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Abstract

Purpose of Review—The goal of this review is to provide updates on congenital (neonatal)
diabetes from 2011 to present, with an emphasis on publications from 2015 to present.

Recent Findings—There has been continued worldwide progress in uncovering the genetic
causes of diabetes presenting within the first year of life, including the recognition of nine new
causes since 2011. Management has continued to be refined based on underlying molecular cause,
and longer-term experience has provided better understanding of the effectiveness, safety, and
sustainability of treatment. Associated conditions have been further clarified, such as
neurodevelopmental delays and pancreatic insufficiency, including a better appreciation for how
these “secondary” conditions impact quality of life for patients and their families.

Summary—While continued research is essential to understand all forms of congenital diabetes,

these cases remain a compelling example of personalized genetic medicine.

Keywords
Neonatal diabetes; Congenital diabetes; Monogenic diabetes; NDM; PNDM; TNDM

Introduction

Diabetes is an etiologically heterogeneous disorder that includes both polygenic and
monogenic forms. Monogenic diabetes includes Maturity-Onset Diabetes of the Young
(MODY), syndromic diabetes, and monogenic diabetes diagnosed during infancy—often
called neonatal diabetes—which will be the focus of this review. Traditionally, neonatal
diabetes has been defined as a patient diagnosed under 6 months of age. Since these cases
are often diagnosed with diabetes after 1 month of age (outside of the true neonatal period),
and may be diagnosed between 6 and 12 months of age, we prefer the term congenital
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diabetes to define monogenic forms of diabetes diagnosed under 1 year of age. This
emphasizes the genetic nature of this group of disorders rather than the age of onset, and we
will use this terminology throughout this review. Congenital forms of diabetes are diverse
and can include both permanent and transient phenotypes, as well as include or lack co-
occurring conditions. Healthcare providers have become increasingly aware of these genetic
conditions, and thus, research and knowledge has subsequently expanded. This review will
build upon a previously published version by our team [1] and will focus on updates to the
congenital diabetes field since 2011, with particular emphasis on clinical and genetic
updates in the last 2 to 3 years.

Genes known to be associated with congenital forms of diabetes are noted in Table 1. A
summary of pertinent clinical features are noted in Table 2.

KCNJ11/ABCCS8: Congenital Diabetes Due to Activating Mutations of the
KATP Channel

Although variable, based on country, diagnosis age, and possible consanguinity, the
incidence of congenital diabetes is estimated to be about 1 out of every 100,000 births [78,
79, 80ee, 81, 82]. Activating mutations in either KCNJ11 or ABCC8remain the most
common cause of permanent congenital diabetes, together accounting for almost 50% of
cases, and can usually be well managed with oral sulfonylurea pills instead of insulin
injections [1, 10]. Transition from insulin to sulfonylureas can be successfully accomplished
in both an inpatient and outpatient setting with published guidelines [10], depending on the
comfort of the family and healthcare team. Seeking advice from recognized centers with
extensive experience is still recommended (monogenicdiabetes.org, diabetesgenes.org).
Progress has been made toward answering many of the most common questions about
treatment and prognosis for patients with KCAJ11 or ABCC&related diabetes:

How sustainable will treatment with oral sulfonylureas be, and will age, obesity or
other factors eventually require supplemental insulin or other medications?

