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Abstract

Apoptosis is crucial for the normal development of the nervous system, whereas neurons in the 

adult CNS are relatively resistant to this form of cell death. However, under pathological 

conditions, upregulation of death receptor family ligands, such as tumour necrosis factor (TNF), 

can sensitize cells in the CNS to apoptosis and a form of regulated necrotic cell death known as 

necroptosis that is mediated by receptor-interacting protein kinase 1 (RIPK1), RIPK3 and mixed 

lineage kinase domain-like protein (MLKL). Necroptosis promotes cell death and 

neuroinflammation to mediate pathogenesis in several neurodegenerative diseases, including 

multiple sclerosis, amyotrophic lateral sclerosis, Parkinson disease and Alzheimer disease. In this 

Review, we outline the evidence implicating necroptosis in these neurological diseases, and 

suggest that targeting RIPK1 might help to inhibit multiple cell death pathways and ameliorate 

neuroinflammation.

Introduction

Apoptosis and necroptosis are two distinct regulated cell death mechanisms. Apoptosis is 

mediated by caspases and involved in mediating neural development 1. Necroptosis is a form 

of regulated necrotic cell death that can be activated under apoptosis-deficient conditions2. 

Although different forms of cell death characterized by distinct morphological features have 

long been appreciated, the definitive identification of necroptosis and its implications in 

neurological diseases only began to be elucidated about a decade ago, in a study that used 

small-molecule inhibitors of tumour necrosis factor (TNF)-induced necrosis under 

apoptosis-deficient conditions2,3. Intensive research on necroptosis in the past decade has 

led to the elucidation of the molecular mechanisms that underlie the activation of this cell 

death modality and its pathophysiological importance in human diseases4,5.
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Necroptosis can be triggered by the activation of death receptors [G] (DRs) such as TNF 

receptor 1 (TNFR1). Under certain conditions, TNFR1 activation leads to the activation of 

receptor-interacting protein kinase 1 (RIPK1), and the RIPK1-kinase activity-dependent 

formation of a RIPK1–RIPK3–mixed lineage kinase-like protein (MLKL) complex (also 

known as complex IIb) (Fig. 1). Here, the phosphorylation of MLKL by RIPK3 ultimately 

leads to necroptosis via disruption of the plasma membrane and cell lysis6. In addition, the 

activation of RIPK1 may alternatively lead to apoptosis or neuroinflammation, depending on 

the cell type and context 4.

In this Review, we provide an overview of the importance of RIPK1 signalling in 

necroptosis and neuroinflammation in CNS diseases. We briefly describe the role of 

apoptosis in the developing nervous system and how the adult CNS exhibits reduced 

sensitivity to intrinsic pathways of apoptosis. We explain how, under pathological 

conditions, DR-mediated extrinsic cell death [G] pathways may become activated and 

overcome the resistance of the adult CNS to intrinsic apoptosis [G], thus promoting both 

extrinsic apoptosis and necroptosis. Whereas the intrinsic apoptosis pathway is required in 

normal development, necroptosis is a common deleterious mediator of neurodegeneration. 

We discuss the role of necroptosis in various neurological diseases and examine how RIPK1 

and necroptosis may be activated in specific CNS diseases. Finally, we evaluate evidence 

suggesting that RIPK1 activity may also contribute to CNS pathology by promoting 

neuroinflammation, and describe the underlying mechanisms. Overall, the activity of RIPK1 

has emerged as a central therapeutic target of drug candidates currently being clinically 

tested for the treatment of neurological diseases 7,8.

Apoptosis in the developing CNS

An evolutionarily conserved apoptosis programme.

Elegant genetic studies in the nematode Caenorhabditis elegans revealed the first insights 

into the mechanisms of programmed cell death9: loss-of-function mutations in the ced-3 and 

ced-4 genes prevented all apoptosis during nematode development. Strikingly, most of the 

131 cells that die during C. elegans development are in the neuronal lineage10; thus, in the 

developing C. elegans nervous system, apoptosis has a major role in eliminating superfluous 

neurons and refining neuronal connections. Caspases, which are the homologues of CED-3 

in mammals11, mediate neuronal apoptosis in vertebrates, as demonstrated by the finding 

that, in the chicken dorsal root ganglion, expression of a viral inhibitor of caspases inhibits 

neuronal death induced by trophic factor deprivation, a model of developmental neuronal 

death12. Whereas CED-3 controls all of the developmental apoptosis in C. elegans, 

mammals express 12 different caspases that can regulate apoptosis as well as certain non-

apoptotic functions13.

Caspases are synthesized as catalytically inactive pro-enzymes consisting of a pro-domain, a 

large subunit and a small subunit13,14. They may be activated by cell-intrinsic pathways, 

such as by DNA damage, or by cell-extrinsic pathways — that is, in response to ligands that 

activate death receptors. In the intrinsic pathway of apoptosis, caspase-9 is activated 

following mitochondrial damage primarily by binding to the cytochrome c–apoptotic 

protease-activating factor 1 (APAF1) complex, or apoptosome15. In the extrinsic pathway of 
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apoptosis, caspases that have a death-effector domain, such as caspase-8, are activated by 

interacting with signalling complexes downstream of DRs such as TNFR1 and FAS (also 

known as CD95)16. In either case, the activation of initiator caspases by intrinsic or extrinsic 

pathways leads to further activation of downstream effector caspases, such as caspase-3 and 

caspase-717. Once activated, effector caspases cleave hundreds of cellular substrates, leading 

to cellular demise18.

Apoptosis during nervous system development in mammals.

In the nervous system, the intrinsic apoptosis pathway is important for the proper formation 

of the CNS. Neurons generated during embryonic and early postnatal development are 

highly sensitive to apoptosis. The survival of immature neurons depends upon trophic 

factors such as nerve growth factor (NGF) or brain-derived neurotrophic factor (BDNF) 

provided by their targeting sites19. Trophic factors protect developing neurons by 

suppressing the mitochondrial pathway of apoptosis, which is mediated by the translocation 

of BAX from the cytosol to mitochondria, followed by the loss of mitochondrial membrane 

integrity and caspase activation via apoptosome formation20. This formation of apoptosome 

promotes the activation of caspase-9 and the downstream caspases such as caspase-3 that are 

involved in mediating development cell death. Both Casp-3−/− mice 21 and Casp-9−/− mice22 

show similar severe defects in developmental neuronal apoptosis, with marked expansion of 

the periventricular zone and ectopic cell masses in the CNS, and perinatal lethality. After the 

proper formation of the CNS, multiple caspases, as well as members of the BCL-2 family 

proteins, which serve as regulators of mitochondrial apoptosis, are downregulated in the 

CNS, in part explaining the relative resistance of mature neurons to apoptosis23,24.

Mature neurons show increased resistance to intrinsic apoptosis.

Dependence on trophic factors for survival is largely lost once neurons mature (by postnatal 

day 28 in mice)25. Trophic factor withdrawal from cultures of mature sympathetic neurons 

does not induce apoptosis20. Further, adult brain cells are largely refractory to intrinsic 

apoptosis induced by mitochondrial damage 26. This resistance to apoptosis may be an 

adaptive mechanism to ensure the long-term survival of mature neurons for many decades, 

as in the human brain. The resistance of mature neurons to apoptosis may be mediated by 

mechanisms both upstream and downstream of mitochondria in the intrinsic apoptosis 

pathway 27–29.

