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Fibroblast growth factor 21 (FGF21) regulates energy
expenditure (EE) and influences weight change during
low-protein overfeeding in rodent models. The change in
EE after a low-protein overfeeding diet is a predictor of
weight change in humans and a feature of the “thrifty”
metabolic phenotype. However, there are no studies
showing an association between circulating FGF21 and
diet-related EE in humans. We assessed the changes in
plasma FGF21 concentrations after 24 h of seven dietary
interventionswith different macronutrient content while in
a whole-room indirect calorimeter in 64 healthy subjects
with normal glucose regulation. Plasma FGF21 concen-
tration consistently increased by threefold only after the
two low-protein (3%) overfeeding diets, one high in car-
bohydrate (75%) and the other high in fat (46%), with
larger increases in FGF21 being associated with greater
increases in 24-h EE. Subjects with smaller increases in
FGF21 after the low-protein high-fat diet gained more
weight after 6 months in free-living conditions. There-
fore, the individual predisposition to weight gain over
time can be assessed by 24-h overfeeding a low-protein
diet and measurements of plasma FGF21 concentra-
tions. Individuals with a blunted FGF21 response to
a low-protein diet have a thrifty metabolism and are at
risk for future weight gain.

As a result of altered energy homeostasis due to the
imbalance between energy intake and expenditure (EE),
obesity has become more prevalent and a major public
health concern. However, the propensity to weight gain is

different among individuals, such that some subjects are
more resistant to weight gain when overeating because
they appear to be more able to dissipate the excess energy
than other individuals who instead are more metabolically
“thrifty” (1–4). The interindividual diversity in suscepti-
bility to weight gain seems to be secondary to genetic
factors and to the capacity to increase EE in response to
feeding (i.e., the diet-induced thermogenesis) (3). The
manifestation of metabolic phenotypes can be elucidated
more clearly when assessing the individual EE response to
extreme and macronutrient-unbalanced dietary interven-
tions (2). Specifically, low-protein (,10%) overfeeding
has been shown to most effectively uncover the individual
propensity to weight gain (3–5), presumably due to the
energetic cost required to maintain body lean mass (3,4,6).
The underlying hormonal mechanisms by which low-
protein overfeeding accentuates interindividual differences
in diet-induced thermogenesis and characterizes the subject-
specific inclination to weight gain remain unknown.

We previously determined that the acute (24-h) EE
response to low-protein overfeeding is a feature of the
thrifty/spendthrift metabolic phenotypes, where a smaller
increase (or even a decrease) in 24-h EE during this diet
predicts weight gain (5). Fibroblast growth factor 21
(FGF21) is a relatively newly identified hormone implicated
in the regulation of energy homeostasis (7–9). Rodents who
are overfed with a low-protein diet show FGF21-mediated
increases in EE compared with a normal-protein diet and
are less likely to gain weight (10–13). In humans, sus-
tained low-protein overfeeding increased plasma FGF21
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concentrations after 7 (13) or 28 days (10), although no
change in EE was observed in the 28-day study (14). The
aim of the current study was to determine whether FGF21
concentration changes after 24 h of low-protein overfeeding
and to assess whether FGF21 correlates with the diet-
induced change in 24-h EE and free-living weight change.
We hypothesized that a reduced capacity to respond to a low-
protein overfeeding diet by increasing FGF21 concentra-
tions may be a metabolic feature of the “thrifty” metabolic
phenotype, indicating a propensity to weight gain.