The age at which sulfonylureas are initiated may have a significant impact on clinical
outcomes, as supported by a study of 58 participants with KCNJ11-related diabetes [11e].
This study found a significant decrease in HbAlc after transition (8.5 to 6.2%, p < 0.001)
and a correlation between the age that sulfonylureas were started and dose required at the
time of study analysis (r= 0.8, p < 0.001). Although some participants did require the
addition of other medications, they were all transitioned in adolescence or later (= 13 years
old), further emphasizing the need for early initiation of sulfonylureas in these patients. A
separate study of 81 participants with KCN.J11 mutations found that 93% were able to
maintain good glycemic control (median HbAlc 6.4% at follow-up) on sulfonylureas with a
median follow-up duration of 10 years [83]. The mutation subtype may also affect the ability
to successfully transition, as noted in a study of 127 participants with KCN.J11-related
diabetes [12]. Those who were able to transition (88% of participants) experienced a
significant decrease in HbAlc (8.2 to 5.9%, p=0.001). In vitro studies showed that KATP
channels with mutations of those who were unable to transition had a significantly lower
tolbutamide block percentage (< 63%), as compared to > 73% of mutations who were
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(mostly) responsive to sulfonylureas. Duration of diabetes was also a predictor of successful
transfer. Patients with these mutations may require up to 2.0 mg/kg/day, and thus glycemic
control must continue to be monitored and medical adherence should be promoted, given the
potentially large number of pills required. Due to the potential neuroprotective effects, we
recommend continuing sulfonylurea therapy even when additional medications are required.
In the University of Chicago Monogenic Diabetes Registry, some patients have shown
benefit with the additional of other oral agents, such as dipepdidyl-peptidase-1V inhibitors
[13], or newer injectable medications such as glucagon-like peptide-1 receptor agonists
(unpublished). Other factors, such as nutrition and exercise, may also impact HbAlc in these
patients. Continued longitudinal follow-up of large cohorts of patients with these mutations
will be essential to fully understanding the safety and efficacy of sulfonylureas. Randomized
controlled trials could be useful in allowing for clearer findings regarding the addition of
medications other than sulfonylureas.

How often will patients have hypoglycemia, and what happens to their blood sugar
levels during illness, procedures or hospitalization, especially if oral medications
cannot be taken?

A recent study from our Monogenic Diabetes Registry sought to address how frequently
hypoglycemia occurs in patients with KCNJ11-related congenital diabetes [14e]. We
collected subject- or caregiver-reported survey data (n =30), as well as continuous glucose
monitoring data (available for seven participants). The cohort was fairly young; mean age at
the time of survey completion was 10.2 years (median 8 years, IQR 5.25-12.75 years). Most
were diagnosed during the first 6 months of life (median 0.15 years, IQR 0.09-0.29 years),
and all were taking sulfonylureas (median dose 0.39 mg/kg/day, IQR 0.24-0.88 mg/kg/day).
Overall, their most recent HbAlc were in target range (median: 5.7%, IQR 5.5-6.1%). Mild
to moderate hypoglycemia (“conscious and mostly able to help themselves”) occurred
infrequently, with 89% reporting mild-moderate occurrences once a month or less. No
episodes of severe hypoglycemia (“seizure of loss of consciousness”) were reported. There
was no association between sulfonylurea dose and frequency of hypoglycemia, which may
be reassuring to healthcare providers as these patients may require doses up to 2.0 mg/kg/
day. A separate study confirmed these findings; out of 81 patients with KCN.J11 mutations,
no episodes of severe hypoglycemia were reported over 809 patient-years on sulfonylureas
[83].

To what extent will neurodevelopmental effects be improved or even prevented by
sulfonylurea treatment?

One study utilized the Beery-Buktenica Developmental Test of Visual-Motor Integration to
test 19 participants with KCN.J11 mutations with and without neurodevelopmental delay
(R201H: 8, V59M or V59A: 8, R201C: 1, Y330C: 1, E322K: 1) [15]. All children with
R201H performed in the “normal” range, while participants with V59M or V59A mutations
scored the lowest. Although all participants were on sulfonylureas at the time of assessment,
the age at which the participant was started on a sulfonylurea was inversely correlated with
scores on the visuomotor assessment (p <0.05). Although certain KATP mutations have
consistently been reported to be associated with significant developmental delay and/or
seizures termed DEND (developmental delay, epilepsy, neonatal diabetes), it has not been
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clear whether those without obvious developmental delay may in fact have more mild
neurodevelopmental and/or behavioral challenges. A study of KCNJ11 patients (n=23) and
their unaffected siblings (n= 20) revealed that even patients with more mild KCNJ11
mutations (“without global developmental delay”) had significant differences in
performance on standardized tests compared to their siblings [16¢]. These differences were
present in areas such as 1Q, academic achievement, and executive function, while those
patients with global developmental delay also exhibited differences in social awareness and
behavior. These findings were supported by a separate study of ten patients with KCNJ11-
related congenital diabetes and seven unaffected sibling controls [17]. In addition to
neurodevelopmental delays, patients with KCAJZ1 mutations were significantly more likely
than their sibling controls to be diagnosed with ADHD (43 vs. 8%, p <0.05) and to have
sleep difficulties (p <0.01) [18]. Psychiatric disorders, such as anxiety and autism, were
identified frequently in a separate research study [19¢]. However, most of these disorders had
not been clinically identified prior to that study, emphasizing the importance of screening
children with KCNJ11-related diabetes for a variety of neuropsychiatric conditions.