Overcoming apoptosis resistance of mature neurons.

The increased resistance of the adult nervous system to intrinsic pathway of apoptosis can be 

overcome under pathological conditions by the activation of the extrinsic apoptosis pathway 

via the upregulation of the cognate ligands of multiple DRs such as TNF, FAS ligand 

(FASL) and TNF-related apoptosis-inducing ligand (TRAIL). These DR ligands may be 

upregulated in the context of chronic neurodegenerative diseases such as Alzheimer disease 

(AD), Parkinson disease (PD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis 

(MS)30–36, to mediate both cell death and inflammation37.

Whereas the loss of TNFR1 is beneficial in multiple animal models of neurodegenerative 

diseases, inhibiting more than one DR may have increased benefit. For example, inhibiting 
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both TNF and FASL, through genetic mutations or neutralizing antibodies, is more 

efficacious in reducing infarct size in the rodent middle cerebral artery occlusion [G] 

(MCAo) model of stroke than blocking TNF or FASL alone38. Similarly, in the experimental 

autoimmune encephalomyelitis [G] (EAE) mouse model of MS, oligodendrocyte loss can be 

more effectively blocked by inactivating both FAS and TNFR1 than by inhibiting either 

alone39. In addition, in cultured slices of human brain tissue, TRAIL robustly induced 

apoptosis of neurons, oligodendrocytes, microglia and astrocytes40. TRAIL expression is 

upregulated in the cerebral cortex of individuals with AD, often near plaques of amyloid-β 
(Aβ)41. In chronic and acute human MS lesions, and in mouse brains after induction of 

EAE, TRAIL is upregulated, predominantly by activated microglia and invading immune 

cells42.

Thus, whereas intrinsic apoptosis pathway is necessary for normal development, the 

extrinsic apoptosis pathway may serve as a sensor of extracellular inflammatory signalling 

in the adult nervous system. Moreover, several ligands of the DR family, including TNF, 

FASL and TRAIL, may cooperate to overcome the resistance of mature neurons to apoptosis 

by promoting cell death through the extrinsic apoptosis pathway, and thus collectively 

contribute to pathogenesis in neurological disorders. The possible activation of multiple DR 

family members under disease conditions suggests that therapeutic strategies that can target 

multiple DRs simultaneously may be more promising than those targeting a single DR.

Necroptosis in neurological diseases

By acting on DRs of various CNS cell types such as neurons and oligodendrocytes, TNF, 

FASL and TRAIL can induce not only extrinsic apoptosis, but also necroptosis through 

downstream involvement of RIPK1, RIPK3 and MLKL (Fig. 1). Necroptosis and RIPK1 

have been implicated in many major human CNS diseases (Table 1). RIPK3-null mice and 

mice carrying various RIPK1 kinase-dead knock-in mutations are normal in development 

and adult life, demonstrating that unlike apoptosis, necroptosis is not involved in mediating 

normal development or adult homeostasis. Strikingly, however, these mutant mice do show 

resistance in multiple animal models of human inflammatory and neurological diseases 

(Table 2).

In the mature nervous system, RIPK1 kinase-dependent necroptosis serves as a major 

executioner of cell death in response to extracellular inflammatory signalling. Necroptosis 

can be experimentally activated under apoptosis-deficient conditions. Whereas 

developmental apoptosis is mostly immune silent [G], necroptosis elicits a strong 

inflammatory response that can drastically alter the local tissue environment and mediate the 

pathogenesis of CNS diseases 43.

Necroptosis induction.

The intracellular domains of TNFR1, FAS, and TRAIL receptor 1 (TRAILR1) and 

TRAILR2 (also known as DR4 and DR5) all include a death domain [G] (DD) and, 

following stimulation by their respective cognate ligands, TNF, FASL and TRAIL, recruit 

RIPK1 by homotypic binding of their DD to that of RIPK144. Several small-molecule 
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RIPK1 inhibitors have been developed to target necroptosis activated by multiple members 

of the DR family (Box 1).

Although both FASL and TRAIL can activate necroptosis, their pro-inflammatory activities 

are considerably weaker than that of TNF45. Thus, our discussion here will focus on the 

downstream pathways activated by TNF, one of the most extensively studied 

neuroinflammatory cytokines involved in neurodegenerative diseases. TNF can interact with 

two receptors, TNFR1, which is expressed most prominently by microglia, astrocytes, 

oligodendrocytes and endothelial cells, and TNFR2, which is predominantly expressed by 

microglia46. Neuronal expression of TNFR1 and TNFR2 is very low under normal 

conditions47,48. Unlike TNFR1, TNFR2 does not contain the intracellular DD necessary for 

the formation of complex I (also known as TNF-receptor signalling complex (TNF-RSC))49 

involved in mediating cell death responses; therefore, our discussion here will focus on the 

signalling pathways mediated by TNFR1 (Fig. 1).

Stimulation of TNFR1 by TNF leads to the formation of the membrane-associated, 

intracellular complex I, through the recruitment of two DD-containing proteins, RIPK1 and 

TNFR1-associated DD protein (TRADD), by homotypic interactions with the TNFR1 DD50. 

In complex I, RIPK1 is subject to several types of ubiquitin modifications, including Ml, 

K11, K48 and K63 ubiquitylation, and which play a critical role in modulating the activation 

of RIPK14 (Fig. 2).

The activation of RIPK1 represents a key signalling event in the TNFR1 pathway and 

dictates downstream cell death or survival (Fig. 1). RIPK1 activation can lead to cell death 

by driving the formation of a RIPK1–TRADD-FAS-associated DD protein (FADD)–caspase 

8 complex (complex IIa), which triggers caspase activation and leads to RIPK1-dependent 

apoptosis [G] (RDA)6. By contrast, when caspase activity is deficient, RIPK1 activation 

leads to necroptosis through the formation of a RIPK1–RIPK3–MLKL complex (complex 

IIb), in which phosphorylation of MLKL by RIPK3 triggers disruption of the cellular 

membrane and cell lysis (Fig. 3)51–54.

Regulation of RIPK1 activation.

The extensive post-translational modifications of RIPK1 in complex I, including 

ubiquitylation, deubiquitylation and phosphorylation (Fig. 2), play a crucial role in deciding 

if the cell will live or die and how it might die. Under certain conditions, e.g. with cIAP1/2 

deficiency or TAK1 deficiency, activated, ubiquitylated RIPK1 in complex I can transition to 

form an insoluble and highly ubiquitylated intermediate complex called iuRIPK1 that can in 

turn form complex IIa or complex IIb and drive cell death (Fig. 1) 55.