RESEARCH DESIGN AND METHODS

Subjects
This is an analysis of data from an ongoing study (Clini-
calTrials.gov identifier: NCT00523627) aimed to assess
whether the 24-h EE responses to fasting and overfeeding
predict free-living weight change in healthy, weight-stable
individuals (Supplementary Fig. 1). On admission to the
clinical research unit, subjects were placed on a standard
normal-protein weight-maintaining diet (WMD; 50% car-
bohydrate [CHO], 30% fat, and 20% protein [Pro]) (15),
adjusted daily by the research dietitian to assure weight
stability within 1% of admission weight. The average
coefficient of variation (CV) of the volunteers’ body weight
before the dietary interventions was 0.94 kg. All subjects
had normal glucose regulation based on an oral glucose
tolerance test (OGTT) performed after 3 days on the WMD
(16). Body composition was assessed by DPX-1 (Lunar
Corp., Madison, WI) with fat mass and fat free mass cal-
culated from the percentage body fat and weight. After dis-
charge, 48 subjects returned after 6 months (median 6.5
[interquartile range 6.1–7.2] months) to assess weight
change. All participants provided written informed con-
sent before beginning the study. The National Institute of
Diabetes and Digestive and Kidney Diseases Institutional
Review Board approved this study.

Dietary Interventions
The experimental protocol (Supplementary Fig. 2) for
dietary manipulation was described previously (17). The
assessment of 24-h EE during energy balance was done in
two steps. The first eucaloric EE assessment was obtained
while subjects resided for 24 h in a whole-room indirect
calorimeter and were provided four balanced meals with
total daily energy intake calculated using a unit-specific
formula to achieve 24-h energy balance in the confined
environment of the calorimeter. Secondly, all subjects had
another eucaloric EE assessment inside the calorimeter
when the total energy intake of four balanced meals was
equal to the 24-h EE value calculated during the first
eucaloric EE assessment for precise determination of 24-h
EE during energy balance.

Subsequently, volunteers had 24-h EE assessments in
the calorimeter in random order and separated by a 3-day
washout period on the WMD: 24-h fasting, two low-protein
(LowPro/HighFat and LowPro/HighCHO), one high-protein,

and three normal-protein overfeeding diets with total
energy intake determined by doubling the 24-h EE value
obtained during energy balance (Table 2 and Supplemen-
tary Fig. 3).

Metabolic and Hormone Measurements
The experimental protocol for the assessment of 24-h EE
and substrate oxidation inside the whole-room indirect
calorimeter was previously described (17,18). VCO2 and
VO2 in liters were calculated every minute and extrapo-
lated to the 24-h interval. The 24-h respiratory quotient
(RQ) was calculated as the ratio of 24-h VCO2 to 24-h VO2,
and 24-h EE was calculated by the Lusk formula (18). Carbo-
hydrate and fat oxidation rates were derived from the 24-h
RQ, after accounting for protein oxidation,whichwas estimated
from measurement of 24-h urinary nitrogen excretion (18).

Fasting plasmawas collected at entry and at exit from the
calorimeter in EDTA-containing tubes and frozen to270°C
for later measurements. FGF21 concentrations were mea-
sured by ELISA (R&D Systems, Minneapolis, MN). Intra-
assay and interassay CVs were 2.5% and 5.2%, respectively.

Statistics
Nonnormally distributed FGF21 concentrations were an-
alyzed as log10 values, and results were presented as the
geometric mean with 95% CI. The change in FGF21
concentration after each diet was assessed by paired t
test. For each subject, all of the fasting FGF21 measure-
ments obtained before entering the calorimeter were
averaged and used in ANOVA to determine differences
according to sex and ethnicity and in correlation analysis
with anthropometric characteristics.

RESULTS

Baseline characteristics of the study cohort are presented
in Table 1. The fasting FGF21 concentration correlated
with anthropometric characteristics (Supplementary Fig.
4) and differed by ethnicity, such that, on average, FGF21
was lower by 60% (CI 48–69; P , 0.0001) in blacks
compared with other ethnicities.

On average, FGF21 concentrations greatly increased
after the two low-protein overfeeding diets, with a nearly
threefold increase both after the LowPro/HighFat (+297%,
CI 254–347) and LowPro/HighCHO (+326%, CI 234–456)
overfeeding (Fig. 1A and B). The individual increases in
FGF21 observed after these two low-protein overfeeding
diets were correlated in the same subject (r = 0.78, P ,
0.001) (Supplementary Fig. 5). Conversely, FGF21 concen-
trations decreased after 24-h fasting (234%, CI 221
to 244) and all normal-protein overfeeding diets (Table
2), with the largest decrease after high-protein overfeeding
(275%, CI 266 to 281). A greater increase in FGF21
concentration after LowPro/HighFat overfeeding was as-
sociated with greater increase in 24-h EE (r = 0.34, P =
0.008) (Fig. 2A) (in men only: r = 0.31, P = 0.03), but not
during any normal-protein overfeeding diet or fasting
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(P = 0.32) (Supplementary Fig. 6). There were no associ-
ations between the change in FGF21 after LowPro/HighFat
overfeeding and 24-h RQ, macronutrient oxidation rates,
or substrate balance (all P . 0.05).

