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Abstract

Purpose of Review—The goal of this review is to provide updates on congenital (neonatal) 

diabetes from 2011 to present, with an emphasis on publications from 2015 to present.

Recent Findings—There has been continued worldwide progress in uncovering the genetic 

causes of diabetes presenting within the first year of life, including the recognition of nine new 

causes since 2011. Management has continued to be refined based on underlying molecular cause, 

and longer-term experience has provided better understanding of the effectiveness, safety, and 

sustainability of treatment. Associated conditions have been further clarified, such as 

neurodevelopmental delays and pancreatic insufficiency, including a better appreciation for how 

these “secondary” conditions impact quality of life for patients and their families.

Summary—While continued research is essential to understand all forms of congenital diabetes, 

these cases remain a compelling example of personalized genetic medicine.
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Introduction

Diabetes is an etiologically heterogeneous disorder that includes both polygenic and 

monogenic forms. Monogenic diabetes includes Maturity-Onset Diabetes of the Young 

(MODY), syndromic diabetes, and monogenic diabetes diagnosed during infancy—often 

called neonatal diabetes—which will be the focus of this review. Traditionally, neonatal 
diabetes has been defined as a patient diagnosed under 6 months of age. Since these cases 

are often diagnosed with diabetes after 1 month of age (outside of the true neonatal period), 

and may be diagnosed between 6 and 12 months of age, we prefer the term congenital 
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diabetes to define monogenic forms of diabetes diagnosed under 1 year of age. This 

emphasizes the genetic nature of this group of disorders rather than the age of onset, and we 

will use this terminology throughout this review. Congenital forms of diabetes are diverse 

and can include both permanent and transient phenotypes, as well as include or lack co-

occurring conditions. Healthcare providers have become increasingly aware of these genetic 

conditions, and thus, research and knowledge has subsequently expanded. This review will 

build upon a previously published version by our team [1] and will focus on updates to the 

congenital diabetes field since 2011, with particular emphasis on clinical and genetic 

updates in the last 2 to 3 years.

Genes known to be associated with congenital forms of diabetes are noted in Table 1. A 

summary of pertinent clinical features are noted in Table 2.

KCNJ11/ABCC8: Congenital Diabetes Due to Activating Mutations of the 

KATP Channel

Although variable, based on country, diagnosis age, and possible consanguinity, the 

incidence of congenital diabetes is estimated to be about 1 out of every 100,000 births [78, 

79, 80••, 81, 82]. Activating mutations in either KCNJ11 or ABCC8 remain the most 

common cause of permanent congenital diabetes, together accounting for almost 50% of 

cases, and can usually be well managed with oral sulfonylurea pills instead of insulin 

injections [1, 10]. Transition from insulin to sulfonylureas can be successfully accomplished 

in both an inpatient and outpatient setting with published guidelines [10], depending on the 

comfort of the family and healthcare team. Seeking advice from recognized centers with 

extensive experience is still recommended (monogenicdiabetes.org, diabetesgenes.org). 

Progress has been made toward answering many of the most common questions about 

treatment and prognosis for patients with KCNJ11 or ABCC8-related diabetes:

How sustainable will treatment with oral sulfonylureas be, and will age, obesity or 

other factors eventually require supplemental insulin or other medications?

The age at which sulfonylureas are initiated may have a significant impact on clinical 

outcomes, as supported by a study of 58 participants with KCNJ11-related diabetes [11•]. 

This study found a significant decrease in HbA1c after transition (8.5 to 6.2%, p < 0.001) 

and a correlation between the age that sulfonylureas were started and dose required at the 

time of study analysis (r = 0.8, p < 0.001). Although some participants did require the 

addition of other medications, they were all transitioned in adolescence or later (≥ 13 years 

old), further emphasizing the need for early initiation of sulfonylureas in these patients. A 

separate study of 81 participants with KCNJ11 mutations found that 93% were able to 

maintain good glycemic control (median HbA1c 6.4% at follow-up) on sulfonylureas with a 

median follow-up duration of 10 years [83]. The mutation subtype may also affect the ability 

to successfully transition, as noted in a study of 127 participants with KCNJ11-related 

diabetes [12]. Those who were able to transition (88% of participants) experienced a 

significant decrease in HbA1c (8.2 to 5.9%, p = 0.001). In vitro studies showed that KATP 

channels with mutations of those who were unable to transition had a significantly lower 

tolbutamide block percentage (< 63%), as compared to > 73% of mutations who were 
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(mostly) responsive to sulfonylureas. Duration of diabetes was also a predictor of successful 

transfer. Patients with these mutations may require up to 2.0 mg/kg/day, and thus glycemic 

control must continue to be monitored and medical adherence should be promoted, given the 

potentially large number of pills required. Due to the potential neuroprotective effects, we 

recommend continuing sulfonylurea therapy even when additional medications are required. 

In the University of Chicago Monogenic Diabetes Registry, some patients have shown 

benefit with the additional of other oral agents, such as dipepdidyl-peptidase-IV inhibitors 

[13], or newer injectable medications such as glucagon-like peptide-1 receptor agonists 

(unpublished). Other factors, such as nutrition and exercise, may also impact HbA1c in these 

patients. Continued longitudinal follow-up of large cohorts of patients with these mutations 

will be essential to fully understanding the safety and efficacy of sulfonylureas. Randomized 

controlled trials could be useful in allowing for clearer findings regarding the addition of 

medications other than sulfonylureas.

How often will patients have hypoglycemia, and what happens to their blood sugar 

levels during illness, procedures or hospitalization, especially if oral medications 

cannot be taken?