Under conditions when cells do not die, the activation of TNFR1 and recruitment of 

TRADD into complex I leads to activation of the transcription factor NF-κB, which in turn 

drives transcription of NF-κB response genes. In complex I, TRADD recruits the adaptor 

proteins TNFR-associated factor 2 (TRAF2) or TRAF5 and the E3 ubiquitin ligases cellular 

inhibitor of apoptosis 1 (cIAP1) or cIAP2, which then catalyse the K63 ubiquitylation of 

RIPK156. K63 ubiquitin chains on RIPK1 promote the recruitment and activation of 

transforming-growth-factor-β-activated kinase 1 (TAK1), which activates IκB kinases 
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(IKKs) to promote the activation of nuclear factor-κB (NF-κB) pathway, leading to 

transcription of pro-survival factors, such as FLICE-inhibitory protein (FLIP), and pro-

inflammatory cytokines57. Recent evidence suggests that TAK1 can suppress RIPK1 

activation either directly through inhibitory phosphorylation, or indirectly, via activation of 

downstream kinases including MAPK-activated protein kinase 2 (MK2) and the IKKs 58–61. 

Thus, TAK1 mediates important pro-survival responses by both promoting NF-κB-mediated 

gene transcription and suppressing RIPK1 activation.

The presence of cIAP1/2 and the K63 ubiquitylation of RIPK1 in complex I also mediates 

the recruitment of the linear (M1) ubiquitylation assembly complex LUBAC. LUBAC is 

composed of haem-oxidized IRP2 ubiquitin ligase 1 (HOIL1), the catalytic subunit HOIL1-

interacting protein (HOIP) and shank-associated RH domain-interacting protein 

(SHARPIN), as well as the deubiqitinating enzyme CYLD and its adaptor spermatogenesis-

associated 2 (SPATA2), which can disassemble M1 ubiquitylation62–68. The activation of 

RIPK1 is negatively modulated by its M1 ubiquitylation status65,69,70. Three ubiquitin-

binding proteins that bind predominantly M1 ubiquitin chains, including optineurin (OPTN), 

NF-κB essential modulator (NEMO) and A20-binding inhibitor of NF-κB activation 1 

(ABIN1), all negatively regulate RIPK1 activation71–77. For example, recruitment of NEMO 

into complex I leads to activation of the IKK complex, which, like TAK1 activation, leads to 

both NF-κB activation and the suppression of RIPK1 activation via inhibitory 

phosphorylation59,78. In addition, M1 ubiquitylation of RIPK1 in complex I also mediates 

the recruitment of the kinase TBK1, which leads to phosphorylation of RIPK1 T189, a site 

important for RIPK1 substrate recognition; thus, phosphorylation of T189 RIPK1 by TBK1 

blocks the transphosphorylation of RIPK1 itself, preventing its activation 79.

Recruitment of ABIN1 into complex I facilitates the recruitment of A20 (also known as 

TNFAIP3), a ubiquitin-editing enzyme that inhibits the activation of RIPK176,80–82 (Fig. 1). 

A20 contains an OTU (ovarian tumour) domain that functions as a K63 deubiquitinase of 

RIPK182–84. A20 deficiency thus promotes necroptosis by activating RIPK1 and its pro-

necroptotic partner RIPK3. ABIN1 deficiency also sensitizes to necroptosis: Abin1−/− mice 

die during embryonic development (E18.5) owing to massive liver degeneration that can be 

blocked by the kinase-dead RIPK1 D138N mutation and by RIPK3 deficiency76. 

Interestingly, a genome-wide association study (GWAS) linked ABIN1 with both ALS and 

schizophrenia85. Thus, ABIN1 deficiency might promote the activation of RIPK1 in ALS 

and possibly also in schizophrenia.

Defective activation of caspase-8 in brain disorders.

Caspase inhibition is a prerequisite for susceptibility to necroptosis in most cell types2. In 

several cell lines, caspase inhibition alone promotes the activation of RIPK1 and thus 

autocrine production of proinflammatory cytokines and necroptosis43. Caspase-8 is the most 

important caspase that regulates necroptosis: it inhibits necroptosis by proteolytically 

cleaving RIPK1 after Asp324 (Fig. 2), separating the N-terminal kinase domain from the C-

terminal part of the molecule86 and preventing RIPK1 kinase activation through 

dimerization via the C-terminal DD87.
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Genetic ablation of caspase-8 or its adaptor protein FADD results in defective vascular and 

cardiac development and mouse embryonic lethality at E10.5 88,89; however, Casp-8−/− mice 

and Fadd−/− mice are fully viable when bred on necroptosis-deficient Ripk3−/− or Mlkl−/− 

backgrounds90,91. These results indicate that caspase-8 and FADD block necroptosis during 

normal development.

Caspase-8 inactivation may provide an important mechanism for sensitization to necroptosis 

in human CNS diseases. Tissue samples from cortical lesions of MS patients showed 

reduced levels of the active 18 kDa caspase-8 subunit and correspondingly elevated levels of 

full-length caspase-8 and the partially processed p43 subunit, as well as reduced caspase-8 

activity92, implying defective caspase-8 activation. The expression of cellular FLICE-like 

inhibitory protein long form (cFLIPL), an inhibitor of caspase-8, was also substantially 

elevated in MS samples92. In the CNS, cFLIPL is expressed in many cell types, including 

microglia, oligodendrocyte precursor cells, and mature oligodendrocytes, but to a low extent 

in neurons under normal conditions48. Increased levels of cFLIPL may allow for activation 

of necroptosis in MS, as cFLIPL promotes the cleavage of pro-caspase-8 to yield the p43 

subunit, but prevents the full activation of caspase-892. Similarly, in the EAE model of MS, 

levels of full-length caspase-8 and c-FLIPL are increased, whereas levels of the active 18 

kDa caspase-8 are decreased92. cFLIPL expression can be induced by NF-κB93; thus, the 

ongoing inflammatory response in MS human spinal cords and brains and in mice after 

induction of EAE might promote cFLIPL expression via the NF-κB pathway, and thus 

facilitate necroptosis by blocking caspase-8 activation.

Caspase-8 deficiency may also be involved in AD. Two CASP8 variants, p.K148R and 

p.I298V, were identified as risk alleles of AD in a GWAS94. Both the K148R and the 

I1298V variants show a reduced ability to activate caspase-3, a downstream substrate of 

caspase-8. It will be interesting to examine whether the K148R mutation may affect the 

activation of caspase-8 by blocking a ubiquitylation site on the enzyme, as caspase-8 is 

subject to regulation by multiple E3 ubiquitin ligases95.

Necroptosis of oligodendrocytes and axonal degeneration.

Pathological axonal degeneration is frequently observed in patients with neurodegenerative 

disorders such as ALS, MS, AD and PD, and contributes significantly to neurological 

disability 96–98. Axonal degeneration may be acutely induced by direct nerve transection in a 

process known as Wallerian degeneration [G] 99–101. In chronic neurodegenerative disorders 

such as MS and ALS, axons may undergo so-called ‘Wallerian-like’ degeneration without 

affecting cell bodies, similar to that of Wallerian degeneration96. Increasing evidence 

suggests that the degeneration and dysfunction of oligodendrocytes is an important 

mechanism involved in driving axonal degeneration, such as Wallerian-like degeneration, in 

neurodegenerative diseases 102.