In regard to improvement with sulfonylurea treatment, one study followed 19 participants
during their transition from insulin to sulfonylureas [20¢].MRIs, nerve and muscle testing,
and neurodevelopmental assessments were performed at baseline and 6-12 months
following the transition. Sulfonylurea use correlated with improvements in
neuropsychomotor measures as well as with improved glycemic control. Studies using a
mouse model have suggested that sulfonylureas may have a limited ability to affect channel
function within the brain [21¢]. Further research is needed to fully understand the effect that
sulfonylureas may have on neurodevelopment and to what extent any benefit may relate to
dose, drug choice, and/or age of treatment initiation.

How is quality of life of these patients and their families affected? What are their
biggest concerns in relation to this condition?

A discussion group for families with KCNJ11- or ABCC&related diabetes was formed in
April 2010 through the University of Chicago Monogenic Diabetes Registry. Over 5 years,
the group grew to consist of 64 participants (patients or caregivers) and 11 researchers, and
over 1400 messages were sent by 2015 [84]. Qualitative analysis revealed that both
informational support (44% of messages) and psychosocial/emotional support (31.4% of
messages) were common requests. In terms of topics discussed, neurodevelopmental
concerns (472 messages) were nearly as popular as diabetes treatments (503 messages),
emphasizing the impact that these associated conditions can have on patients and their
families. This study highlights the importance of providing an opportunity for social support
and knowledge transfer for rare conditions such as these.

Such questions and many others continue to be addressed through international efforts, such
as the University of Chicago Monogenic Diabetes Registry (http://monogenicdiabetes.org),
to track long-term outcomes in as many patients as possible [85]. Over 1500 families with
atypical diabetes from around the world are now included within our Registry, including
over 150 participants who have mutations in KCNJ11 or ABCC8.
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INS: Diabetes Caused by Mutations in the Insulin Gene

The second most common cause of permanent congenital diabetes is mutations in the insulin
gene (/NS) [1, 22]. The most common mutations are autosomal dominantly inherited
heterozygous missense mutations that generate improperly folded proteins which are likely
held in the endoplasmic reticulum, leading to beta-cell stress, and eventually beta-cell death
[23]. A recent case of a novel homozygous intronic mutation describes a different
mechanism of action via a mutated translational product without beta-cell death [24]. While
most mutations in the /NS gene cause diabetes onset within the first year of life, certain
mutations can cause a more mild dysfunction with later diabetes onset and a more MODY-
like phenotype [25]. Infancy-onset cases will require lifelong exogenous insulin therapy,
while patients with INS-MODY may respond well to insulin and other anti-hyperglycemic
agents. The use of sulfonylureas is not recommended due to the reduced beta-cell mass that
is likely present in these cases. A recent case study suggests that initiating intensive insulin
therapy at the first sign of mild glycemic irregularities may help to preserve beta-cell
function, further emphasizing the importance of early genetic testing [26].

Insulin and Continuous Glucose Monitor (CGM) Use in Infants

Most patients with heterozygous /NS mutations will require lifelong insulin therapy, as in
the case of many other forms of congenital diabetes. Continual improvements and
advancements in types of insulin, insulin delivery devices including continuous
subcutaneous insulin infusion systems (CSlII; insulin pumps), and continuous glucose
monitors will be valuable to these patients. One study analyzed insulin and CGM use in four
infancy-onset diabetes cases; those using CSII were able to more accurately dose small
quantities of insulin and did not experience any episodes of diabetic ketoacidosis (DKA) or
severe hypoglycemia [86]. Analysis of a cohort of German patients helped to inform initial
insulin dosing guidelines for neonates and infants [87¢], and a comprehensive review on
insulin therapy in infants has been published [88].