A recent study from our Monogenic Diabetes Registry sought to address how frequently 

hypoglycemia occurs in patients with KCNJ11-related congenital diabetes [14••]. We 

collected subject- or caregiver-reported survey data (n =30), as well as continuous glucose 

monitoring data (available for seven participants). The cohort was fairly young; mean age at 

the time of survey completion was 10.2 years (median 8 years, IQR 5.25–12.75 years). Most 

were diagnosed during the first 6 months of life (median 0.15 years, IQR 0.09–0.29 years), 

and all were taking sulfonylureas (median dose 0.39 mg/kg/day, IQR 0.24–0.88 mg/kg/day). 

Overall, their most recent HbA1c were in target range (median: 5.7%, IQR 5.5–6.1%). Mild 

to moderate hypoglycemia (“conscious and mostly able to help themselves”) occurred 

infrequently, with 89% reporting mild-moderate occurrences once a month or less. No 

episodes of severe hypoglycemia (“seizure of loss of consciousness”) were reported. There 

was no association between sulfonylurea dose and frequency of hypoglycemia, which may 

be reassuring to healthcare providers as these patients may require doses up to 2.0 mg/kg/

day. A separate study confirmed these findings; out of 81 patients with KCNJ11 mutations, 

no episodes of severe hypoglycemia were reported over 809 patient-years on sulfonylureas 

[83].

To what extent will neurodevelopmental effects be improved or even prevented by 

sulfonylurea treatment?

One study utilized the Beery-Buktenica Developmental Test of Visual-Motor Integration to 

test 19 participants with KCNJ11 mutations with and without neurodevelopmental delay 

(R201H: 8, V59M or V59A: 8, R201C: 1, Y330C: 1, E322K: 1) [15]. All children with 

R201H performed in the “normal” range, while participants with V59M or V59A mutations 

scored the lowest. Although all participants were on sulfonylureas at the time of assessment, 

the age at which the participant was started on a sulfonylurea was inversely correlated with 

scores on the visuomotor assessment (p <0.05). Although certain KATP mutations have 

consistently been reported to be associated with significant developmental delay and/or 

seizures termed DEND (developmental delay, epilepsy, neonatal diabetes), it has not been 
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clear whether those without obvious developmental delay may in fact have more mild 

neurodevelopmental and/or behavioral challenges. A study of KCNJ11 patients (n =23) and 

their unaffected siblings (n = 20) revealed that even patients with more mild KCNJ11 
mutations (“without global developmental delay”) had significant differences in 

performance on standardized tests compared to their siblings [16•]. These differences were 

present in areas such as IQ, academic achievement, and executive function, while those 

patients with global developmental delay also exhibited differences in social awareness and 

behavior. These findings were supported by a separate study of ten patients with KCNJ11-

related congenital diabetes and seven unaffected sibling controls [17]. In addition to 

neurodevelopmental delays, patients with KCNJ11 mutations were significantly more likely 

than their sibling controls to be diagnosed with ADHD (43 vs. 8%, p <0.05) and to have 

sleep difficulties (p <0.01) [18]. Psychiatric disorders, such as anxiety and autism, were 

identified frequently in a separate research study [19•]. However, most of these disorders had 

not been clinically identified prior to that study, emphasizing the importance of screening 

children with KCNJ11-related diabetes for a variety of neuropsychiatric conditions.

In regard to improvement with sulfonylurea treatment, one study followed 19 participants 

during their transition from insulin to sulfonylureas [20•].MRIs, nerve and muscle testing, 

and neurodevelopmental assessments were performed at baseline and 6–12 months 

following the transition. Sulfonylurea use correlated with improvements in 

neuropsychomotor measures as well as with improved glycemic control. Studies using a 

mouse model have suggested that sulfonylureas may have a limited ability to affect channel 

function within the brain [21•]. Further research is needed to fully understand the effect that 

sulfonylureas may have on neurodevelopment and to what extent any benefit may relate to 

dose, drug choice, and/or age of treatment initiation.

How is quality of life of these patients and their families affected? What are their 

biggest concerns in relation to this condition?

A discussion group for families with KCNJ11- or ABCC8-related diabetes was formed in 

April 2010 through the University of Chicago Monogenic Diabetes Registry. Over 5 years, 

the group grew to consist of 64 participants (patients or caregivers) and 11 researchers, and 

over 1400 messages were sent by 2015 [84]. Qualitative analysis revealed that both 

informational support (44% of messages) and psychosocial/emotional support (31.4% of 

messages) were common requests. In terms of topics discussed, neurodevelopmental 

concerns (472 messages) were nearly as popular as diabetes treatments (503 messages), 

emphasizing the impact that these associated conditions can have on patients and their 

families. This study highlights the importance of providing an opportunity for social support 

and knowledge transfer for rare conditions such as these.

Such questions and many others continue to be addressed through international efforts, such 

as the University of Chicago Monogenic Diabetes Registry (http://monogenicdiabetes.org), 

to track long-term outcomes in as many patients as possible [85]. Over 1500 families with 

atypical diabetes from around the world are now included within our Registry, including 

over 150 participants who have mutations in KCNJ11 or ABCC8.
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INS: Diabetes Caused by Mutations in the Insulin Gene

The second most common cause of permanent congenital diabetes is mutations in the insulin 

gene (INS) [1, 22]. The most common mutations are autosomal dominantly inherited 

heterozygous missense mutations that generate improperly folded proteins which are likely 

held in the endoplasmic reticulum, leading to beta-cell stress, and eventually beta-cell death 

[23]. A recent case of a novel homozygous intronic mutation describes a different 

mechanism of action via a mutated translational product without beta-cell death [24]. While 

most mutations in the INS gene cause diabetes onset within the first year of life, certain 

mutations can cause a more mild dysfunction with later diabetes onset and a more MODY-

like phenotype [25]. Infancy-onset cases will require lifelong exogenous insulin therapy, 

while patients with INS-MODY may respond well to insulin and other anti-hyperglycemic 

agents. The use of sulfonylureas is not recommended due to the reduced beta-cell mass that 

is likely present in these cases. A recent case study suggests that initiating intensive insulin 

therapy at the first sign of mild glycemic irregularities may help to preserve beta-cell 

function, further emphasizing the importance of early genetic testing [26].