Focal inflammatory demyelination and axonal degeneration in the white matter of the brain 

and spinal cord are key pathological features and the cause of permanent disability for 

individuals with MS. Inhibiting oligodendrocyte death and promoting their ability to 

remyelinate are major therapeutic goals for treating MS103. Whereas apoptosis of 

oligodendrocytes occurs in the developing mouse CNS104, necroptosis of mature primary 
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rodent oligodendrocytes can occur in vitro response to TNF that is inhibited by the RIPK1 

inhibitor Nec-1s (also named 7N-1) or RIPK3 deficiency92. Thus, oligodendrocytes may be 

intrinsically ‘hard-wired’ for necroptosis when stimulated by TNF, even without exogenous 

caspase inhibitors. In the cuprizone model [G] of MS, oligodendrocytes undergo rapid 

degeneration, with concomitant microglial activation and behavioural deficit92. RIPK1 

inhibition or RIPK3 deficiency reduces motor deficits, myelin loss and microglial activation 

in the corpus callosum of mice treated with cuprizone92. Similarly, the inhibition of RIPK1 

by Nec-1s or compound 22 (another RIPK1 inhibitor developed by Takeda), can protect 

against demyelination and oligodendrocyte degeneration in EAE animals92,105.

ALS affects motor neurons, which have the longest axons of any neurons in the body. 

Growing evidence suggests that axonal degeneration in ALS may begin early, well before 

the onset of clinical symptoms106,107, and oligodendrocyte degeneration is a prevalent 

pathological feature in ALS97. One study75 demonstrated a RIPK1-dependent axonal 

pathology in mice lacking OPTN (one of the ubiquitin-binding proteins that inhibit RIPK1). 

These animals exhibited a marked reduction in the number of motor axons and a 

considerable amount of abnormal myelination in the white matter of the ventrolateral spinal 

cord, without the loss of motor neuron cell bodies. Moreover, these mice also showed more 

large-diameter axons and fewer total axons in the ventrolateral white matter, remniscent of 

the degeneration and swelling of motor neuron axons in the spinal cords of individuals with 

early-stage ALS108. The motor axons of Optn−/− mice also show ultrastructural evidence of 

immature myelination with decompaction [G], Thus, OPTN deficiency leads to the selective 

axonal degeneration of motor neurons without affecting cell bodies, providing an animal 

model of Wallerian-like axonal degeneration.

Notably, the axonal degeneration phenotype of Optn−/− mice can be reproduced by the 

conditional knockout of Optn specifically from oligodendrocytes75. Compared with WT 

oligodendrocytes, Optn−/− oligodendrocytes are more sensitive to TNF–induced necroptosis, 

but can be protected by Nec-1s, RIPK1 D138N kinase-dead mutation or RIPK3 

deficiency75. Similarly, RIPK1 inhibition and RIPK3 deficiency block axonal degeneration 

and neural dysfunction in the Optn−/− mice. Thus, the loss of OPTN induces the activation 

of RIPK1- and RIPK3-mediated necroptosis of oligodendrocytes to promote Wallerian-like 

axonal degeneration.

Extensive degeneration of oligodendrocytes has also been demonstrated in SOD1G93A mice, 

another model of ALS in which mice express a mutant form of superoxide dismutase 1 

(SOD1)109. RIPK1 inhibition and RIPK3 deficiency inhibited axonal myelination defects 

and delayed the onset of motor dysfunction in SOD1G93A mice75. Thus, necroptosis 

contributes to the degeneration of oligodendrocytes and motor neuron axons in SOD1G93A 

mice. The involvement of necroptosis in ALS may not be limited only to familial ALS: 

several markers of necroptosis, including levels of insoluble RIPK1, RIPK3, MLKL and 

phospho-MLKL and increased Ser14/15-phosphorylated RIPK1, were found to be increased 

in post-mortem spinal cord samples from individuals with sporadic ALS75.

Although the studies above highlight the role of necroptosis in the degeneration of 

oligodendrocytes to promote axonal degeneration in a non-cell-autonomous manner, 
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necroptosis may also contribute directly to motor neuron cell death. In a humanized in vitro 
model of ALS, astrocytes derived from individuals with sporadic ALS, but not control 

individuals, killed human embryonic stem cell-derived motor neurons by promoting 

necroptosis110.

Mitochondrial and lysosomal defects promote necroptosis.

PD is characterized by progressive loss of domaminergic neurons in the substantia nigra, and 

a central role for mitochondrial dysfunction in the etiology of the disorder has been long 

established111. Recent studies implicate necroptosis in PD and potentially connect 

mitochondrial defects to necroptosis induction112. Similar to the pathology observed in MS, 

ALS and AD, the protein levels of RIPK1, RIPK3 and MLKL were increased in the 

postmortem substantia nigra of individuals with PD compared with controls112. Inhibition of 

RIPK1 kinase activity by Nec-1 protected PC12 cells [G] from cell death induced by 6-

hydroxydopamine, a mitochondrial respiration inhibitor used to induce a model PD113, 

suggesting that RIPK1 activation might be involved in the loss of dopaminergic neurons in 

PD. Moreover, leucine-rich repeat kinase 2 (LRRK2), which is encoded by a gene often 

mutated in PD, was identified in a systematic RNAi screen as promoting the activation of 

complex I-associated RIPK155. In addition, neural cells differentiated from induced 

pluripotent stem cells (iPSCs) from PD patients with mutations in the gene encoding optic 

atrophy 1 (OPA1), a GTPase that regulates mitochondrial fission and fusion, show severe 

mitochondrial dysfunction and cell death that is inhibited by Nec-1s112. Finally, 

neurotoxicity in the MPTP-induced PD mouse model is also attenuated by Nec-1s112. These 

results suggest that mitochondrial dysfunction may sensitize cells to the activation of 

necroptosis.

PD shares genetic risk factors with Gaucher disease (GD), which is the most common 

lysosomal storage disease [G] and caused by mutations in the gene encoding 

glucocerebrosidase (GBA). In two mouse models of GD, the expression of FLIP is increased 

and correlates with reductions in caspase-8 activity; furthermore, the expression of both 

RIPK1 and RIPK3 are elevated114. RIPK3 deficiency substantially improved the motor 

function and other symptoms, and increased survival in a GBA-inhibitor-induced mouse 

model of GD114. In lysosomal storage diseases, lysosomal stress may promote 

neuroinflammation, leading to the expression of FLIP, which in turn blocks caspase-8 and 

allows the induction of necroptosis.

RIPK1 activation and neuroinflammation

In addition to being a key regulator of necroptotic cell death, RIPK1 also promotes 

neuroinflammation — a parallel deleterious signalling cascade that has emerged as a key 

driver of neurodegeneration115–117. Risk for neurodegenerative diseases such as AD and 

ALS is prominently associated with variants of genes in the innate immune system118. 

Understanding the mechanisms by which RIPK1 interacts with these genetic risk factors to 

promote cell death and inflammation in the CNS should provide important insights into the 

pathogenesis of human neurodegenerative diseases.
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RIPK1-mediated inflammatory responses in microglia.