6024: Transient Congenital Diabetes Related to Over-expression of
Imprinted Genes

A variety of mechanisms can lead to over-expression of imprinted genes at chromosome
6024, leading to severe intrauterine growth restriction and the most common cause of
transient congenital diabetes [1, 2-4]. The hyperglycemia in these cases is often identified
within the first few days of life and resolves spontaneously within the first year of life, but it
returns later, usually around adolescence. However, two atypical cases of 6q24-related
diabetes have recently been reported, including a case of permanent diabetes (still insulin-
requiring at age 5.5 years) [5] and a case that did not have hyperglycemia during the infancy
period [6]. Insulin is frequently used, although non-insulin therapies, particularly
sulfonylureas, have been beneficial in some cases [7-9].
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GATAG6 and GATA4: Pancreatic Hypoplasia/Agenesis and Congenital Heart

Defects

Heterozygous inactivating mutations in GATA6 are the most common cause of pancreatic
agenesis [73]. GATA6 encodes for a transcription factor that plays a key role in the
development of many tissues, including the pancreas, heart, and liver. Phenotypic
characteristics include pancreatic hypoplasia or complete agenesis, infancy-onset diabetes,
congenital heart defects, pancreatic exocrine insufficiency, and gallbladder or liver
abnormalities. However, phenotypes may be variable based on the specific mutation, or even
among family members with the same mutation [74]. One case study reported a mother with
congenital heart defects (patent ductus arteriosus and atrial septal defect), but in whom
diabetes was not diagnosed until after her third pregnancy at age 28, whereupon she was
ultimately found to have agenesis of the dorsal pancreas [75]. Two of her children died
shortly after birth, a third had DKA at 2 years of age and expired from secondary infection,
while the fourth had Tetralogy of Fallot diagnosed at birth but did not develop diabetes until
age 14 years and was found to have dorsal pancreatic agenesis. A large cohort of GATA6
patients confirms the variability in age at diabetes diagnosis ranging from infancy (1 day
old) to adult onset (46 years old), as well as some patients without diabetes [76]. Congenital
heart defects were identified in 83% of patients, while a range of exocrine insufficiency
(requiring enzyme replacement, subclinical deficiencies), hepatobiliary defects (gallbladder
agenesis, biliary atresia), intestinal malformations (malrotation, hernias), hypothyroidism,
and neurodevelopmental delays were also variably present. In a separate study, pancreatic
histology from a donor patient with diabetes since 16 years of age and a missense mutation
in GATAG6 revealed a severely atrophied pancreas, with some beta cells with severe
amyloidosis, similar to the histopathology of patients with type 2 diabetes [89]. Similar to
GATA6, GATA4 is a transcription factor that is required for normal pancreatic development.
Mutations in GATA4 can cause variable phenotypes which may include pancreatic
hypoplasia or complete agenesis, diabetes (range from infancy-onset to childhood-onset),
exocrine insufficiency, congenital heart defects, neurodevelopmental delay, and abnormal
MRI findings [77]. We would recommend consideration of genetic testing in any patient
with diabetes in conjunction with congenital heart defects or severe intestinal malformations,
regardless of the age of onset of the diabetes.

Rarer Causes of Congenital Diabetes

RFX6: Diabetes, Intestinal Atresia, Gall Bladder Hypoplasia, and Diarrhea

RF.X6encodes for a transcription factor that is key to beta-cell differentiation, and the
resulting recessively inherited syndrome consists of pancreatic (infancy-onset diabetes,
pancreatic hypoplasia) and intestinal manifestations (intestinal atresia, gall bladder
hypoplasia or agenesis and pancreatic enzyme replacement-unresponsive congenital
diarrhea) [1, 49, 50]. Recent cases have been described with an expanded phenotype,
including compound heterozygous cases with childhood-onset diabetes [51] and
heterozygous cases with a MODY-like phenotype with reduced penetrance [52¢].
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IER3IP1: Diabetes with Microcephaly and Infantile Seizures

A syndrome of congenital diabetes, simplified gyral pattern microcephaly, and severe
infantile-onset epileptic encephalopathy has been described in cases with homozygous, and
now compound heterozygous mutations [53], in /ER3/P1, a gene that may help to protect
cells from stress-induced apoptosis [1].

NEUROGS3: Intractable Diarrhea from Birth with Early-Onset Diabetes

Recessive mutations in NEUROGS3, a transcription factor involved in pancreatic and
enteroendocrine development and function, have been reported to cause congenital diabetes
with variable ages of onset and chronic intractable malabsorptive diarrhea [1, 46]. Recently,
additional features have been described, including hypogonadotropic hypogonadism and
short stature, emphasizing the need for screening and treatment when indicated [47].
Previously, NEUROG3was thought to be critically essential for differentiation of endocrine
cells. However, cases with evidence of endogenous insulin production (detectable c-peptide
levels) have been reported, suggesting that at least some limited differentiation may still be
possible when this gene is disrupted [48].