Insulin and Continuous Glucose Monitor (CGM) Use in Infants

Most patients with heterozygous INS mutations will require lifelong insulin therapy, as in 

the case of many other forms of congenital diabetes. Continual improvements and 

advancements in types of insulin, insulin delivery devices including continuous 

subcutaneous insulin infusion systems (CSII; insulin pumps), and continuous glucose 

monitors will be valuable to these patients. One study analyzed insulin and CGM use in four 

infancy-onset diabetes cases; those using CSII were able to more accurately dose small 

quantities of insulin and did not experience any episodes of diabetic ketoacidosis (DKA) or 

severe hypoglycemia [86]. Analysis of a cohort of German patients helped to inform initial 

insulin dosing guidelines for neonates and infants [87•], and a comprehensive review on 

insulin therapy in infants has been published [88].

6q24: Transient Congenital Diabetes Related to Over-expression of 

Imprinted Genes

A variety of mechanisms can lead to over-expression of imprinted genes at chromosome 

6q24, leading to severe intrauterine growth restriction and the most common cause of 

transient congenital diabetes [1, 2–4]. The hyperglycemia in these cases is often identified 

within the first few days of life and resolves spontaneously within the first year of life, but it 

returns later, usually around adolescence. However, two atypical cases of 6q24-related 

diabetes have recently been reported, including a case of permanent diabetes (still insulin-

requiring at age 5.5 years) [5] and a case that did not have hyperglycemia during the infancy 

period [6]. Insulin is frequently used, although non-insulin therapies, particularly 

sulfonylureas, have been beneficial in some cases [7–9].
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GATA6 and GATA4: Pancreatic Hypoplasia/Agenesis and Congenital Heart 

Defects

Heterozygous inactivating mutations in GATA6 are the most common cause of pancreatic 

agenesis [73]. GATA6 encodes for a transcription factor that plays a key role in the 

development of many tissues, including the pancreas, heart, and liver. Phenotypic 

characteristics include pancreatic hypoplasia or complete agenesis, infancy-onset diabetes, 

congenital heart defects, pancreatic exocrine insufficiency, and gallbladder or liver 

abnormalities. However, phenotypes may be variable based on the specific mutation, or even 

among family members with the same mutation [74]. One case study reported a mother with 

congenital heart defects (patent ductus arteriosus and atrial septal defect), but in whom 

diabetes was not diagnosed until after her third pregnancy at age 28, whereupon she was 

ultimately found to have agenesis of the dorsal pancreas [75]. Two of her children died 

shortly after birth, a third had DKA at 2 years of age and expired from secondary infection, 

while the fourth had Tetralogy of Fallot diagnosed at birth but did not develop diabetes until 

age 14 years and was found to have dorsal pancreatic agenesis. A large cohort of GATA6 
patients confirms the variability in age at diabetes diagnosis ranging from infancy (1 day 

old) to adult onset (46 years old), as well as some patients without diabetes [76]. Congenital 

heart defects were identified in 83% of patients, while a range of exocrine insufficiency 

(requiring enzyme replacement, subclinical deficiencies), hepatobiliary defects (gallbladder 

agenesis, biliary atresia), intestinal malformations (malrotation, hernias), hypothyroidism, 

and neurodevelopmental delays were also variably present. In a separate study, pancreatic 

histology from a donor patient with diabetes since 16 years of age and a missense mutation 

in GATA6 revealed a severely atrophied pancreas, with some beta cells with severe 

amyloidosis, similar to the histopathology of patients with type 2 diabetes [89]. Similar to 

GATA6, GATA4 is a transcription factor that is required for normal pancreatic development. 

Mutations in GATA4 can cause variable phenotypes which may include pancreatic 

hypoplasia or complete agenesis, diabetes (range from infancy-onset to childhood-onset), 

exocrine insufficiency, congenital heart defects, neurodevelopmental delay, and abnormal 

MRI findings [77]. We would recommend consideration of genetic testing in any patient 

with diabetes in conjunction with congenital heart defects or severe intestinal malformations, 

regardless of the age of onset of the diabetes.

Rarer Causes of Congenital Diabetes

RFX6: Diabetes, Intestinal Atresia, Gall Bladder Hypoplasia, and Diarrhea

RFX6 encodes for a transcription factor that is key to beta-cell differentiation, and the 

resulting recessively inherited syndrome consists of pancreatic (infancy-onset diabetes, 

pancreatic hypoplasia) and intestinal manifestations (intestinal atresia, gall bladder 

hypoplasia or agenesis and pancreatic enzyme replacement-unresponsive congenital 

diarrhea) [1, 49, 50]. Recent cases have been described with an expanded phenotype, 

including compound heterozygous cases with childhood-onset diabetes [51] and 

heterozygous cases with a MODY-like phenotype with reduced penetrance [52•].
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IER3IP1: Diabetes with Microcephaly and Infantile Seizures

A syndrome of congenital diabetes, simplified gyral pattern microcephaly, and severe 

infantile-onset epileptic encephalopathy has been described in cases with homozygous, and 

now compound heterozygous mutations [53], in IER3IP1, a gene that may help to protect 

cells from stress-induced apoptosis [1].

NEUROG3: Intractable Diarrhea from Birth with Early-Onset Diabetes

Recessive mutations in NEUROG3, a transcription factor involved in pancreatic and 

enteroendocrine development and function, have been reported to cause congenital diabetes 

with variable ages of onset and chronic intractable malabsorptive diarrhea [1, 46]. Recently, 

additional features have been described, including hypogonadotropic hypogonadism and 

short stature, emphasizing the need for screening and treatment when indicated [47]. 

Previously, NEUROG3 was thought to be critically essential for differentiation of endocrine 

cells. However, cases with evidence of endogenous insulin production (detectable c-peptide 

levels) have been reported, suggesting that at least some limited differentiation may still be 

possible when this gene is disrupted [48].

