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Numerous studies have investigated individual bio-
markers in relation to risk of type 2 diabetes. However,
few have considered the interconnectivity of these bio-
markers in the etiology of diabetes as well as the poten-
tial changes in the biomarker correlation network during
diabetes development. We conducted a secondary anal-
ysis of 27 plasma biomarkers representing glucose
metabolism, inflammation, adipokines, endothelial dys-
function, IGF axis, and iron store plus age and BMI at
blood collection from an existing case-control study
nested in the Nurses’ Health Study (NHS), including 1,303
incident diabetes case subjects and 1,627 healthy women.
A correlation network was constructed based on pair-
wise Spearman correlations of the above factors that
were statistically different between case and noncase
subjects using permutation tests (P < 0.0005). We further
evaluated the network structure separately among di-
abetes case subjects diagnosed <5, 5–10, and >10 years
after blood collection versus noncase subjects. Although
pairwise biomarker correlations tended to have similar
directions comparing diabetes case subjects to noncase
subjects, most correlations were stronger in noncase
than in case subjects, with the largest differences ob-
served for the insulin/HbA1c and leptin/adiponectin cor-
relations. Leptin and soluble leptin receptor were two
hubs of the network, with large numbers of different
correlations with other biomarkers in case versus non-
case subjects. When examining the correlation network
by timing of diabetes onset, there were more perturba-
tions in the network for case subjects diagnosed >10
years versus <5 years after blood collection, with con-
sistent differential correlations of insulin and HbA1c.
C-peptide was the most highly connected node in the
early-stage network, whereas leptin was the hub for

mid- or late-stage networks. Our results suggest that
perturbations of the diabetes-related biomarker net-
work may occur decades prior to clinical recognition.
In addition to the persistent dysregulation between in-
sulin and HbA1c, our results highlight the central role
of the leptin system in diabetes development.

Biomarkers are widely used in molecular epidemiologic
research to understand the etiology of chronic diseases and
to assist in risk prediction for disease prevention and early
detection (1). Traditional studies typically focus on a single
or several related biomarkers involved in the same bio-
logic pathway (e.g., inflammatory pathway) or reflecting
one underlying exposure (e.g., endothelial dysfunction).
However, as the causes of human diseases are commonly
multifactorial, elucidating the interdependency and inter-
connectivity among different biomarkers and pathways
may provide a more comprehensive view of and insight
into the pathogenic process. Network-based approaches
have only recently been used in epidemiologic research
(2,3) but provide the opportunity to systematically in-
terrogate individual biomarkers and pathways to uncover
new links among them.

Type 2 diabetes is a chronic, multisystem, and complex
metabolic disorder with rapidly rising burden during the
past two decades (4). It is characterized by impaired
glucose metabolism and insulin resistance, coupled with
dysregulation of multiple biologic pathways. We and
others have shown that inflammatory biomarkers (5),
adipokines (6,7), IGF axis (8), biomarkers of endothelial
dysfunction (9), and body iron stores (10), among other
circulating biomarkers (11–13), are predictive of future
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risk of diabetes. These studies, although providing impor-
tant evidence for the underlying etiology, examined
different groups of biomarkers in isolation. It remains
unclear at the system level how one group of biomarkers
may interact or connect with biomarkers in other biologic
pathways to contribute to diabetes development.

Therefore, we conducted a secondary data analysis that
leveraged existing prediagnostic plasma biomarker data
from a case-control study of type 2 diabetes nested in the
Nurses’ Health Study (NHS) cohort, including 27 circulat-
ing biomarkers among 2,930 women (1,303 incident di-
abetes case subjects and 1,627 healthy women). We used
these data to identify the perturbed biomarker correlation
network in women who developed diabetes over follow-up
versus those who did not. We further used the longitudinal
study design of our cohort to characterize whether the
correlation network patterns changed with increasing time
between blood collection and diagnosis to examine pat-
terns in progression to type 2 diabetes.

RESEARCH DESIGN AND METHODS

Study Population
The NHS was established in 1976 among 121,700 U.S.
female registered nurses, ages 30–55 years (14). All women
completed a baseline questionnaire, and their health con-
ditions and lifestyle factors have been updated biennially
by follow-up questionnaires. Between 1989 and 1990,
32,826 women who were free of cancer provided a heparin
blood sample. A prospective, nested case-control study has
been conducted to examine individual plasma biomarkers
in relation to diabetes risk using incident cases diagnosed
after blood collection (5–12). For each case subject, one to
two control subjects were randomly sampled from those
who were free of type 2 diabetes, cardiovascular disease,
and cancer at the time of the case diagnosis and were
matched on age at blood draw, date of blood draw, race,
and fasting status of the blood sample.