The activation of necroptosis robustly induces a pro-inflammatory gene expression cascade 

through a RIPK1-mediated, cell-autonomous mechanism43,119. In spinal cords from Optn−/− 

mice, the levels of proinflammatory cytokines, including interleukin-1α (IL-1α), IL-1β, 

interferon-γ (IFNγ) and TNF were all elevated, and were reduced by RIPK1 inhibition75. 

The axonal degeneration phenotype of Optn−/− mice can also be mimicked by loss of OPTN 

specifically from myeloid-cells or microglia75. Thus, the loss of OPTN from microglia, as 

well as from oligodendrocytes, can also promote the activation of RIPK1 to mediate axonal 

degeneration. RNA-sequencing analysis of Optn−/− microglia revealed a module of 

approximately 1300 genes — including those encoding pro-inflammatory microglial 

markers such as the lipopolysaccharide (LPS) receptor CD14 and CD86 — that are 

differentially expressed in a RIPK1-dependent manner120. OPTN deficiency may therefore 

promote the activation of pro-inflammatory microglia, which in turn contribute to the 

myelination and axonal defects.

The RIPK1-mediated inflammatory response in microglia may also contribute to AD. A 

hallmark of AD is chronic brain inflammation marked by increases in microglial activation 

and the levels of pro-inflammatory cytokines121. A GWAS identified three polymorphisms 

in the promoter of TNF, two of which are linked to increased TNF production, that are 

associated with late-onset AD122. In addition, individuals with mild cognitive impairment at 

risk to develop AD show increased cerebral spinal fluid levels of TNF, suggesting that CNS 

inflammation may occur early in the pathogenesis of AD31. In an AD mouse model, deletion 

of Tnfrl reduced the production of Aβ, reduced plaque formation and ameliorated the 

behavioural deficits123.

The levels of RIPK1 in post-mortem samples from individuals with late-onset AD are 

increased compared with controls and positively correlate with the Braak stage [G]124,125. 

Of the RIPK1-expressing cells identified in human AD brain samples, a considerable 

fraction resembled microglia and co-localized with the microglial marker ionized calcium-

binding adaptor molecule 1 (IBA1)125. Moreover, in APP/PS1 mice, a mouse model of AD, 

increased RIPK1 was found in microglia around Aβ plaques96. In the same model, the 

RIPK1 D138N kinase-dead mutation or the RIPK1 inhibitor Nec-1s reduced the number of 

plaque-associated microglia and the levels of TNF and IL-1β126. Necroptosis may also 

directly contribute to neurodegeneration in mice expressing five human familial AD 

mutations (5xFAD mice)124. Another study suggested that Nec-1 may directly alter Aβ 
aggregation127. However, the poor in vivo pharmacodynamics of the original Nec-1 126 used 

in this study make it difficult to explain how the small molecule could reduce Aβ and tau 

abnormalities in the CNS and improve behavioural symptoms in the APP/PS1 mouse 

model127.

The RIPK1-mediated inflammatory gene signature may be present in multiple neurological 

diseases and in ageing. The expression of at least eight RIPK1-regulated genes (included 

Cst7, Clec7a, Csf1 and Ch25h) was differentially affected in 5xFAD mice, SOD1G93A mice 

and in ageing microglia75. Interestingly, a common variation near the Ch25h gene (which 

encodes cholesterol 25-hydroxylase) was identified as a risk factor for late-onset AD in a 

GW AS study128. Cholesterol 25-hydroxylase — a cell-surface-bound enzyme — mediates 
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the production of 25-hydroxycholesterol. Abberrant production of both CH25H and 25-

hydroxycholesterol (25-HC) leading to oligodendrocyte cell death have also been implicated 

in X-linked adrenoleukodystrophy (X-ALD), a progressive neurodegenerative disorder 

characterized by cerebral inflammatory demyelination and axonal pathology caused by the 

loss-of-function mutations in the gene encoding ATP-binding cassette transporter subfamily 

D member 1 (ABCD1)129. Interestingly, direct administration of 25-HC into the mouse 

corpus callosum leads to local demyelination129. Thus, the RIPK1-dependent production of 

this lipid may represent one of the mechanisms mediating deleterious microglial–

oligodendrocyte interactions in X-ALD and potentially other neurodegenerative diseases.

Insoluble proteomes in neurodegenerative diseases and necroptosis.

As part of the signalling mechanism of necroptosis induction, activated RIPK1 and RIPK3 

form amyloid-like fibrils130. Whereas most RIPK1, RIPK3 and MLKL in control human 

brains can be extracted using buffers with no detergent or mild detergent, increased levels of 

insoluble RIPK1, RIPK3 and MLKL are found in post-mortem pathological samples from 

individuals with MS, ALS or AD and in animal models of MS, ALS and AD75,92,125. 

Whether this insoluble activated RIPK1 is iuRIPK1 — the form that was recently found to 

bridge complex I and complex II formation in TNF-induced RIPK1-dependent apoptosis and 

a subset of necroptosis55 — will be an interesting topic to investigate in future. The 

formation of insoluble activated RIPK1, RIPK3 and MLKL in human neurodegenerative 

diseases also raises an intriguing possibility that activation of necroptosis might not only 

promote necrotic cell death and inflammation, but also might provide a seeding mechanism 

for promoting pathological protein aggregation by the formation of insoluble activated 

RIPK1, RIPK3, and phospho-MLKL oligomers during necroptosis that subsequently 

mediate neurodegeneration.

Protein misfolding can also be induced in the corpus callosum of cuprizone-treated mice. 

This misfolding is reduced by RIPK1 inhibition or RIPK3 deficiency92, suggesting the 

activation of necroptosis and the RIPK1-mediated inflammatory response can also promote 

the accumulation of misfolded proteins. Although MS in humans is considered primarily an 

autoimmune disease, abnormalities of proteostasis have also been reported in the disorder. A 

quantitative mass spectrometry analysis of the insoluble proteome in MS lesions from 

human cortex identified a considerable overlap with the proteins associated with Lewy 

bodies (LBs) in PD, a classical example of a neurodegenerative disease with inclusion or 

amyloid pathology92. These data suggest that RIPK1 and RIPK3 might promote protein 

misfolding and aggregation in many neurological and neurodegenerative diseases. Given the 

increasingly recognized role of inflammation in driving the pathogenesis of MS131, the 

contribution of RIPK1-mediated neuroinflammation to protein aggregation and progressive 

neurodegeneration should be considered.

Ageing and the onset of necroptosis.

Ageing is the most important risk factor for neurodegeneration132. In the adipose tissue of 

aged rodents, the levels of necroptosis markers are increased and correlate with 

inflammation133. Molecular mechanisms that mediate the interaction of ageing with genetic 

risk factors of neurodegenerative diseases that can promote RIPK1 activation are beginning 
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to be elucidated. Mutations causing haploinsufficiency of TBK1 are a major genetic cause of 

patients with comorbid ALS and frontotemporal dementia (ALS/FTD), accounting for 

10.8% of all cases134,135. A recent study showed that TAK1, a key suppressor of RIPK158, is 

downregulated in ageing human brains 79. Reduced expression of TAK1 in myeloid-lineage 

cells cooperated with the haploid loss of TBK1, another suppressor of RIPK1, in Tbk1+/− 

mice to induce the hallmarks of ALS/FTD, including neuroinflammation, aggregation of 

TAR DNA-binding protein 43 (TDP43), axonal degeneration, neuronal loss and behavioural 

deficits, all of which were blocked upon inhibition of RIPK1 79. Reduced suppression of 

RIPK1 kinase activity may represent an important mechanism in ageing human brains to 

promote neurological diseases.