NEUROD1: Diabetes with Cerebellar Hypoplasia without Pancreatic Exocrine Dysfunction

NEUROD1 encodes for a transcription factor that is highly expressed in both developing and 

mature beta cells, mutations in which have been reported to cause MODY (heterozygous) 

[44] or infancy-onset diabetes (homozygous) [1, 45]. Infancy-onset cases may exhibit 

cerebellar hypoplasia, developmental delay, sensorineural deafness, and visual impairment 

without pancreatic exocrine insufficiency.

PTF1A: Diabetes with Cerebellar and Pancreatic Hypoplasia with Exocrine Dysfunction

PTF1A encodes a transcription factor that is essential for specification of pancreatic 

endocrine, exocrine, and ductal cells [1]. Clinical characteristics of patients with recessive 

mutations in PTF1A may include flexion contractures of arms and legs, paucity of 

subcutaneous fat and optic nerve hypoplasia, complete agenesis of the cerebellum, and 

complete absence of the pancreas [42]. However, cases with reduced severity have been 

described, including recently reported cases of isolated congenital diabetes and exocrine 

insufficiency without neurodevelopmental delay [43]. Whole-genome sequencing identified 

mutations in a distal enhancer region regulating PTF1A, which render the enhancer 

dysfunctional and cause isolated pancreatic agenesis [90, 91].

GLIS3: Diabetes and Congenital Hypothyroidism

Homozygous mutations in GLIS3 have been reported to cause infancy-onset diabetes, 

congenital primary hypothyroidism, and mild facial dysmorphism [1, 56]. These facial 

features were analyzed in detail for seven patients and include eye (elongated palpebral 

fissures), ear (low-set), nose (upturned; depressed nasal bridge), and mouth (long philtrum; 

thin dark border of the upper lip) characteristics [57]. Liver fibrosis and polycystic kidneys 

have been reported rarely [58]. GLIS3 plays an important role in insulin gene transcription, 

beta cell survival, and insulin secretion, which may help to explain how variants can cause 
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monogenic disease (congenital diabetes) as well as contribute to polygenic conditions (type 

1 and type 2 diabetes) [59].

PDX1: Congenital Diabetes with Pancreatic Hypoplasia and Exocrine Dysfunction

Homozygous mutations in PDX1 leading to pancreatic agenesis were the first discovered 

genetic cause of permanent congenital diabetes, with additional cases since described due to 

compound heterozygous mutations with some degree of phenotypic variability [1, 38]. 

Pancreatic hypoplasia or agenesis is a distinguishing feature, along with significant, 

subclinical, or undetectable exocrine insufficiency [39]. Heterozygous mutations in the same 

gene can cause MODY [40], although it is important to note that about 5% of individuals 

sequenced in the UK were found to have variants in PDX1 that did not cause diabetes, thus 

emphasizing the rare nature of true PDX1-MODY [41].

HNF1B: Infancy-Onset Diabetes with Renal Anomalies

Only a few cases of infancy-onset diabetes have been reported to be caused by heterozygous 

mutations in HNF1B, though such mutations, or large deletions, have long been described as 

a cause of later onset diabetes with renal and/or genitourinary abnormalities (renal cysts and 

diabetes syndrome, RCAD, or MODY5) [1]. Clinical characteristics may include 

intermittent insulin requirements, dysplastic kidneys, kidney cysts, pancreatic hypoplasia, 

and/or exocrine insufficiency [54, 55]. There is more commonly an incomplete penetrance of 

diabetes within these families, while renal and/or genitourinary abnormalities tend to be 

consistent features.

PAX6: Infancy-Onset Diabetes with Brain Malformations, Microcephaly, and 
Microphthalmia

Both heterozygous and biallelic mutations in PAX6, a paired domain-containing 

transcription factor involved in islet cell differentiation and function, have been described 

[1]. Heterozygous carriers may exhibit ocular anomalies, impaired glucose tolerance, and/or 

elevated proinsulin/insulin levels in response to a glucose challenge [60]. Homozygous cases 

present with more severe phenotypes, including infancy-onset diabetes, brain malformations, 

microcephaly, anopthalmia, and/or panhypopituitarism, with some cases not surviving past 

the first year of life [1, 61].

WFS1: Diabetes with Optic Atrophy, Diabetes Insipidus, and/or Deafness

Diabetes has been reported as the earliest and most consistent feature of Wolfram syndrome 

(caused by recessive mutations in WFS1), with subsequent development of optic atrophy, 

then later onset of diabetes insipidus and/or deafness (DIDMOAD syndrome), although 

phenotypes can be variable [1, 62, 63]. Age of onset can vary from the first year of life to 

early childhood. Functionally, WFS1 is thought to regulate ER stress, and decreased 

function leads to cell death in pancreatic islets as well as other tissues. In the heterozygous 

state, cases with isolated features such as diabetes or deafness have been reported. However, 

a recent paper demonstrated a distinct type of severe, heterozygous mutations which caused 

infancy-onset diabetes (median diagnosis age 35 weeks, range 13–50 weeks), deafness, 

cataracts, and hypotonia by inducing a significant level of ER stress [64].
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SLC19A2: Diabetes as Part of Thiamine-Responsive Megaloblastic Anemia (TRMA) 
Syndrome

Mutations in SLC19A2, which encodes a plasma membrane thiamine transporter (THTR1), 

have been reported as the cause of TRMA (Rogers syndrome), with diabetes diagnosed at 

variable ages, including infancy onset [1, 65]. Clinical characteristics include diabetes, 

megaloblastic anemia, and sensorineural deafness. Both the anemia and the diabetes may be 

responsive to thiamine treatment. A recent case study of a patient with a novel SLC19A2 
mutation reported an increase in fasting C-peptide levels after 3 months of thiamine 

treatment and a subsequent decrease in insulin requirements [92]. By 23 months old, after 11 

months of thiamine treatment, the patient’s C-peptide had increased by 0.24 ng/mL, and the 

patient no longer required insulin treatment.