NEURODL1: Diabetes with Cerebellar Hypoplasia without Pancreatic Exocrine Dysfunction

NEURODI encodes for a transcription factor that is highly expressed in both developing and
mature beta cells, mutations in which have been reported to cause MODY (heterozygous)
[44] or infancy-onset diabetes (homozygous) [1, 45]. Infancy-onset cases may exhibit
cerebellar hypoplasia, developmental delay, sensorineural deafness, and visual impairment
without pancreatic exocrine insufficiency.

PTF1A: Diabetes with Cerebellar and Pancreatic Hypoplasia with Exocrine Dysfunction

PTF1A encodes a transcription factor that is essential for specification of pancreatic
endocrine, exocrine, and ductal cells [1]. Clinical characteristics of patients with recessive
mutations in P7F1A may include flexion contractures of arms and legs, paucity of
subcutaneous fat and optic nerve hypoplasia, complete agenesis of the cerebellum, and
complete absence of the pancreas [42]. However, cases with reduced severity have been
described, including recently reported cases of isolated congenital diabetes and exocrine
insufficiency without neurodevelopmental delay [43]. Whole-genome sequencing identified
mutations in a distal enhancer region regulating P7F1A, which render the enhancer
dysfunctional and cause isolated pancreatic agenesis [90, 91].

GLIS3: Diabetes and Congenital Hypothyroidism

Homozygous mutations in GL/S3 have been reported to cause infancy-onset diabetes,
congenital primary hypothyroidism, and mild facial dysmorphism [1, 56]. These facial
features were analyzed in detail for seven patients and include eye (elongated palpebral
fissures), ear (low-set), nose (upturned; depressed nasal bridge), and mouth (long philtrum;
thin dark border of the upper lip) characteristics [57]. Liver fibrosis and polycystic kidneys
have been reported rarely [58]. GL/S3 plays an important role in insulin gene transcription,
beta cell survival, and insulin secretion, which may help to explain how variants can cause
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monogenic disease (congenital diabetes) as well as contribute to polygenic conditions (type
1 and type 2 diabetes) [59].

PDX1: Congenital Diabetes with Pancreatic Hypoplasia and Exocrine Dysfunction

Homozygous mutations in DX leading to pancreatic agenesis were the first discovered
genetic cause of permanent congenital diabetes, with additional cases since described due to
compound heterozygous mutations with some degree of phenotypic variability [1, 38].
Pancreatic hypoplasia or agenesis is a distinguishing feature, along with significant,
subclinical, or undetectable exocrine insufficiency [39]. Heterozygous mutations in the same
gene can cause MODY [40], although it is important to note that about 5% of individuals
sequenced in the UK were found to have variants in PDXZ that did not cause diabetes, thus
emphasizing the rare nature of true PDX1-MODY [41].

HNF1B: Infancy-Onset Diabetes with Renal Anomalies

Only a few cases of infancy-onset diabetes have been reported to be caused by heterozygous
mutations in HNF1B, though such mutations, or large deletions, have long been described as
a cause of later onset diabetes with renal and/or genitourinary abnormalities (renal cysts and
diabetes syndrome, RCAD, or MODY5) [1]. Clinical characteristics may include
intermittent insulin requirements, dysplastic kidneys, kidney cysts, pancreatic hypoplasia,
and/or exocrine insufficiency [54, 55]. There is more commonly an incomplete penetrance of
diabetes within these families, while renal and/or genitourinary abnormalities tend to be
consistent features.

PAX6: Infancy-Onset Diabetes with Brain Malformations, Microcephaly, and
Microphthalmia

Both heterozygous and biallelic mutations in 2AX8, a paired domain-containing
transcription factor involved in islet cell differentiation and function, have been described
[1]. Heterozygous carriers may exhibit ocular anomalies, impaired glucose tolerance, and/or
elevated proinsulin/insulin levels in response to a glucose challenge [60]. Homozygous cases
present with more severe phenotypes, including infancy-onset diabetes, brain malformations,
microcephaly, anopthalmia, and/or panhypopituitarism, with some cases not surviving past
the first year of life [1, 61].