Despite a wide variability in weight change (SD 4.7 kg),
on average, body weight was stable after 6 months
(mean 6 SD, 0.8 6 4.7 kg; P = 0.26). A greater increase
in plasma FGF21 concentration after LowPro/HighFat
overfeeding at baseline was associated with weight loss at
the follow-up visit (r = 20.36, P = 0.01, R2 = 12.9%) (Fig.
2B) (in men only: r = 20.41, P = 0.008), such that
a 100 ng/mL increase in FGF21 after LowPro/HighFat
overfeeding was associated with an average weight change
of 20.9 kg (CI 21.5 to 20.2) at follow-up. Similarly, the
change in 24-h EE during LowPro/HighFat overfeeding,
but not during any other dietary intervention (all
P . 0.05), was inversely associated with weight change
(r = 20.30, P = 0.04). In multivariate analysis, however,
only the change in FGF21 after LowPro/HighFat over-
feeding (P = 0.04), but not the concomitant change in 24-h
EE (P = 0.16), was the only predictor of weight change
independently of age (P = 0.21), sex (P = 0.77), and
ethnicity (P = 0.12).

DISCUSSION

We aimed to test whether FGF21 mediates the change in
24-h EE observed during low-protein overfeeding, because
we had previously shown that this diet identifies a meta-
bolic phenotype resistant to weight gain. Circulating
FGF21 concentrations increased acutely (i.e., after 24 h)
and consistently after two different overfeeding diets with
low-protein content (3%), while decreasing after fasting

and other normal/high-protein overfeeding diets. Impor-
tantly, the increase in plasma FGF21 concentration after
low-protein overfeeding was associated with diet-related
changes in 24-h EE, where a greater increase in FGF21
concentration was associated with a higher increase in EE.
We further determined that the extent of the increase in
FGF21 concentration after LowPro/HighFat overfeeding
was associated with weight change at 6 months, indicating
that a decreased capability to increase FGF21 concentra-
tion in response to low-protein overfeeding is a hormonal
feature of the thrifty metabolic phenotype inclined to gain
weight over time.

The “thrifty” and “spendthrift” metabolic phenotypes
hypothesis has evolved over the years from a theorized
genotype that led to insulin overproduction due to food
consumption favoring adipose storage (19), to a focus on
the energy conservation in face of repeated famine or
overeating (5,20,21). These human metabolic phenotypes
can be described by the individual ability to increase or
decrease EE in an energetically restricted (fasting) or un-
restricted (overeating) setting. Although the extent of EE
increase during overfeeding is highly dependent on the
macronutrient composition of the diet (22), certain diets,
such as low-protein overfeeding, appear more likely
to uncover these metabolic phenotypes associated with
weight change (5). In the current study including healthy
subjects with normal glucose regulation, FGF21 concen-
trations increased in nearly all subjects by approximately
threefold after 1 day of low-protein overfeeding, in line
with what was reported in previous studies (10,13). Im-
portantly, because the degree of this increase correlated
with the dietary-related EE, we have identified one of the
hormonal mediators of the EE response to this diet that

Table 1—Baseline characteristics of the study group

All subjects (N = 64) Women (n = 12) Men (n = 52)

Age (years) 37 6 10 (18, 54) 33 6 8 (20, 45) 38 6 10 (18, 54)

Ethnicity (n)
Black 14 5 9
White 19 4 15
Hispanic 11 1 10
Native American 20 2 18

Body weight (kg) 78.5 6 12.2 (47.5, 107.8) 74.4 6 16.8 (47.5, 107.8) 79 6 11 (56, 105)