SLC2A2/GLUT2: a Rare Cause of Early-Onset Diabetes as Part of Fanconi-Bickel 
Syndrome

Fanconi-Bickel syndrome (FBS) is caused by homozygous or compound heterozygous 

mutations in SLC2A2, which encodes the facilitative glucose transporter, GLUT2 [1, 66]. 

Clinical characteristics of FBS may include hepatomegaly related to hepatic and renal 

glycogen accumulation, renal proximal tubular dysfunction characterized by glucosuria and 

phosphate wasting often leading to hypophosphatemic rickets, delay of puberty and short 

stature, hypergalactosemia (which may be identified by newborn screening), and mild 

fasting hypoglycemia but postprandial hyperglycemia and diabetes or impaired glucose 

tolerance at many ages of onset, including during infancy [93, 94]. The heterogeneity of this 

syndrome was further elucidated in a recent report of three siblings, one of whom had 

transient infancy-onset diabetes (onset around 2 weeks old, remission at 3 months old), as 

well as hepatomegaly, phosphaturia, hypercalciuria, aminoaciduria, and proximal renal 

tubular acidosis [95]. Diabetes was not present in the other two siblings, although one did 

experience fasting hypoglycemia, and unfortunately, they both died (age 4 months and age 6 

years).

EIF2AK3: Diabetes with Epiphyseal Dysplasia and Episodic Liver or Renal Dysfunction

EIF2AK3 encodes fora translation-regulating kinase that plays an important role in the 

trafficking of proinsulin in beta cells [1, 27]. Recessive mutations cause Wolcott-Rallison 

syndrome (WRS), which may consist of epiphyseal dysplasia (not always obvious, 

radiographs may be helpful), liver or renal dysfunction, epilepsy, developmental delay, and 

infancy-onset diabetes [28, 29].Autopsy results from two patients with WRS revealed 

changes attributed to endoplasmic reticulum stress (hepatocytes, exocrine cells), steatosis 

(renal tubular cells, hepatocytes, myocardial fibers), abnormal mitochondria (renal and 

myocardial fibers), and a reduction in beta cells [30].

GCK: Isolated Congenital Diabetes Due to Recessive Mutations

Recessive mutations in the gene encoding the glycolytic enzyme glucokinase (GCK) cause 

infancy-onset diabetes without other syndromic features [1, 33]. Although rare in the USA 

and European registries, the frequency of these cases may be higher in countries with high 

rates of consanguinity, as reported in a recent paper from Oman [34]. Most cases will require 
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lifelong insulin therapy, although partial responsiveness to repaglinide and the sulfonylurea 

glibenclamide have been reported [1]. Phenotypic heterogeneity has been described across 

recessive mutations, including atypical features such as childhood-onset diabetes, with 

protein instability playing the largest role in predicted severity [35]. In the heterozygous 

state, GCK mutations cause stable, mildly elevated fasting blood glucose levels without 

diabetes-related complications (GCK-MODY, [36, 37]).

MNX1 and NKX2–2: Diabetes and Central Nervous System Malformations

A study of consanguineous families revealed homozygous mutations in both NKX2–2 and 

MNX1 as causes of congenital diabetes [71]. NKX2–2 encodes for a transcription factor that 

is critically important for both pancreatic and central nervous system development. 

Clinically, patients with these mutations presented with intrauterine growth restriction 

(IUGR) (birthweight standard deviation range – 2.8 to – 4.52), diabetes (diagnosis age 2–7 

days), developmental delay (moderate to severe), hypotonia, blindness, and hearing 

impairment but had normal exocrine function. MNX1 encodes for a transcription factor that 

plays an important role in pancreatic development and function [72]. As compared to 

patients with NKX2–2 mutations, some similarities in clinical features exist for patients with 

homozygous MNX1 mutations, including IUGR (birthweight standard deviation range – 

2.54 to – 3.09) and infancy-onset diabetes (diagnosis age 1–30 weeks). However, one MNX1 
patient experienced developmental delay (severe), short stature (< 3rd percentile), 

neurological complications, hypoplastic lungs, sacral agenesis, high imperforate anus, and 

other severe features that were not seen in the other MNX1 patient, which was attributed to 

mutation severity.

Monogenic Causes of Autoimmune Dysfunction Including Diabetes

Several monogenic forms of autoimmune dysfunction have been associated with diabetes.

FOXP3: Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-Linked (IPEX) 
Syndrome

Mutations in the X-linked gene FOXP3 are a rare cause of infancy-onset monogenic 

autoimmune diabetes, along with numerous other features including enteropathy causing 

severe diarrhea and malnutrition, severe eczema, and autoimmune thyroid disease [1]. 

Patients with the classically described syndrome have a severe clinical course, resulting in 

death within the first few years of life without stem cell transplant; however, ongoing reports 

demonstrate the phenotypic spectrum of cases who may only have diabetes in isolation [31, 

32].

Additional Causes of Autoimmune Dysfunction

Mutations in AIRE, an autoimmune regulator, had been previously associated with a 

syndrome called APECED, autoimmune polyendocrinopathy-candidiasis ectodermal 

dystrophy, which can include autoimmune diabetes, although the diagnosis age in these 

cases is typically outside of infancy [96, 97]. Biallelic mutations in LRBA cause severe 

autoimmune disease, including infancy-onset diabetes, as described in a cohort of nine 

patients (diabetes diagnosis range 6 weeks–15 months) with additional features including 
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hematological, gastrointestinal, and endocrine disorders, as well as recurrent infections [67]. 

IL2RA encodes for the interleukin 2 receptor alpha chain, which constitutes a portion of the 

interleukin-2 receptor [68]. Interleukin-2 is an important cytokine in the immune system, 

and mutations in IL2RA can cause autoimmune disorders including infancy-onset diabetes. 

