Skip to main content
. 2019 Jan 15;11:494. doi: 10.3389/fnmol.2018.00494

Figure 2.

Figure 2

Ca2+ signaling domains. (A) General Ca2+ dynamics: Ca2+ enters a presynaptic terminal through a voltage-gated Ca2+ channel. Due to rapid diffusion (indicated by red gradient and the arrows) Ca2+ forms a steep, short-lived spatio-temporal gradient around the mouth of the open channel. It binds to mobile or fix Ca2+-binding proteins (CaBPs); some CaBP are pure buffers, others have an additional Ca2+ sensor function. Ultimately Ca2+ is cleared from the cytosol via Ca2+-ATPases (white circles with arrows) that either pump Ca2+ into the extracellular space or sequester it into organelles. (B) In a tight coupling regime a Syt bearing SV is located very close to the site of Ca2+ entry (<50 nm). If coupling is tight, at moderate concentrations only a buffer with rapid Ca2+ binding kinetics like BAPTA (red) can interfere with Ca2+ binding to Syt and prevent release. In a loose coupling regime, on the other hand, the SV is further away from the site of Ca2+ entry and also a slow buffer like EGTA (blue) can bind Ca2+ before it reaches the release sensor.