WEFS1: Diabetes with Optic Atrophy, Diabetes Insipidus, and/or Deafness

Diabetes has been reported as the earliest and most consistent feature of Wolfram syndrome
(caused by recessive mutations in WFSI), with subsequent development of optic atrophy,
then later onset of diabetes insipidus and/or deafness (DIDMOAD syndrome), although
phenotypes can be variable [1, 62, 63]. Age of onset can vary from the first year of life to
early childhood. Functionally, WFSZ is thought to regulate ER stress, and decreased
function leads to cell death in pancreatic islets as well as other tissues. In the heterozygous
state, cases with isolated features such as diabetes or deafness have been reported. However,
a recent paper demonstrated a distinct type of severe, heterozygous mutations which caused
infancy-onset diabetes (median diagnosis age 35 weeks, range 13-50 weeks), deafness,
cataracts, and hypotonia by inducing a significant level of ER stress [64].
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SLC19A2: Diabetes as Part of Thiamine-Responsive Megaloblastic Anemia (TRMA)

Syndrome

Mutations in SLC19A2, which encodes a plasma membrane thiamine transporter (THTR1),
have been reported as the cause of TRMA (Rogers syndrome), with diabetes diagnosed at
variable ages, including infancy onset [1, 65]. Clinical characteristics include diabetes,
megaloblastic anemia, and sensorineural deafness. Both the anemia and the diabetes may be
responsive to thiamine treatment. A recent case study of a patient with a novel SLC19A2
mutation reported an increase in fasting C-peptide levels after 3 months of thiamine
treatment and a subsequent decrease in insulin requirements [92]. By 23 months old, after 11
months of thiamine treatment, the patient’s C-peptide had increased by 0.24 ng/mL, and the
patient no longer required insulin treatment.

SLC2A2/GLUT2: a Rare Cause of Early-Onset Diabetes as Part of Fanconi-Bickel

Syndrome

Fanconi-Bickel syndrome (FBS) is caused by homozygous or compound heterozygous
mutations in SLCZAZ, which encodes the facilitative glucose transporter, GLUT2 [1, 66].
Clinical characteristics of FBS may include hepatomegaly related to hepatic and renal
glycogen accumulation, renal proximal tubular dysfunction characterized by glucosuria and
phosphate wasting often leading to hypophosphatemic rickets, delay of puberty and short
stature, hypergalactosemia (which may be identified by newborn screening), and mild
fasting hypoglycemia but postprandial hyperglycemia and diabetes or impaired glucose
tolerance at many ages of onset, including during infancy [93, 94]. The heterogeneity of this
syndrome was further elucidated in a recent report of three siblings, one of whom had
transient infancy-onset diabetes (onset around 2 weeks old, remission at 3 months old), as
well as hepatomegaly, phosphaturia, hypercalciuria, aminoaciduria, and proximal renal
tubular acidosis [95]. Diabetes was not present in the other two siblings, although one did
experience fasting hypoglycemia, and unfortunately, they both died (age 4 months and age 6
years).

EIF2AK3: Diabetes with Epiphyseal Dysplasia and Episodic Liver or Renal Dysfunction

EIF2AK3encodes fora translation-regulating kinase that plays an important role in the
trafficking of proinsulin in beta cells [1, 27]. Recessive mutations cause Wolcott-Rallison
syndrome (WRS), which may consist of epiphyseal dysplasia (hot always obvious,
radiographs may be helpful), liver or renal dysfunction, epilepsy, developmental delay, and
infancy-onset diabetes [28, 29].Autopsy results from two patients with WRS revealed
changes attributed to endoplasmic reticulum stress (hepatocytes, exocrine cells), steatosis
(renal tubular cells, hepatocytes, myocardial fibers), abnormal mitochondria (renal and
myocardial fibers), and a reduction in beta cells [30].

GCK: Isolated Congenital Diabetes Due to Recessive Mutations

Recessive mutations in the gene encoding the glycolytic enzyme glucokinase (GCK) cause
infancy-onset diabetes without other syndromic features [1, 33]. Although rare in the USA
and European registries, the frequency of these cases may be higher in countries with high
rates of consanguinity, as reported in a recent paper from Oman [34]. Most cases will require
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lifelong insulin therapy, although partial responsiveness to repaglinide and the sulfonylurea
glibenclamide have been reported [1]. Phenotypic heterogeneity has been described across
recessive mutations, including atypical features such as childhood-onset diabetes, with
protein instability playing the largest role in predicted severity [35]. In the heterozygous
state, GCK mutations cause stable, mildly elevated fasting blood glucose levels without
diabetes-related complications (GCK-MODY, [36, 37]).

