Skip to main content
. 2019 Mar 1;654:811–821. doi: 10.1016/j.scitotenv.2018.10.434

Table 3.

Copula families used in this study and the mathematical descriptions.

Name Mathematical description Parameter range Reference
Gaussian 1u1v12π1θ2exp2θxyx2y221θ2dxdyb
θ : Linear correlation coefficient
∅ : Standard normal cumulative distribution function
θ ∈ [−1, 1] (Renard and Lang, 2007)
t tθ21utθ21vΓθ2+22Γθ22πθ21θ121+x22θ1xy+y2θ2θ2+22dxdyc
θ1 : Linear correlation coefficient
tθ2 : Cumulative distribution function of t distribution with
θ2 degree of freedom
θ1 ∈ [−1, 1]; θ2 ∈ [0, ∞] (Demarta and McNeil, 2005)
Clayton max(uθ + vθ − 1, 0)−1/θ
θ : Measure of dependency between u and v.
θ ∈ [−1, ∞]\0 (Clayton, 1978)
Frank 1θln1+expθu1expθv1expθ1
θ : Similar to Clayton copula
θ ∈ \0 (Li et al., 2013)
Gumbel explnuθ+lnvθ1θ
θ : Similar to Clayton copula
θ ∈ [−1, ∞] (Zhang and Singh, 2006)