Ascertainment of Incident Diabetes Case Subjects
On each biennial questionnaire, participants reported di-
agnoses of type 2 diabetes, which were further ascertained
by a supplementary questionnaire querying information
on symptoms, diagnostic tests, and relevant treatment.
For cases diagnosed through 1997, a confirmed type 2 di-
abetes case subject was required to meet the following
criteria according to the National Diabetes Data Group:
1) elevated plasma glucose levels (fasting glucose
$140 mg/dL, random glucose $200 mg/dL, or glucose
$200 mg/dL after an oral glucose test) with presence of at
least one symptom (polydipsia, polyuria, polyphagia,
weight loss, or coma), 2) elevated plasma glucose on at
least two occasions with no symptoms, and 3) hypoglyce-
mic therapy with insulin or oral medications. For cases
diagnosed after 1997, the confirmation was based on the
American Diabetes Association recommendations, which
used an updated cutoff of 126 mg/dL for fasting glucose.
In a validation study of 62 NHS participants ascertained to

have diabetes through the supplementary questionnaire,
61 (98%) were confirmed by review of medical records (15).

Measurement of Plasma Biomarkers
The assay details for measuring each biomarker have been
described previously (5–12). In brief, leptin, soluble leptin
receptor (sOB-R), and interleukin 6 (IL-6) were measured
by an ultrasensitive ELISA assay from R&D Systems
(Minneapolis, MN). Total and high-molecular-weight adi-
ponectin were assayed with a quantitative monoclonal
sandwich ELISA (ALPCO Diagnostics Inc., Salem, NH). Resis-
tin wasmeasured by ELISA (Linco Research, St. Charles, MO)
with a minimum detectable limit of 0.16 ng/mL. Fasting
insulin concentrations were determined by an electrochemi-
luminescence immunoassay using the Roche E modular
system (Roche Diagnostics, Indianapolis, IN), and hs-CRP
was measured via an immunoturbidimetric assay (Denka
Seiken, Tokyo, Japan). All assays followed the NHS protocol,
including 10% blinded quality control replicates. The mean
interassay CVs were generally,10% for various biomarkers.
The laboratory was blinded to the sample status (i.e., case
subjects, control subjects, or quality control subjects), and
case subjects and the matched control subjects were assayed
together in the same batch.

Statistical Analyses
Due to the nested case-control design, women who were
free of diabetes at the time they were sampled as control
subjects may have developed diabetes at a later time. As
the objective of this study was to identify biomarker
networks associated with diabetes status (vs. estimate
diabetes incidence rate ratio as in the original case-control
study), the incidence density sampling/matching design
was not considered and the control women who later
developed diabetes (n = 129) were considered as case
subjects in this analysis. Our comparison was women
who developed diabetes at any time from blood draw to
June 2013 (;23 years) versus those who did not. The
diabetes status was termed as case subjects versus non-
case subjects to distinguish from the original case-control
status. As all available biomarkers have been identified
in previous studies as potential risk factors to predict
diabetes risk (5–12), we considered all biomarkers in
the analysis; we also included age and BMI, which are
established diabetes risk factors. We calculated the
pairwise Spearman correlations between age, BMI, and
27 plasma biomarkers in case and noncase subjects sep-
arately. Each correlation was calculated among women
with nonmissing data for that pairwise comparison. To
quantify the difference in the correlations between case
and noncase subjects, we evaluated the difference in
correlation between the two groups and assessed the
statistical significance of the difference using permutation
tests that randomly assigned the case and noncase status
and calculated the correlations between the reassigned
groups (2,3). The process was repeated 1,000 times
to obtain the distribution of the correlation differences
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under the null hypothesis that the connectivity between
biomarkers was not associated with case status. Based on
this distribution, a standardized correlation difference (the
z statistic) was calculated. Selection criteria for correlations
to evaluate in a network analysis were as follows: 1) an
absolute correlation difference of |Dr| . 0.15 and 2)
a corresponding standardized correlation difference of
|z| . 3.5 (approximately equivalent to a two-sided P
value ,0.0005). The selected connections were plotted
as an undirected network graph, with the network hub
being the biomarker with the largest number of connec-
tions (edges) with other biomarkers. The width of the
edges was proportional to the absolute difference in the
correlations between case and noncase subjects. The type
of the edges (i.e., solid vs. dashed) was used to indicate
whether the magnitude of the correlations was greater in
case or noncase subjects, and the color of the edges was
used to indicate the direction of the correlations. Sensi-
tivity analyses were conducted to evaluate the potential
impact of loosening (i.e., |Dr| . 0.1 and |z| . 3) or
tightening (i.e., |Dr| . 0.2 and |z| . 4) the criteria for
entry into the network structure analysis.