MNX1 and NKX2-2: Diabetes and Central Nervous System Malformations

A study of consanguineous families revealed homozygous mutations in both NKX2-2and
MNX1 as causes of congenital diabetes [71]. NKX2-2encodes for a transcription factor that
is critically important for both pancreatic and central nervous system development.
Clinically, patients with these mutations presented with intrauterine growth restriction
(IUGR) (birthweight standard deviation range — 2.8 to — 4.52), diabetes (diagnosis age 2—7
days), developmental delay (moderate to severe), hypotonia, blindness, and hearing
impairment but had normal exocrine function. MA/XZ encodes for a transcription factor that
plays an important role in pancreatic development and function [72]. As compared to
patients with NKX2-2mutations, some similarities in clinical features exist for patients with
homozygous MN.X1 mutations, including IUGR (birthweight standard deviation range —
2.54 to — 3.09) and infancy-onset diabetes (diagnosis age 1-30 weeks). However, one MN.X1
patient experienced developmental delay (severe), short stature (< 3rd percentile),
neurological complications, hypoplastic lungs, sacral agenesis, high imperforate anus, and
other severe features that were not seen in the other MN.XZ patient, which was attributed to
mutation severity.

Monogenic Causes of Autoimmune Dysfunction Including Diabetes

Several monogenic forms of autoimmune dysfunction have been associated with diabetes.

FOXP3: Immunodysregulation, Polyendocrinopathy, Enteropathy, and X-Linked (IPEX)

Syndrome

Mutations in the X-linked gene FOXP3are a rare cause of infancy-onset monogenic
autoimmune diabetes, along with numerous other features including enteropathy causing
severe diarrhea and malnutrition, severe eczema, and autoimmune thyroid disease [1].
Patients with the classically described syndrome have a severe clinical course, resulting in
death within the first few years of life without stem cell transplant; however, ongoing reports
demonstrate the phenotypic spectrum of cases who may only have diabetes in isolation [31,
32].

Additional Causes of Autoimmune Dysfunction

Mutations in A/RE, an autoimmune regulator, had been previously associated with a
syndrome called APECED, autoimmune polyendocrinopathy-candidiasis ectodermal
dystrophy, which can include autoimmune diabetes, although the diagnosis age in these
cases is typically outside of infancy [96, 97]. Biallelic mutations in LRBA cause severe
autoimmune disease, including infancy-onset diabetes, as described in a cohort of nine
patients (diabetes diagnosis range 6 weeks—15 months) with additional features including
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hematological, gastrointestinal, and endocrine disorders, as well as recurrent infections [67].
IL2RA encodes for the interleukin 2 receptor alpha chain, which constitutes a portion of the
interleukin-2 receptor [68]. Interleukin-2 is an important cytokine in the immune system,
and mutations in /L2RA can cause autoimmune disorders including infancy-onset diabetes.
One case presented with diabetes, severe diarrhea, and respiratory failure at age 6 weeks. He
was diagnosed with autoimmune enteropathy and later a series of conditions including
developed eczema, systemic lymphadenopathy, hepatosplenomegaly, enlarged tonsils, sleep
apnea, hypothyroidism, and hemolytic anemia [68]. STAT1 and STAT3 are two members of
the STAT protein family, which act as transcriptional activators, and mutations in these genes
have also been reported to cause infancy-onset autoimmune diabetes. Five patients with
polyautoimmunity were found to have uniallelic mutations in S7TAT7Z; three were diagnosed
with autoimmune diabetes (diagnosis ages 11 months-5 years), and another had episodes of
hyperglycemia while on steroids [69]. Multiple other autoimmune conditions were present in
each case. A cohort of five patients with STA73 mutations has been described, three of
whom had diabetes (diagnosis ages birth—43 weeks) [70¢], in addition to several other
autoimmune conditions. A type 1 diabetes genetic risk score may help in differentiating
individuals with polygenic autoimmune typel diabetes from those who may have a
monogenic autoimmunity syndrome [98].

