0.44 983
Venlafaxine/ 0.85 98.3
mirtazapine treatment

Escitalopram/ —042 98.3
bupropion treatment

Female gender —0.31 98.3

Models were generated using either individual metabolites (A) or metabolite
ratios or sums (B), alongside baseline clinical and sociodemographic variables.
The most influential variables are presented by relative magnitude of effect
OH-SM hydroxysphingomyelin, SM sphingomyelin, LysoPC a lysophosphatidyl-
choline, PC aa phosphatidylcholine with diacyl residue, DC-AC dicarboxy-
acylcarnitines, AC acylcarnitines

?Average regression coefficient, as calculated by hierarchical lasso, represents
the relative magnitude of effect a variable or variable’s interaction has on
predicting change in QIDS. Positive values predictive a smaller change in QIDS,
whereas negative values predict a larger change in QIDS (greater decrease)

An increase in total plasma sphingomyelin has also been
suggested as a risk factor in cardiovascular disease*”*?,
and given how protective statins were for depression in
this cohort, higher levels of total sphingomyelins may
explain a common mechanism linking CAD and depres-
sion. Alternatively, sphingomyelins may simply be a
marker for CAD, and the effects of poor cardiovascular
health may be driving depression in these participants.
Detailed information on cardiac health was not obtained
in this study, and therefore further studies would be
necessary to better understand the link between sphin-
gomyelins, heart health, and depression.
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Limitations

While our data suggest the utility of these metabolites as
potentially valuable biomarkers for predicting depression
treatment outcome, there are several limitations that may
affect the results. As this was a secondary analysis from
the CO-MED trial, sample size and power for biomarker
experiments were not determined a priori. Further, blood
draws and plasma extraction were not systematic in col-
lection time or fasting status, and previous studies on this
metabolomics platform show higher intraclass correlation
coefficients with fasting subjects'>. While we simulta-
neously examined metabolites alongside clinical variables
that may influence them (such as age, body mass index or
comorbid axis 3 disorders), we cannot conclude that these
results would translate to a cohort with differences in
these variables. Further, we note that averaging the coef-
ficients over a series of cross-validations and bootstrap
replications—while hopefully making the results more
generalizable—does make them harder to interpret. As is
evident in Tables 2—4, some of the larger average effects
were not retained in all of the models and some effects
that were retained nearly all the time but had relatively
small effects.

There are also limitations on the quantitative power of
current mass spectroscopy technology, and therefore it
would be valuable for future studies to validate these
identified variables through other assays. This limitation is
further compounded by the relatively small sample size of
some clinical subgroups, which may explain why variable
interactions were not retained in our models (such as
metabolite effects with specific treatment arms). The
same Biocrates p180 kit has already been used in a study
of ketamine effectiveness, which also showed that a
change in hydroxysphingomyelin C22:2 was related to
improvement in depression severity score®. Although this
latter finding was limited by a high false discovery rate, a
similar result across different participant cohorts and
alternative statistical approaches suggest that further
investigation of hydroxysphingomyelins may be fruitful.
We chose lasso in part to avoid this issue of high false
discovery rate, even though this limits our ability to also
use traditional regression models. We decided against
performing follow-up statistical testing using more tra-
ditional methods after identifying notable metabolites,
because performing inference after model selection would
treat the identified variables as if they were selected
independently of the data, resulting in biased estimates. A
lack of a more traditional modeling framework does limit
our ability to present traditional statistical approaches
such as standard errors (and, as a consequence, p values
and confidence intervals), but also reduces the risk of
misleading or potentially biased results. Future studies
should focus on external validation with additional patient
populations, more quantitative sphingomyelin assays and
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Table 4 Predictors of change in QIDS using percent change of metabolites before and after treatment

A. Baseline and exit cohort—percent change individual metabolites model (n = 83)

Variable Average regression coefficient® Frequency of retention in model
Baseline QIDS —1.78 100.0
Baseline suicidal ideation 1.10 94.9
Comorbid axis 1 disorders 033 933
LysoPC a C20:3 047 86.1
Onset before age 18 years 0.36 835
Hexose 0.25 829
Comorbid axis 3 disorders 0.28 824

B. Baseline and exit cohort—percent change ratios and sums of metabolites model (n = 83)

Baseline QIDS —-1.70 100.0
Comorbid axis 1 disorders 048 96.1
Baseline suicidal ideation 142 95.3
Atypical features —0.08 949
Statin user —0.64 94.8
Comorbid axis 3 disorders 0.34 93.6
BMI 0.56 929
Ratio of OH-SM to SM —0.18 928

Models were generated using either individual metabolites (A) or metabolite ratios or sums (B), alongside baseline clinical and sociodemographic variables. The most
influential variables are presented by relative magnitude of effectn

PUFA polyunsaturated fatty acids, MUFA monounsaturated fatty acids, SFA saturated fatty acids, OH-SM hydroxysphingomyelin, SM sphingomyelin

@Average regression coefficient, as calculated by hierarchical lasso, represents the relative magnitude of effect a variable or variable’s interaction has on predicting
change in QIDS. Positive values predictive a smaller change in QIDS, whereas negative values predict a larger change in QIDS (greater decrease)

Table 5 Relative performance of models based on squared error loss. Lower squared error loss indicates superior model
performance

A. Baseline-only cohort models

Model input Bootstrap median squared error loss (5%, 95%) Percent change relative to demographic model
Naive 15.7 (13.1, 19.0) +80.5%

Individual metabolites 7.1 (4.7, 95) —184%

Ratios/sums of metabolites 7.5 (5.3, 10.1) —13.8%

Demographic 87 (6.1, 11.6) -

B. Baseline and exit cohort model

Naive 119 (9.1, 15.5) +95.1%
Individual metabolites 6.0 ([3.6, 8.5) —1.6%
Ratios/sums of metabolites 55(33,82) —9.8%
Demographic 6.1 (3.8, 8.8) -

a priori hypothesis testing with traditional regression method and have identified sphingomyelins and specific
modeling. phosphatidylcholines as predictors and biologic correlates

In summary, these data offer the first analyses of of decreases in depression severity even after controlling
metabolomics in depression using the hierarchical lasso  for a number of clinical and demographic characteristics.
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