The natural decline of proteostasis with ageing may contribute to the onset of 

neurodegeneration, by reducing protein turnover, promoting the accumulation of misfolded 

proteins and enhancing the activation of RIPK1. This age-dependent decline of proteostasis 

may involve decreases in the stability of correctly folded proteins, as well as deficits in 

protein turnover via autophagy [G] and the proteasome. Autophagy is an important 

intracellular recycling mechanism that through which damaged protein complexes and 

organelles, including mitochondria, are degraded. Autophagy cargoes are sequestered into 

autophagosomes, which eventually fuse with lysosomes containing lysosomal proteases that 

degrade the cargo136. A genome-wide siRNA screen identified that ageing of human brains 

is associated with increases in the expression of autophagy suppressors and decreases in 

autophagy mediators 137. The list of genes whose expressions are increased in ageing brains 

includes those encoding components of the MAP kinase pathway, which inhibits autophagy. 

In addition, the expression of the key autophagy genes, such as Atg5, Atg7 and beclin 1, 

were reduced in the aged human brains137,138. In addition to autophagy, proteasomal 

function also declines during ageing, owing to decreased expression of proteasome subunits, 

changes in proteasomal function and increased disassembly of proteasomes139. Given that 

chemical inhibition of the proteasome or lysosome alone is sufficient to promote the 

activation of RIPK1 in microglia125, proteostatic decline during ageing may promote the 

activation of RIPK1.

Activation of RIPK1 drives an increase in microglial expression of an endosomal or 

lysosomal cathepsin inhibitor known as cystatin F (CST7)125. Microglial CST7 expression is 

strongly induced in several animal models of neurodegenerative diseases, including in 

SOD1G93A transgenic mice, in a demyelination model, in a prion disease model and with 

ageing140–142. A single-cell RNA-seq analysis recently revealed Cst7 to be one of the top 

biomarkers associated with disease-associated microglia in AD mouse model143. In 

particular, elevated levels of Cst7 were found in microglia around Aβ deposits in the 

APP/PS1 AD mouse model, whereas dispersed microglia were generally negative for Cst7. 

Thus, dysfunction of the lysosomal system in microglia, resulting from increases in CST7, 

might contribute to reduced proteostasis in AD. Interestingly, inhibition of RIPK1 reduces 

the microglial expression of CST7 in APP/PS1 mice, suggesting the exciting possibility that 

an age- or disease-associated reduction of lysosomal function in microglial cells may be 

rescued by blocking the kinase activity of RIPK1125. Indeed, consistent with this notion, 

inhibition of RIPK1 reduced the Aβ burden in APP/PS1 mice125. Both genetic and 

pharmacological inhibition of RIPK1 kinase activity enhanced the ability of primary 
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microglia to degrade oligomeric Aβ1–42, consistent with the notion that inflammatory 

microglia are less proficient at degrading Aβ. These observations suggest that inhibiting 

RIPK1 activation may promote the ability of microglia to mediate Aβ turnover125.

Conclusion

An emerging theme suggests that key mechanisms of neurodegeneration involve the 

interaction of cell-autonomous mechanisms mediated by RIPK1 in CNS glial cells to 

promote the degeneration of axons and neurons in cell-non-autonomous manners (Fig. 4). 

This deleterious environment is established by activated microglia and astrocytes, as well as 

infiltrating immune cells such as T cells and macrophages 144,145, through their ability to 

release disease-associated inflammatory mediators and promote the vicious cycles of 

neuroinflammation and neurodegeneration. In this environment, RIPK1 not only may act as 

a key effector of inflammatory cell death, but also may mediate deleterious inflammatory 

signalling to provide a feedforward mechanism to accelerate neurodegeneration.

Dysregulation of RIPK1 suppression might be important in promoting neuroinflammation 

and degeneration in the CNS. The activation of RIPK1 is normally suppressed by inhibitory 

phosphorylation by TAK1 and TAK1-activated kinases TAK1, such as MK2, and TBK1, and 

by M1 and K48 ubiquitylation (Fig. 2). Furthermore, the activation of NF-κB pathway under 

inflammatory conditions may sensitize cells to necroptosis by inducing the expression of 

cFLIPL, which reduces the function of caspase-8146, the enzyme that normally cleaves and 

inhibits RIPK1147. The decline of these RIPK1 suppression mechanisms in ageing and with 

injury, stress or infection may have important roles in promoting the onset of multiple 

neurodegenerative diseases.

In contrast to the critical role of RIPK1 kinase activity in mediating RDA, necroptosis and 

neuroinflammation, the scaffold function of RIPK1 is essential for cell and animal survival, 

as Ripk1−/− mice display systemic inflammation and cell death in multiple tissues and die 

during the postnatal period91,148. Furthermore, rare homozygous loss-of-function RIPK1 
mutations in humans lead to immunodeficiency, gut inflammation and progressive 

polyarthritis149. By contrast, blocking RIPK1 kinase activity, as first demonstrated with the 

small-molecule inhibitors of necroptosis (necrostatins)2,3 and subsequently confirmed in 

multiple lines of RIPK1 kinase-dead knock-in mice (Table 2) and human clinical studies150, 

leads to no deleterious consequences. Inhibition of RIPK1 kinase leads to strong resistance 

to the TNF-induced systemic inflammatory response151–153. Thus, the kinase activity of 

RIPK1 may represent an important therapeutic target that can be safely modulated for the 

treatment of chronic inflammatory CNS diseases by simultaneously inhibiting multiple 

deleterious mechanisms involved in mediating neurodegeneration.
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Glossary terms

Death receptors
The receptors for TNF, FasL and TRAILs that contain an intracellular protein-protein 

interaction domain, known as Death-domain, and can mediate cell death

Extrinsic cell death
Cell death pathways activated upon stimulation of TNFR1, FAS and certain TRAIL 

receptors by their cognate ligands to mediate apoptosis and necroptosis

Intrinsic apoptosis
Intrinsic apoptosis pathway can be activated upon mitochondrial damage to mediate the 

activation of downstream caspases such as caspase-3

Middle cerebral artery occlusion (MCAo)
A mouse model of stroke induced by the insertion of a filament into the carotid artery to 

block cerebral blood flow to induce tissue damage in the brains

Experimental autoimmune encephalitis
An animal model of multiple sclerosis induced by immunizing with purified myelin, 

peptides from myelin derived proteins, or passive transfer of T cells reactive to these myelin 

proteins

Immune silent
A state that does not induce immune activation or inflammatory response

Death domain
A protein-protein interaction module composed of a bundle of six alpha-helices

RIPK1-dependent apoptosis
Stimulation of TNF in cells with TAK1, TBK1 or cIAP1/2 deficiency may promote RIPK1 

kinase-dependent activation of caspase-8 and consequently apoptosis which can be inhibited 

by RIPK1 inhibitor Necstatin-1(Nec-1s)