General Considerations Regarding Diagnosis and Etiology of Congenital
Diabetes

Importance of Early Diagnosis and Treatment

Diabetes onset in infancy can be particularly severe, with a primarily US-based cohort
reporting that 66% of participants were in diabetic ketoacidosis (DKA) at the time of
diagnosis [99¢]. In the same cohort, the odds of DKA increased with diagnosis age—the
odds ratio per 1 month increase was 1.23 (95% CI 1.04, 1.45). DKA is associated with
increased morbidity and mortality, is costly to the healthcare system, and is stressful for
families, further emphasizing the need for promoting efforts at earlier recognition of
symptoms of diabetes before DKA develops. Once diabetes is diagnosed during the first
year of life, genetic testing should be pursued without delay in order to guide appropriate
therapy, evaluation of possible associated features, and family testing. Two large studies
have shown that there can be significant delay between the time of diagnosis of diabetes and
the genetic diagnosis [100, 80<]. In the USA, this is often related to the coverage of the cost
of clinical testing, whereas in the cohort from the UK, the delay has improved considerably
over the years, from ~ 4 years in 2005 to ~ 3 months after 2012.

Cost-Effectiveness of Genetic Testing in Monogenic Diabetes

A significant cost-savings results from a policy of genetic testing of infants diagnosed with
diabetes under 6 months of age compared to a policy of not testing, largely because of the
dramatic improvement in glycemic control and improved long-term outcomes for patients
with KATP-related congenital diabetes who can be treated with oral sulfonylureas [101]. As
more cases with congenital diabetes are discovered with diagnoses between 6 and 12 months
of age (University of Chicago Monogenic Diabetes Registry, data unpublished), additional
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analyses on cost-effectiveness of testing in this age group will be important, particularly for
those in whom treatment may not change (such as patients with /&S mutations). We
recommend performing genetic testing on any patient diagnosed with diabetes under 12
months of age. Performing genetic testing for GCK-, HNF1A-, and HNF4A-MODY in
selected populations was shown to be cost-effective, with increased effectiveness as MODY
prevalence increased in the selected population or as testing costs decreased [102].

The Future of Genetic Testing in Congenital Diabetes

Given the long and growing list of genes known to cause congenital diabetes, it has become
increasingly difficult to sequence all possible genes using traditional methods that are time-
consuming, labor-intensive, and expensive. Furthermore, most gene causes have significant
clinical heterogeneity; thus, phenotype-based selection of genes to be tested is unreliable and
could result in a delayed or missed diagnosis. Methods such as next-generation sequencing
(NGS), which allow hundreds of genes to be analyzed in one run, have become cheaper and
more readily available. These “panel” tests can be fully customized with known genes,
research genes of interest, and important regulatory regions [103]. Prices vary between
commercial and research labs, but this approach may be more efficient and/or cost-effective
than single gene sequencing. A large cohort study from the UK tested 1020 patients using a
combination of [1] rapid Sanger sequencing for the most common causes (KCNJ11,
ABCCS8, INS, and methylation analysis for 6924 abnormalities) followed by [2] a
customized NGS panel which covered all known congenital diabetes genes [93]. Using this
comprehensive method, they were able to find a monogenic cause in 82% of patients
diagnosed under 6 months of age. The success in identifying a monogenic cause was similar
for consanguineous and non-consanguineous cases. Even more comprehensive methods,
such as whole exome and whole genome sequencing, are also becoming more affordable.
While these methods are attractive because they increase opportunities for gene discovery,
they also generate significantly more data, which can make interpreting variants more
difficult. Improvements in bioinformatics and increased collaboration between clinical
researchers and those performing functional work will help to improve the reliability of
interpretation.

Conclusion

Mutations in nearly 30 genes are now known to cause diabetes presenting in the first year of
life. However, we and others have been able to find a genetic cause in only 80-85% of
patients with permanent congenital diabetes diagnosed under 6 months, suggesting that
continuing research will identify new genes and/or regulatory regions. Due to the potential
implications for treatment and for family members, we recommend genetic testing for any
patient diagnosed with diabetes under a year of age. Decreasing costs and improving
technologies will allow for better access to early, comprehensive genetic testing. Finally,
expansion in both molecular and clinical research will help to facilitate improvements in
diabetes treatment, as well as prognosis and care of associated features.
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