One case presented with diabetes, severe diarrhea, and respiratory failure at age 6 weeks. He 

was diagnosed with autoimmune enteropathy and later a series of conditions including 

developed eczema, systemic lymphadenopathy, hepatosplenomegaly, enlarged tonsils, sleep 

apnea, hypothyroidism, and hemolytic anemia [68]. STAT1 and STAT3 are two members of 

the STAT protein family, which act as transcriptional activators, and mutations in these genes 

have also been reported to cause infancy-onset autoimmune diabetes. Five patients with 

polyautoimmunity were found to have uniallelic mutations in STAT1; three were diagnosed 

with autoimmune diabetes (diagnosis ages 11 months–5 years), and another had episodes of 

hyperglycemia while on steroids [69]. Multiple other autoimmune conditions were present in 

each case. A cohort of five patients with STAT3 mutations has been described, three of 

whom had diabetes (diagnosis ages birth–43 weeks) [70•], in addition to several other 

autoimmune conditions. A type 1 diabetes genetic risk score may help in differentiating 

individuals with polygenic autoimmune type1 diabetes from those who may have a 

monogenic autoimmunity syndrome [98].

General Considerations Regarding Diagnosis and Etiology of Congenital 

Diabetes

Importance of Early Diagnosis and Treatment

Diabetes onset in infancy can be particularly severe, with a primarily US-based cohort 

reporting that 66% of participants were in diabetic ketoacidosis (DKA) at the time of 

diagnosis [99•]. In the same cohort, the odds of DKA increased with diagnosis age—the 

odds ratio per 1 month increase was 1.23 (95% CI 1.04, 1.45). DKA is associated with 

increased morbidity and mortality, is costly to the healthcare system, and is stressful for 

families, further emphasizing the need for promoting efforts at earlier recognition of 

symptoms of diabetes before DKA develops. Once diabetes is diagnosed during the first 

year of life, genetic testing should be pursued without delay in order to guide appropriate 

therapy, evaluation of possible associated features, and family testing. Two large studies 

have shown that there can be significant delay between the time of diagnosis of diabetes and 

the genetic diagnosis [100, 80••]. In the USA, this is often related to the coverage of the cost 

of clinical testing, whereas in the cohort from the UK, the delay has improved considerably 

over the years, from ~ 4 years in 2005 to ~ 3 months after 2012.

Cost-Effectiveness of Genetic Testing in Monogenic Diabetes

A significant cost-savings results from a policy of genetic testing of infants diagnosed with 

diabetes under 6 months of age compared to a policy of not testing, largely because of the 

dramatic improvement in glycemic control and improved long-term outcomes for patients 

with KATP-related congenital diabetes who can be treated with oral sulfonylureas [101]. As 

more cases with congenital diabetes are discovered with diagnoses between 6 and 12 months 

of age (University of Chicago Monogenic Diabetes Registry, data unpublished), additional 
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analyses on cost-effectiveness of testing in this age group will be important, particularly for 

those in whom treatment may not change (such as patients with INS mutations). We 

recommend performing genetic testing on any patient diagnosed with diabetes under 12 

months of age. Performing genetic testing for GCK-, HNF1A-, and HNF4A-MODY in 

selected populations was shown to be cost-effective, with increased effectiveness as MODY 

prevalence increased in the selected population or as testing costs decreased [102].

The Future of Genetic Testing in Congenital Diabetes

Given the long and growing list of genes known to cause congenital diabetes, it has become 

increasingly difficult to sequence all possible genes using traditional methods that are time-

consuming, labor-intensive, and expensive. Furthermore, most gene causes have significant 

clinical heterogeneity; thus, phenotype-based selection of genes to be tested is unreliable and 

could result in a delayed or missed diagnosis. Methods such as next-generation sequencing 

(NGS), which allow hundreds of genes to be analyzed in one run, have become cheaper and 

more readily available. These “panel” tests can be fully customized with known genes, 

research genes of interest, and important regulatory regions [103]. Prices vary between 

commercial and research labs, but this approach may be more efficient and/or cost-effective 

than single gene sequencing. A large cohort study from the UK tested 1020 patients using a 

combination of [1] rapid Sanger sequencing for the most common causes (KCNJ11, 

ABCC8, INS, and methylation analysis for 6q24 abnormalities) followed by [2] a 

customized NGS panel which covered all known congenital diabetes genes [93]. Using this 

comprehensive method, they were able to find a monogenic cause in 82% of patients 

diagnosed under 6 months of age. The success in identifying a monogenic cause was similar 

for consanguineous and non-consanguineous cases. Even more comprehensive methods, 

such as whole exome and whole genome sequencing, are also becoming more affordable. 

While these methods are attractive because they increase opportunities for gene discovery, 

they also generate significantly more data, which can make interpreting variants more 

difficult. Improvements in bioinformatics and increased collaboration between clinical 

researchers and those performing functional work will help to improve the reliability of 

interpretation.

Conclusion

Mutations in nearly 30 genes are now known to cause diabetes presenting in the first year of 

life. However, we and others have been able to find a genetic cause in only 80–85% of 

patients with permanent congenital diabetes diagnosed under 6 months, suggesting that 

continuing research will identify new genes and/or regulatory regions. Due to the potential 

implications for treatment and for family members, we recommend genetic testing for any 

patient diagnosed with diabetes under a year of age. Decreasing costs and improving 

technologies will allow for better access to early, comprehensive genetic testing. Finally, 

expansion in both molecular and clinical research will help to facilitate improvements in 

diabetes treatment, as well as prognosis and care of associated features.
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 c

as
es

 
12

–1
5 

da
ys

A
bs

en
t (

1/
5)