Next, to understand the dynamic biomarker network
patterns in the pathogenesis of diabetes, we constructed
three networks in parallel by comparing diabetes case
subjects diagnosed in different periods of time relative
to the blood collection with the noncase subjects, including
1) case subjects diagnosed ,5 years after blood collection,
2) case subjects diagnosed 5–10 years after blood collec-
tion, and 3) case subjects diagnosed.10 years after blood
collection. Similar methods as described above were used
to derive the correlation network.

Several sensitivity analyses were conducted to address
the potential impact of age and BMI on the correlation
network. First, we calculated pairwise partial Spearman
correlations adjusted for age and BMI and compared them
with crude correlations. We also calculated differences in
partial correlations between case and noncase subjects
and compared them with differences in crude correlations.
Second, given that BMI was one of the strongest risk
factors for diabetes, we conducted “block” permutation
tests within quintiles of BMI (i.e., permuted case status
within the same BMI category) to evaluate its impact on
the network structure. Third, to exclude the potential age
effects that may be associated with the length of intervals
between blood collection and diabetes diagnosis, we con-
structed the networks by comparing each case group (as
described above) to the age-matched noncase subjects (as
opposed to all noncase subjects). All analyses were per-
formed using R statistical packages (version 3.2.5), and the
network structure was visualized in Cytoscape (16).

RESULTS

There were 1,627 women who developed diabetes by the
end of follow-up (June 2013) and 1,303 noncase subjects
included in the analysis (Table 1). The number of women

with various biomarkers ranged from433 for high-molecular-
weight adiponectin to 2,361 for proinsulin. Among di-
abetes case subjects, 311 were diagnosed ,5 years after
blood collection, 491 5–10 years, and 501.10 years. Most
biomarkers had significantly different levels between
case and noncase subjects (P, 0.05), with expected trends
by time to diabetes diagnosis (P-trend , 0.05). Due to
matched design, case and noncase subjects were similar
regarding age distribution.

Most of the correlations between biomarkers were in
the same direction between case and noncase subjects
(Supplementary Fig. 1), but these correlations were, in
general, stronger in noncase subjects than in case subjects
(i.e., more dashed lines compared with solid lines) (Fig. 1).
For example, insulin was more strongly positively corre-
lated with HbA1c in noncase subjects (r = 0.62) than in
case subjects (r = 0.41), and the inverse association be-
tween leptin and total adiponectin was also stronger in
noncase subjects (r = 20.26) than in case subjects (r =
20.07). Leptin appeared to be the hub of the network,
with connections with five other biomarkers that differed
significantly between case and noncase subjects, including
total adiponectin, high-molecular-weight adiponectin,
CRP, HbA1c, and IGF binding protein 2 (IGFBP-2).
sOB-R was another important node in the network, and
also had connections with five other biomarkers, including
insulin, HbA1c, total adiponectin, high-molecular-weight
adiponectin, and E-selectin. In addition, BMI had differ-
ential connections with age, adiponectin, C-peptide, and
IGFBP-2 between case and noncase subjects. Notably, the
correlation between sOB-R and HbA1c and the relation-
ships involving IGFBP-3, IGF-1, vascular cell adhesion
molecule (VCAM), and C-peptide were in the opposite
direction by diabetes status (gray edges). When the thresh-
old for selecting edges was lowered (Supplementary Fig.
2A), leptin (seven edges) and sOB-R (nine edges) were still
the biomarkers with the most connections (highest de-
gree); BMI also had seven edges. By contrast, when a more
strict threshold was applied (Supplementary Fig. 2B), only
five edges remained, including the connections of leptin
with total adiponectin, high-molecular-weight adiponec-
tin, and IGFBP-2, as well as the connections of HbA1c with
insulin and sOB-R.