Cuprizone model
A rodent model of oligodendrocyte death and reversible demyelination induced by feeding 

with the copper chelator cuprizone

Wallerian degeneration
The degeneration of distal axon after a nerve fiber is injuried

Axonal myelin decompaction
Immature axon myelination pattern with loosely packed myelin sheath

PC12 cells
A cell line derived from a pheochromocytoma of the rat adrenal medulla

Lysosomal storage disease
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Diseases that result from defects in lysosomal function due to mutations in genes involved 

lipid metabolism and often leading to neurodegeneration, e.g., Gaucher disease

Braak stage
A pathology scoring system used for both AD and PD that refers to the extent of distribution 

of neuropathology in these diseases

Autophagy
A cellular mechanism involves the formation of double-membrane vesicles, known as 

autophagosomes, which fuse with lysosomes and then the contents are degraded and 

recycled

DFG-out conformation
The inactive conformation of T-loop motif of a kinase, such as receptor-interacting protein 

kinase 1

Type II kinase inhibitor
Kinase inhibitors that inactivate the kinase by binding a hydrophobic pocket adjacent to the 

ATP-binding site. Type II kinase inhibitors are more specific than type I kinase inhibitors, 

which bind to the ATP-binding pocket itself

DNA-encoded libraries
Synthetic chemical libraries made by conjugating chemical compounds or building blocks to 

short DNA fragments that serve as identification bar codes
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Box 1 |

Development of small-molecule inhibitors of RIPK1.

Receptor-interacting protein kinase 1 (RIPK1) is an important therapeutic target for the 

treatment of neurodegenerative diseases. Inactivation of RIPK1 by various genetic 

mutations, including D138N, K45A and ΔG26F27, leads to strong resistance to TNF and 

no other gross phenotype in mouse models151–154. Furthermore, RIPK1 provides a 

pharmacologically ‘druggable’ target, as its kinase domain presents a hydrophobic pocket 

that is highly amenable for specific small-molecule inhibitors155,156.

The first small-molecule inhibitors of RIPK1, including necrostatin-1 (Nec-1), and 

necrostatin-4 (Nec-4), were isolated in a cell-based high-throughput chemical screen for 

inhibitors of caspase-independent necrosis2,3. An improved analogue of necrostatin-1 

(Nec-1), named Nec-1s (also known as 7-Cl-O-Nec-1) is a highly specific inhibitor of 

both human and murine RIPK1 with excellent blood–brain barrier (BBB) permeability 

and reasonable oral availability126. Because Nec-1 and Nec-1s can effectively inhibit 

both murine and human RIPK1, they have been used widely to investigate the role of 

RIPK1 and necroptosis in various cellular and animal models of human diseases.

Nec-1s binds to the hydrophobic pocket between the N-lobe and C-lobe of the RIPK1 

kinase domain outside of the ATP-binding site. Through interactions with highly 

conserved amino acids in the activation loop and the surrounding structural elements, this 

binding stabilizes RIPK1 in an inactive conformation, known as the DFG-out 

conformation [G]3. Thus, Nec-1s is an excellent example of a type II kinase inhibitor [G].

GSK2982772 is a highly specific and potent inhibitor of human RIPK1 that was 

identified and optimized from hits of DNA-encoded libraries [G] 157. GSK2982772 binds 

the same allosteric lipophilic pocket at the back of the ATP binding site of the RIPK1 

kinase domain as does Nec-4. GSK2982772 demonstrates a species selectivity for 

inhibition of primate RIPK1 compared with non-primate RIPK1 and is not BBB-

permeable157,158. GSK2982772 has been advanced into phase IIa clinical trials for the 

treatment of non-neurological disorders (namely, psoriasis, rheumatoid arthritis and 

ulcerative colitis).

Denali Therapeutics is advancing a BBB-permeable RIPK1 inhibitor (DNL747) into 

phase I trials in Alzheimer disease and amyotrophic lateral sclerosis and has another 

BBB-permeable RIPK1 inhibitor (DNL788) in preclinical development7. In addition, 

Takeda has reported the development of 7-oxo-2,4,5,7-tetrahydro-6H-pyrazolo[3,4-

c]pyridine derivatives, including compound 22, as a novel class of potent, orally available 

and BBB-permeable RIPK1 inhibitors105. Compound 22 attenuated disease progression 

in the mouse experimental autoimmune encephalomyelitis (EAE) model of multiple 

sclerosis (MS)105.
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Fig. 1 |. TNF signalling-mediated apoptosis and necroptosis.
a | The binding of tumour necrosis factor (TNF) to TNF receptor 1 (TNFR1) leads to 

receptor trimerization and activation. TNFR1-associated death domain (DD) protein 

(TRADD) and receptor-interacting protein kinase 1 (RIPK1) are recruited to the intracellular 

DD of activated TNFR1 via their own DDs to initate the formation of complex I. In complex 

I, TRADD recruits the E3 ubiquitin ligases cellular inhibitor of apoptosis 1 (cIAP1) and 

cIAP2, which in turn add K63 ubiquitin chains to complex I members, including to the K377 

residue of RIPK1. The linear ubiquitylation assembly complex (LUBAC) is recruited by 
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binding with K63 ubiquitin chains in complex I and performs linear (M1) ubiquitylation of 

RIPK1. Deubiquitinating enzyme CYLD and its adaptor protein SPATA2 are recruited 

together with the LUBAC to complex I. Transforming-growth-factor-β-activated kinase 1 

(TAK1) is recruited to K63 ubiquitin chains on RIPK1 via TAK1-binding protein 2 (TAB2) 

or TAB3. The nuclear factor-κB (NF-κB) essential modulator (NEMO)–IκB kinase (IKK) 

complex and the kinase TBK1 are recruited to complex I by binding with M1 ubiquitin 

chains on RIPK1. M1-ubiquitin binding proteins ABIN-1 and OPTN are also recruited to 

complex I. ABIN-1 in turn recruits ubiquitin editing enzyme A20 to complex I. b | Under 

normal conditions, activated IKKs and TAK1 lead to NF-κB activation and transcription of 

pro-inflammatory and pro-survival genes, such as those encoding FLICE-inhibitory protein 

(FLIP) and A20, which suppress the activation of caspase-8 and RIPK1, respectively. c | 

When NF-κB activation is inhibited, a cytosolic complex named complex IIa can form to 

mediate the activation of caspase-8 and subsequent cleavage of RIPK1 and RIPK1-

independent apoptosis. d | The cleavage of RIPK1 at the C-terminus of its kinase domain 

(after residue D324) by caspase 8 provides an important mechanism by which apoptosis, 

both RIPK1-dependent and RIPK1-independent, may pre-empt the activation of RIPK1 and 

necroptosis. When caspase-8 activation is blocked, dimerization of RIPK1 via its C-terminal 

DD leads to RIPK1 activation and formation of complex IIb, which includes FADD, 

caspase-8, RIPK1, RIPK3 and MLKL.. RIPK1 activity is required for the formation of 

complex IIb. PELI1 mediates K63 ubiquitination of RIPK1 in complex IIb which promotes 

the activation of RIPK3 and MLKL to mediate type II necroptosis. e | Alternatively, when 

suppression of RIPK1 activity in complex I fails under pathological conditions, RIPK1 may 

mediate RIPK1-dependent apoptosis or type I necroptosis. Specifically, under cIAP1/2, 

NEMO-, IKK- or TAK1-deficient conditions, an activated, detergent-insoluble ubiquitinated 

RIPK1 species (iuRIPK1) may form following complex I to accelerate RIPK1 dimerization 

and subsequent formation of complex II and RIPK1-dependent apoptosis or type I 

necroptosis. f | When caspase-8 activation is blocked, the formation of complex IIb, which 

includes RIPK1, RIPK3, and MLKL, can lead to type I necroptosis. High levels of activated 

RIPK1 in complex I and the formation of iuRIPK1 distinguish type I necroptosis from type 

II necroptosis.Inhibition of RIPK1 kinase by Nec-1s blocks RIPK1 activation to prevent 

RDA and necroptosis.