, s
m

al
l (

3/
5)

 o
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 p
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ro
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 d
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ra
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w
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 c
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 c
as

es
, 1

1 
m

on
th

s-
5 

ye
ar

s 
(o

ne
 d

id
 n

ot
 

ha
ve

 d
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m
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 c
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 c
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l d
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m
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ra
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 c
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 m
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an

sc
ri

pt
io

n 
fa

ct
or

PN
D

M
, o

cc
as

io
na

lly
 la

te
r-

on
se

t
A

ut
os

om
al

 d
om

in
an

t
In

 2
4 

ca
se

s,
 

m
ed

ia
n 

2 
da

ys
 

(I
Q

R
 1

–7
 d
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 c
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l d
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 d
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 b
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re
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l. 
C

ur
r 

D
ia

b 
R

ep
. 2

01
1;

11
(6

):
51

9–
32

 [
2]

T
N

D
M

 tr
an

si
en

t n
eo

na
ta

l d
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l d
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l d
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l d
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 d
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 d

ea
fn

es
s,

 T
R

M
A

 th
ia

m
in

e-
re

sp
on

si
ve

 
m

eg
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 c
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at
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 d
ia

be
te

s 
of

 th
e 

yo
un

g,
 C

E
ID

 c
on

ge
ni

ta
l h

ea
rt

 d
ef

ec
t, 

E
lI

L
 h

yp
om

et
hy

la
tio

n 
of

 m
ul

tip
le

 im
pr

in
te

d 
lo

ci

U
pd

at
ed

 f
ro

m
 p

re
vi

ou
sl

y 
pu

bl
is

he
d 

ve
rs

io
n

Curr Diab Rep. Author manuscript; available in PMC 2019 June 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Letourneau and Greeley Page 26

Ta
b

le
 2

C
lin

ic
al

 f
ea

tu
re

s 
as

so
ci

at
ed

 w
ith

 m
ul

tip
le

 m
on

og
en

ic
 c

au
se

s 
of

 c
on

ge
ni

ta
l d

ia
be

te
s

C
lin

ic
al

 f
ea

tu
re

G
en

es
 t

o 
co

ns
id

er
 t

es
ti

ng

N
eu

ro
de

ve
lo

pm
en

ta
l d

is
ab

ili
ty

K
C

N
J1

1,
 A

B
C

C
8,

 E
IF

2A
K

3,
 G

L
IS

3,
 N

E
U

R
O

D
1,

 P
T

F1
A

, P
A

X
6,

 IE
R

3I
P1

, M
N

X
1,

 N
K

X
2–

2,
 6

q2
4 

ab
no

rm
al

iti
es

, G
A

TA
6

D
ia

rr
he

a 
an

d/
or

 e
xo

cr
in

e 
pa

nc
re

at
ic

 in
su

ff
ic

ie
nc

y
G

A
TA

6,
 G

A
TA

4,
 N

E
U

R
O

G
3,

 F
O

X
P3

, P
D

X
1,

 P
T

F1
A

, R
FX

6,
 G

L
IS

3,
 H

N
F1

B
, E

IF
2A

K
3,

 L
R

B
A

, I
L

2R
A

, S
TA

T
1,

 S
TA

T
3

T
hy

ro
id

 d
ys

fu
nc

tio
n

G
L

IS
3,

 F
O

X
P3

, E
IF

2A
K

3,
 IL

2R
A

, G
A

TA
6

T
ra

ns
ie

nt
 o

r 
re

la
ps

in
g/

re
m

itt
in

g 
di

ab
et

es
6q

24
 a

bn
or

m
al

iti
es

, Z
FP

57
, K

C
N

J1
1,

 A
B

C
C

8,
 IN

S,
 H

N
F1

B
, S

L
C

2A
2,

 S
L

C
19

A
2

Fa
m

ily
 h

is
to

ry
 o

f 
di

ab
et

es
B

ot
h 

pa
re

nt
s 

or
 in

 th
ei

r 
fa

m
ili

es
: G

C
K

, P
D

X
1,

 N
E

U
R

O
D

1,
 P

T
F1

A
, R

FX
6,

 W
FS

1,
 IN

S 
(r

ec
es

si
ve

 m
ut

at
io

ns
 u

ps
tr

ea
m

 o
f 

co
di

ng
 r

eg
io

n 
or

 d
el

et
io

ns
)

O
ne

 p
ar

en
t (

in
fa

nc
y 

or
 a

du
lt 

on
se

t)
: A

B
C

C
8,

 K
C

N
J1

1,
 IN

S,
 H

N
F1

B
, G

C
K

, 6
q2

4 
du

pl
ic

at
io

ns
 (

pa
te

rn
al

ly
 in

he
ri

te
d)

, G
A

TA
6

K
id

ne
y 

st
ru

ct
ur

al
 o

r 
fu

nc
tio

na
l d

ef
ec

ts
H

N
F1

B
 (

st
ru

ct
ur

al
 a

no
m

al
ie

s 
an

d/
or

 c
ys

ts
),

 G
L

IS
3 

(c
ys

ts
),

 E
IF

2A
K

3 
(a

cu
te

 r
en

al
 f

ai
lu

re
),

 S
L

C
2A

2 
(t

ub
ul

ar
 d

ys
fu

nc
tio

n 
w

ith
 g

lu
co

su
ri

a 
an

d 
ph

os
ph

at
ur

ia
),

 W
FS

1 
(d

ia
be

te
s 

in
si

pi
du

s)

L
iv

er
 d

ys
fu

nc
tio

n
E

IF
2A

K
3 

(e
pi

so
di

c 
liv

er
 f

ai
lu

re
),

 S
L

C
2A

2 
(h

ep
at

om
eg

al
y 

w
ith

ou
t l

iv
er

 f
ai

lu
re

),
 R

FX
6 

(g
al

l b
la

dd
er

 h
yp

op
la

si
a 

w
ith

 in
te

st
in

al
 a

tr
es

ia
 a

nd
 

m
al

fo
rm

at
io

ns
),

 G
L

IS
3 

(l
iv

er
 f

ib
ro

si
s 

in
 s

om
e 

ca
se

s)
, G

A
TA

6 
(h

ep
at

ob
ili

ar
y 

de
fe

ct
s 

su
ch

 a
s 

ga
llb

la
dd

er
 a

ge
ne

si
s 

or
 b

ili
ar

y 
at

re
si

a)