Overall, compared with noncase subjects, there were
more perturbations in the biomarker correlation structure
for diabetes case subjects diagnosed many years after blood
collection than case subjects diagnosed shortly after blood
collection (Fig. 2 and Supplementary Fig. 3). The number
of significant edges was 17 for case subjects diagnosed.10
years after blood collection versus noncase subjects, 12 for
case subjects diagnosed 5–10 years after blood collection,
and 10 for case subjects diagnosed ,5 years after blood
collection. Comparison of case subjects diagnosed .10
years after blood collection versus healthy women showed
a central role of C-peptide in the early pathogenesis of
diabetes (Fig. 2A). The correlations of C-peptide with
sOB-R, high-molecular-weight adiponectin, IL-6, IGF-1,
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IGFBP-3, and bicarbonate were significantly different be-
tween case and noncase subjects. Particularly, the associ-
ations with C-peptide were in the opposite direction
between case and noncase subjects for high-molecular-
weight adiponectin (r = 0.08 in case subjects and
r = 20.36 in noncase subjects), IL-6 (r = 20.31 in case
subjects and r = 0.24 in noncase subjects), IGF-1 (r =20.45
in case subjects and r = 0.21 in noncase subjects), and
IGFBP-3 (r =20.28 in case subjects and r = 0.34 in noncase
subjects). A large difference in the correlation between case
versus noncase subjects was observed for HbA1c and in-
sulin (r = 0.19 in case subjects and r = 0.63 in noncase
subjects). For case subjects diagnosed 5–10 years after
blood collection (Fig. 2B), leptin was the hub of the bio-
marker network connected to CRP, sOB-R, adiponectin,
high-molecular-weight adiponectin, and IGFBP-2. Notably,
the correlation between leptin and adiponectin was inverse
among noncase subjects (r = 20.26) but slightly positive
among case subjects (r = 0.06). Similar to case subjects
diagnosed .10 years after blood draw, a stronger positive
relationship between HbA1c and insulin for noncase sub-
jects (r = 0.63) than case subjects (r = 0.31) was also ob-
served. Finally, for the network considering diabetes case
subjects shortly diagnosed after blood collection (Fig. 2C),
HbA1c had three differential connections with insulin,
sOB-R, and BMI between case and noncase subjects. Again,
HbA1c and insulin was the pair that showed the largest
correlation difference by diabetes status (r = 0.15 in case
subjects and r = 0.63 in noncase subjects).

Despite moderate attenuations after adjustment for age
and BMI using partial Spearman correlations in both case
and noncase subjects, most correlations remained statis-
tically significant after multiple comparison correction
(false discovery rate corrected P value ,0.05) (Supple-
mentary Fig. 4). Differences in partial correlations between
case and noncase subjects were similar to differences in
crude correlations (Supplementary Fig. 5), suggesting that
the differential correlation network observed in the pri-
mary analysis was not entirely explained by differences in
age or BMI between case and noncase subjects. When the
permutation tests were conducted within quintiles of BMI
as a way to control for the effect of adiposity, we observed
a similar correlation network structure (Supplementary
Fig. 6). Additional sensitivity analyses comparing case
subjects diagnosed in different time periods after blood
draw versus their age-matched noncase subjects yielded
similar results (data not shown).

DISCUSSION

In this secondary analysis of biomarker correlation net-
works for diabetes, we observed significant differences
between diabetes case and noncase subjects for correla-
tions involving biomarkers of inflammation, adipokines,
IGF axis, and endothelial dysfunction. Importantly, our
results indicate that the biomarker correlation structure
was disturbed many years before clinical diagnosis of
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diabetes, with more differences observed in early versus
late development of diabetes. Highly connected biomarkers
varied across stages of diabetes development, as measured
by time between blood collection and diagnosis, including
C-peptide for .10 years before diagnosis, leptin for 5–10
years before diagnosis, and HbA1c for ,5 years before
diagnosis. By contrast, the insulin/HbA1c correlation was
consistently weaker in case versus noncase subjects across
the entire course of diabetes development.

The pairwise biomarker correlations, either positive or
negative, were in general stronger in noncase than in case
subjects, suggesting that different pathways and their
interdependence were more tightly regulated in healthy
women. The overall network that we observed when
considering all case subjects highlights leptin as a highly
connected node with differential associations to multi-
ple markers spanning different biologic axes, including

adipose secretion (adiponectin), inflammation (CRP), IGF
(IGFBP-2), and glucose regulation (HbA1c). Notably,
both leptin and adiponectin are adipokines secreted by
adipose tissues and exhibit opposite trends with adiposity,
with a higher leptin-to-adiponectin ratio being strongly
associated with insulin resistance and increased diabetes
risk (17,18). In addition, experimental evidence demon-
strates that circulating CRPmay bind to leptin to reduce its
affinity to leptin receptor and impair downstream signal-
ing, leading to leptin resistance (19). Emphasizing the
central nature of leptin in diabetes development, there
are known interrelationships of leptin resistance with
energy intake, glucose homeostasis, and adipogenesis
(20). Further, administration of leptin to leptin-deficient
morbidly obese adults has been shown to induce a signif-
icant elevation in IGFBP-2 (21). However, our study ob-
served an inverse association between leptin and IGFBP-2