BMI (kg/m2) 26.2 6 3.9 (17.8, 39.1) 26.9 6 5.8 (17.8, 39.1) 26 6 3 (18, 37)

Body fat (%) 27.6 6 10.0 (6.9, 53.8) 40.4 6 8.4 (24.2, 53.8) 25 6 8 (6.9, 38)*

FM (kg) 22.1 6 10.0 (4.9, 56.9) 31.2 6 13.0 (13.6, 56.9) 20 6 8 (4.9, 36)*

FFM (kg) 56.4 6 9.3 (33.9, 79.4) 43.2 6 4.9 (33.9, 50.9) 59 6 7 (47, 79.4)*

24-h EE (kcal/day) 2,038 6 283 (1,502, 2,810) 1,802 6 223 (1,502, 2,290) 2,094 6 268 (1,573, 2,810)*

24-h RQ (ratio) 0.87 6 0.03 (0.80, 0.93) 0.86 6 0.03 (0.81, 0.91) 0.87 6 0.03 (0.80, 0.93)

Fasting glucose (mg/dL) 92.0 6 5.07 (80.0, 99.0) 91.0 6 3.3 (86.5, 97.0) 92.3 6 5.4 (80, 99)

2-h OGTT glucose (mg/dL) 103.8 6 19.9 (65, 138) 104.2 6 16.5 (80, 130) 103.7 6 20.8 (65, 138)

Fasting plasma FGF21 (pg/mL) 128.8 (105.8–156.9) [13.0, 492.9] 119.0 (70.6–200.5) [22.4, 288.2] 131.2 (105.4–163.4) [13.0, 492.9]

Unless otherwise stated, data are presented as mean 6 SD (minimum, maximum), except for FGF21 where values are presented as
geometric mean with its 95% CI [minimum, maximum]. Fasting plasma FGF21 concentration was calculated as the average of all prediet
fasting measurements. FFM, fat free mass; FM, fat mass. *P , 0.05 vs. women, calculated by Student t test.
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characterizes the thrifty metabolic phenotype prone to
weight gain. In addition, the ability to increase circulating
FGF21 after low-protein overfeeding was associated with
less weight gain or weight loss 6 months after subjects
return to their routine activities and explained 12.9% of
the interindividual variance in free-living weight change,
a value much higher than that of established metabolic de-
terminants of weight change such as lower 24-h EE (2.5%)
and higher RQ (5.8%) during energy balance (23,24).

The biological mechanisms by which FGF21 may in-
crease diet-induced EE during low-protein overfeeding in
humans are not known but could involve UCP2 and UCP3,

because FGF21 treatment of cultured human cardiomyo-
cytes increases expression of UCP2 and UCP3 (25). Notably,
the significant intrasubject variance (25%) (Supplementary
Fig. 7) in FGF21 concentrations suggests that the capacity
of increasing FGF21 in response to a low-protein diet is
an individual-specific characteristic, perhaps genetically
determined, which could partly explain the lower FGF21
concentrations found in blacks.

Our study has some limitations. First, we have a rela-
tively small representation of women; therefore, our re-
sults may need to be validated in a larger female cohort.
However, sensitivity analyses including only men provided

Figure 1—Plasma FGF21 concentrations before and after 24-h dietary interventions. A: Plasma FGF21 concentrations before and after
each dietary intervention. Bars represent geographic means with 95% CIs. B: Individual changes in plasma FGF21 concentration after each
dietary intervention. The red lines represent arithmetic means with 95% CIs. Macronutrient composition of diets: energy balance
diet and NormalPro/NormalCHO overfeeding diet: 50% carbohydrate, 30% fat, 20% protein; NormalPro/HighCHO overfeeding diet:
75% carbohydrate, 5% fat, 20% protein; NormalPro/HighFat overfeeding diet: 20% carbohydrate, 60% fat, 20% protein; HighPro/HighFat
overfeeding diet: 26% carbohydrate, 44% fat, 30% protein; LowPro/HighFat overfeeding diet: 51% carbohydrate, 46% fat, 3%
protein; and LowPro/HighCHO overfeeding diet: 75% carbohydrate, 22% fat, 3% protein.