Sk
el

et
al

 a
bn

or
m

al
iti

es
E

IF
2A

K
3 

(e
pi

ph
ys

ea
l d

ys
pl

as
ia

 w
ill

 b
e 

ap
pa

re
nt

 r
ad

io
gr

ap
hi

ca
lly

 if
 n

ot
 c

lin
ic

al
ly

),
 G

L
IS

3 
(o

st
eo

pe
ni

a 
w

ith
 e

le
va

te
d 

al
ka

lin
e 

ph
os

ph
at

as
e)

, P
T

F1
A

 
(f

le
xi

on
 c

on
tr

ac
tu

re
s 

of
 a

rm
s/

le
gs

),
 S

L
C

2A
2 

(h
yp

op
ho

sp
ha

te
m

ic
 r

ic
ke

ts
)

V
is

ua
l i

m
pa

ir
m

en
t

PA
X

6 
(a

ni
ri

di
a,

 m
ic

ro
ph

th
al

m
ia

, a
ls

o 
in

 p
ar

en
ts

),
 N

E
U

R
O

D
1,

 W
FS

1 
(o

pt
ic

 a
tr

op
hy

 o
ut

si
de

 in
fa

nc
y 

pe
ri

od
),

 P
T

F1
A

 (
op

tic
 n

er
ve

 h
yp

op
la

si
a)

, G
L

IS
3 

(c
on

ge
ni

ta
l g

la
uc

om
a)

, N
K

X
2–

2 
(c

or
tic

al
 b

lin
dn

es
s)

D
ea

fn
es

s
W

S1
, S

L
C

19
A

2,
 N

E
U

R
O

D
1,

 G
L

IS
3,

 N
K

X
2–

2

M
eg

al
ob

la
st

ic
 a

ne
m

ia
 o

r 
ot

he
r 

he
m

at
ol

og
ic

al
 

di
so

rd
er

SL
C

19
A

2,
 F

O
X

P3
, L

R
B

A

A
ut

oi
m

m
un

e 
co

nd
iti

on
s

FO
X

P3
, L

R
B

A
, I

L
2R

A
, S

TA
T

1,
 S

TA
T

3,
 A

IR
E

Sh
or

t s
ta

tu
re

FO
X

P3
, S

TA
T

1,
 S

TA
T

3,
 M

N
X

1,
 N

K
X

2–
2,

 S
L

C
19

A
2

U
pd

at
ed

 f
ro

m
 p

re
vi

ou
sl

y 
pu

bl
is

he
d 

ve
rs

io
n.

 A
da

pt
ed

 b
y 

pe
rm

is
si

on
 f

ro
m

 S
pr

in
ge

r 
N

at
ur

e 
fr

om
: G

re
el

ey
 S

A
W

, e
ta

l. 
C

ur
r 

D
ia

b 
R

ep
. 2

01
1;

11
(6

):
51

9–
32

 [
2]

Curr Diab Rep. Author manuscript; available in PMC 2019 June 13.


	Abstract
	Introduction
	KCNJ11/ABCC8: Congenital Diabetes Due to Activating Mutations of
the KATP Channel
	INS: Diabetes Caused by Mutations in the Insulin Gene
	Insulin and Continuous Glucose Monitor (CGM) Use in Infants
	6q24: Transient Congenital Diabetes Related to Over-expression of Imprinted
Genes
	GATA6 and GATA4: Pancreatic Hypoplasia/Agenesis
and Congenital Heart Defects
	Rarer Causes of Congenital Diabetes
	RFX6: Diabetes, Intestinal Atresia, Gall Bladder Hypoplasia, and
Diarrhea
	IER3IP1: Diabetes with Microcephaly and Infantile Seizures
	NEUROG3: Intractable Diarrhea from Birth with Early-Onset Diabetes
	NEUROD1: Diabetes with Cerebellar Hypoplasia without Pancreatic Exocrine
Dysfunction
	PTF1A: Diabetes with Cerebellar and Pancreatic Hypoplasia with Exocrine
Dysfunction
	GLIS3: Diabetes and Congenital Hypothyroidism
	PDX1: Congenital Diabetes with Pancreatic Hypoplasia and Exocrine
Dysfunction
	HNF1B: Infancy-Onset Diabetes with Renal Anomalies
	PAX6: Infancy-Onset Diabetes with Brain Malformations, Microcephaly, and
Microphthalmia
	WFS1: Diabetes with Optic Atrophy, Diabetes Insipidus, and/or
Deafness
	SLC19A2: Diabetes as Part of Thiamine-Responsive Megaloblastic Anemia (TRMA)
Syndrome
	SLC2A2/GLUT2: a Rare Cause of Early-Onset Diabetes as Part of Fanconi-Bickel
Syndrome
	EIF2AK3: Diabetes with Epiphyseal Dysplasia and Episodic Liver or Renal
Dysfunction
	GCK: Isolated Congenital Diabetes Due to Recessive Mutations
	MNX1 and NKX2–2: Diabetes and Central Nervous System
Malformations

	Monogenic Causes of Autoimmune Dysfunction Including Diabetes
	FOXP3: Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-Linked
(IPEX) Syndrome
	Additional Causes of Autoimmune Dysfunction

	General Considerations Regarding Diagnosis and Etiology of Congenital
Diabetes
	Importance of Early Diagnosis and Treatment
	Cost-Effectiveness of Genetic Testing in Monogenic Diabetes
	The Future of Genetic Testing in Congenital Diabetes

	Conclusion
	References
	Table 1
	Table 2