Figure 1—Biomarker correlation network comparing 1,303 diabetes case subjects vs. 1,627 noncase subjects. Significant edges were
identified by the threshold of both |Dr|. 0.15 and z. 3.5 (equivalent to a two-sidedP value,0.0005). The width of the edge is proportional to
the corresponding difference in the biomarker correlation between case and noncase subjects. A solid edge indicates that the absolute value
of the correlation is stronger in case than in noncase subjects, and a dashed edge indicates the opposite. The color of the edge indicates the
direction of the correlation in case and noncase subjects: red, positive correlations in both case and noncase subjects; green, negative
correlations in both case and noncase subjects; gray, opposite correlations between case and noncase subjects. ADPN, adiponectin; E-sel,
E-selectin; HMW, high molecular weight.
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Figure 2—Biomarker correlation network comparing diabetes case subjects diagnosed during different time periods after blood collection
vs. noncase subjects. A: Case subjects (n = 501) diagnosed .10 years after blood collection vs. 1,627 noncase subjects. B: Case subjects
(n = 491) diagnosed 5–10 years after blood collection vs. 1,627 noncase subjects.C: Case subjects (n = 311) diagnosed,5 years after blood
collection vs. 1,627 noncase subjects. Significant edges were identified by the threshold of both |Dr|. 0.15 and z. 3.5 (equivalent to a two-
sided P value,0.0005). The width of the edge is proportional to the corresponding difference in the biomarker correlation between case and
noncase subjects. A solid edge indicates that the absolute value of the correlation is stronger in case than in noncase subjects, and a dashed
edge indicates the opposite. The color of the edge indicates the direction of the correlation in case and noncase subjects: red, positive
correlations in both case and noncase subjects; green, negative correlations in both case and noncase subjects; gray, opposite correlations
between case and noncase subjects. ADPN, adiponectin; E-sel, E-selectin; HCO3, bicarbonate; HGB, hemoglobin; HMW, high molecular
weight; sTNFR2, soluble tumor necrosis factor receptor type 2; vitd, vitamin D.
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that was stronger in noncase than case subjects. The
potential association between leptin and IGFBP-2 in nor-
mal individuals or in individuals with leptin resistance and
its relevance to diabetes warrant further investigation. The
biologic activity of leptin is also regulated by sOB-R, the
primary leptin-binding protein in circulation, which is
another important node in the diabetes biomarker net-
work. Although both leptin and sOB-R are hubs in the
overall biomarker network, sOB-R seems to be an earlier
marker than leptin (i.e., only sOB-R, but not leptin, is
“visible” on the network corresponding to case subjects
diagnosed .10 years after blood collection) (7,22). Taken
together, our findings support a central role of the leptin
system on multiple biologic systems that may act syner-
gistically in the pathogenesis of diabetes.

The difference in the HbA1c/insulin relationship by
diabetes status was consistently observed between case
and noncase subjects, even more than a decade before
development of diabetes. This suggests that glucose dys-
regulation and insulin resistance, which are hallmarks of
diabetes, may emerge many years before clinical diagnosis
and persist throughout the pathogenic progression. Cur-
rently, HbA1c is widely used as a clinical marker for
glycemic control among individuals with diabetes. Consid-
eration of how to assess this dysregulation could present
an opportunity for early intervention and prevention of
full diabetes.

However, the network structure and hub appeared to
change over time, suggesting that the progression to
diabetes begins many years before overt presentation
through different stages. Over a decade before diabe-
tes diagnosis, the relationship between C-peptide and
markers of adipose secretion, inflammation, and IGF
activity were different from those who did not develop
diabetes. C-peptide, which is cleaved from proinsulin to
form insulin, is a better indicator for pancreatic b-cell
function than insulin, as insulin may be rapidly metab-
olized in liver (23). The high degree of differential con-
nectedness of C-peptide suggests that changes in insulin
secretion due to impaired b-cell function or insulin
resistance and subsequent alterations in various physio-
logic pathways may be an early event in diabetes de-
velopment. Interestingly, in type 1 diabetes, there are
two distinct phases of C-peptide decline, an early expo-
nential decline shortly after diagnosis followed by a pro-
longed stable phase (24). Notably, one strong edge
that was uniquely observed in the early-stage network
was the difference in the correlation between C-peptide
and bicarbonate, which may reflect the disrupted acid-
base balance due to glucose dysregulation (25). Given that
exocrine secretion of the pancreas is a major source for
endogenous bicarbonate, this may also suggest an over-
all decline in pancreatic functions during the early stage
of diabetes development (26,27). Finally, genetic loci
identified for diabetes susceptibility have been shown to
act primarily through b-cell dysfunction and insulin
secretion (28).