Table 2—Plasma FGF21 concentrations before and after each dietary intervention

Diet N
Prediet FGF21

(pg/mL)
Postdiet FGF21

(pg/mL)
Change in FGF21

(pg/mL)
Fold change

(ratio) P value

24-h fasting 64 124.8 (101.6–153.4) 82.6 (70.2–97.3) 265.0 (287.8 to 242.2) 0.66 (0.56–0.79) <0.0001

Energy balance 64 97.6 (76.8–124.1) 85.5 (68.2–107) 225.0 (242.9 to 7.2) 0.88 (0.75–1.02) 0.10

Overfeeding
NormalPro/NormalCHO 63 119.3 (90.8–156.7) 68.3 (52.4–89) 272.0 (294.7 to 249.3) 0.57 (0.47–0.70) <0.0001
NormalPro/HighCHO 63 123.3 (100.5–151.2) 99.8 (79–126) 220.6 (239.0 to 22.1) 0.81 (0.72–0.92) 0.001
NormalPro/HighFat 63 126.2 (102.7–155.2) 63.7 (50.9–79.6) 272.5 (289.0 to 256.0) 0.50 (0.43–0.59) <0.0001
HighPro/HighFat 51 125.4 (93.3–165.6) 31.7 (23.5–42.8) 2121.1 (2148.0 to 294.3) 0.25 (0.19–0.34) <0.0001
LowPro/HighFat 63 121.6 (96.1–153.9) 361.4 (303.2–430.8) 278.7 (226.5–331.0) 2.97 (2.54–3.47) <0.0001
LowPro/HighCHO 15 146.7 (98.1–219.5) 461.8 (312.8–681.6) 214.8 (128.6–333.4) 3.26 (2.34–4.56) <0.0001

Prediet and postdiet plasma FGF21 concentrations are expressed as geometric means with 95% CI. The absolute changes in FGF21
concentrations (pg/mL) are reported as arithmetic means with 95% CI. Fold changes (95% CI) were calculated by exponentiating
the average difference between postdiet minus prediet FGF21 concentrations both expressed as log10 values. P values were calculated
by paired t test analysis of log10 FGF21 values. Bold values are statistically significant. Macronutrient composition of diets: energy
balance diet and NormalPro/NormalCHO overfeeding diet: 50% carbohydrate, 30% fat, 20% protein; NormalPro/HighCHO overfeeding
diet: 75% carbohydrate, 5% fat, 20% protein; NormalPro/HighFat overfeeding diet: 20% carbohydrate, 60% fat, 20% protein;
HighPro/HighFat overfeeding diet: 26% carbohydrate, 44% fat, 30% protein; LowPro/HighFat overfeeding diet: 51% carbohydrate, 46%
fat, 3% protein; and LowPro/HighCHO overfeeding diet: 75% carbohydrate, 22% fat, 3% protein.
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similar results. Second, we do not have assessment of free-
living food intake, physical activity, or fitness during the
follow-up period; thus, we were not able to assess whether
the association between FGF21 concentration and weight
change was independent of these factors. Nevertheless,
subjects were recruited as being weight-stable for 6 months
before admission, and on average, weight did not change
after 6months, thus indicating that no substantial changes
in free-living physical activity or food intake took place
during the follow-up period.

In conclusion, we have identified a thrifty metabolic
phenotype that can be characterized by reduced FGF21
response after 24 h of low-protein overfeeding and that

confers susceptibility to weight gain. Furthermore, we
have found that the increase in FGF21 after low-protein
overfeeding is correlated with the diet-induced change in
24-h EE and, ultimately, with weight change. The present
results are important in the context of our current obeso-
genic environment that includes the widespread over-
exposure to low-protein dietary options that are highly
palatable, easily overeaten, and inexpensive, such as sodas,
ice creams, doughnuts, etc. We speculate that exogenous
FGF21 therapy may help metabolically thrifty individuals
to prevent weight gain or achieving greater weight loss
during obesity interventions. This may be useful for pre-
venting and treating obesity in some people genetically
prone to obesity and its complications.
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