With the progression of metabolic abnormalities, the
network hub shifted to leptin. Given the central role of
leptin in regulating appetite, food intake, and body weight
(20,29,30) and its strong associations with diet quality
(31), physical activity (32), and sleep (33,34), our results
provide additional evidence that altered behavioral and
lifestyle factors may be key players in accelerating the
onset of diabetes. Finally, the network observed close to
the clinical presentation centered around HbA1c, reflecting
the consequences of long-term suboptimally controlled
blood glucose on multiple biologic pathways. Intriguingly,
the differences in the biomarker correlations in the early
development of diabetes tended to be in opposite direc-
tions (e.g., case subjects had a negative correlation whereas
control subjects had a positive correlation or vice versa,
represented by gray edges), whereas the correlation differ-
ences at a later stage of diabetes development were more
likely to be stronger in noncase than case subjects, but in
the same direction. This suggests that there may be
adaptive mechanisms of the human body to metabolic
dysregulation. This is also supported by the reduced
number of significant edges in the network with progres-
sion to diabetes.

Our analysis represents efficient use of existing data
that shed light on the pathogenesis of diabetes from
a network perspective untapped in prior studies. The
network findings integrated multiple biologic pathways,
revealed their potential interdependencies and mutual
influences in diabetes development, and expanded our
knowledge of the pathogenic process on a systemic level
that cannot be generated from single-biomarker studies.
Our results also suggest that similar network-based
approaches may be implemented in epidemiologic studies
to provide new insights relevant to the etiology of other
diseases. Other strengths of the study included availability
of a large number of biomarkers from archived prediag-
nostic blood samples and long follow-up for diabetes in-
cidence after blood collection. Ascertainment of diabetes
diagnoses through supplemental questionnaires and med-
ical record review, including abstraction of the exact
date of diagnosis, reduced potential misclassification
and allowed assessment of biomarker networks by the
interval between blood draw and diabetes diagnosis.

However, due to the nature of secondary analysis,
several limitations should be acknowledged. First, as
biomarkers were not measured on each participant, we
constructed the correlation network using the complete-
subject analysis approach. Thus, the precision of the esti-
mate as well as the associated potential bias may vary
by each pair of the correlation. Similarly, we were not
able to calculate partial Spearman correlations simulta-
neously adjusted for other biomarkers to identify the in-
dependent associations. Second, our analysis by time to
diabetes diagnosis were based on case groups independent
from each other, and we cannot rule out the possibility
that the differences we observed across time to diabetes
diagnosis may be attributed to certain sample differences
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across case groups. Analyses using repeated blood collec-
tions on the same individuals over the course of diabetes
development would be ideal to elucidate the research
question and should be explored in future studies. In
addition, we were not able to differentiate whether
changes in the biomarker correlation network over time
fully reflected the pathophysiologic progression to diabetes
or were partly due to changes in BMI or other lifestyle
factors during diabetes development. Third, interpretation
of our results requires caution as evidence of correlation
does not necessarily imply causation. Future work mech-
anistically linking these biomarkers will be necessary in
order to fully interpret these results and inform potential
intervention strategies. Finally, our study focused on pre-
dominantly Caucasian women, and whether the findings
can be generalized to men or other racial/ethnic groups
requires additional investigation.

In summary, this network analysis of diabetes bio-
markers highlights the central role of the leptin system
in connection with other biologic pathways in promoting
the clinical onset of diabetes, as well as the decade-long,
persistent dysregulation between insulin and HbA1c

throughout the development of diabetes. Biomarker net-
works featuring C-peptide, leptin, and HbA1c may mark
different stages of diabetes pathogenesis, and additional
studies are needed to confirm these findings and under-
stand their potential preventive and therapeutic implica-
tions. Future epidemiologic studies may also leverage
network-based approaches to advance the current etiologic
knowledge for other diseases.
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