Yuan et al. Page 27

Nat Rev Neurosci. Author manuscript; available in PMC 2020 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2 |. Post-translational modifications regulate the activation of RIPK1.
The domain structure of receptor-interacting protein 1 (RIPK1) consists of an N-terminal 

kinase domain, an intermediate domain and a C-terminal death domain (DD). The N-

terminal kinase domain is crucial for RIPK1-dependent apoptosis and necroptosis. The 

cleavage of RIPK1 at D324 by caspase-8 blocks the activation of RIPK1 by separating the 

kinase domain from the C-terminal DD, which is critical for mediating RIPK1 activation by 

dimerization. Autophosphorylation of Ser14/15 and Ser166 of RIPK1 are biomarkers of its 

kinase activation. K115 in activated RIPK1 is ubiquitylated by the E3 ubiquitin ligase 

pellino 1 (PELI1). The kinase TBK1 phosphorylates T189 RIPK1 to suppress its activation. 

The intermediate domain of RIPK1 is involved in regulating nuclear factor-κB (NF-κB) 

signalling. RIPK1 can be ubiquitylated on multiple residues within this domain; one of these 

sites, Lys377, is a crucial residue that can be ubiquitylated by E3 ubiquitin ligases such as 

cellular inhibitor of apoptosis 1 (cIAP1) or cIAP2 and parkin. The Lys377 residue also 

serves as a binding hub for downstream signalling, including the NF-κB signalling pathway, 

by recruiting K63 ubiquitin binding proteins TAK1-binding protein 2 (TAB2) or TAB3, 

which in turn promote the activation of transforming-growth-factor-β-activated kinase 1 

(TAK1). Activated TAK1 mediates multiple inhibitory phosphorylations of RIPK1 directly 

and indirectly by promoting the activation of IκB kinases (IKKs) and MAPK-activated 

protein kinase 2 (MK2). TBK1 mediates inhibitory phosphorylation of RIPK1 on T189 to 

block its substrate recognition in autophosphorylation-mediated activation. The receptor-

interacting protein homotypic interaction motif (RHIM) within the intermediate domain of 

RIPK1 mediates homotypic binding with the RHIM of RIPK3 to promote downstream 

signalling in necroptosis and inflammation. The C-terminal DD of RIPK1 mediates 

heterodimerization with the death domains of TNFR1, TRADD and FADD, as well as 

homodimerization with itself to mediate the activation of N-terminal kinase domain. M1 

ubiquitylation of RIPK1 by the linear ubiquitylation assembly complex (LUBAC) 

suppresses RIPK1 activation by enabling the recruitment of multiple UBAN-containing 

ubiquitin-binding proteins, including NEMO, ABIN1 and OPTN, which promote the 

activation of IKKs (NEMO), recruit A20 (ABIN1) or regulate K48 ubiquitylation of RIPK1 

(OPTN).
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Fig. 3 |. Execution of necroptosis.
a | Activation of death receptors such as FAS, tumour necrosis factor (TNF) receptor 1 

(TNFR1) or TNF-related apoptosis-inducing ligand receptors (TRAILRs) by their respective 

ligands can lead to the RIPK1 dimerization and activation, which in turn promotes the 

formation of a RIPK1–RIPK3–MLKL complex, referred to as complex IIb, and activation of 

RIPK3 and MLKL. b | RIPK3 consists of an N-terminal kinase domain and a C-terminal 

intermediate domain containing a RHIM motif that mediates binding to RIPK1. 

Dimerization or oligomerization of RIPK3, through RIPK1 kinase-dependent complex IIb 

formation, allows transphosphorylation of RIPK3 at T231/S232 in mouse RIPK3 and S227 

in human RIPK3, and RIPK3 activation. c | MLKL contains a N-terminal 4-helix bundle 

(4HB), a brace region and a C-terminal pseudo-kinase domain (PsKD). Phosphorylation of 

the PsKD of MLKL by RIPK3, at S345 in mouse MLKL or T357/S358 in human MLKL, 

results in a conformational change of MLKL to reveal phosphatidylinositol phosphate (PIP) 

binding sites. d | Phosphorylated MLKL binds directly to PIPs and cardiolipin in the plasma 

membrane or cellular organelle membranes, leading to membrane disruption and cell lysis. 

The precise mechanism is unclear, but this may occur directly through MLKL 

oligomerization and pore formation, or indirectly, through activation of transporters or ion 

channels, such as transient receptor potential cation channel M7 (TRPM7).
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Fig. 4 |. Bimodal deleterious RIPK1 activation in neurological disease.
Microglial RIPK1 regulates a degenerative neuroinflammatory milieu in the CNS that can 

lead to necroptosis of oligodendrocytes and axonal degeneration. In neurons, damaged 

mitochondria and lysosomes can promote necroptosis. In turn, necroptosis can promote 

inflammation by driving the cell-autonomous expression of proinflammatory cytokines as 

well as by releasing of the cellular content from necrotic cells (including damage-associated 

molecular patterns (DAMPs)) into the CNS. This deleterious axis creates a progressive 
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inflammatory and degenerative environment in the brain to promote the progression of 

neurodegenerative disease.
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Table 1 |

Targeting RIPK1 and necroptosis in neurodegenerative diseases.

Disease Comment Refs

ALS RIPK1 inhibition or RIPK3 deficiency blocked oligodendrocyte death, microglial inflammation 
and axonal degeneration in Optn−/− mice

75

RIPK1 inhibition by Nec-1s or RIPK3 deficiency blocked oligodendrocyte death, microglial 
inflammation and axonal degeneration in SOD1G93A mice

75

Nec-1 blocked the death of human ESC-derived motor neurons in co-cultures with iPSC-derived 
astrocytes derived from individuals with primary familial or sporadic ALS

110

ALS/FTD Reduced myeloid TAK1 expression in Tbk1+/− mice promoted all the key hallmarks of ALS/FTD, 
including neuroinflammation, TDP43 aggregation, axonal degeneration, neuronal loss and 
behaviour deficits; all these effects were blocked upon inhibition of RIPK1

79

MS Cortical lesions in human MS brain samples showed reduced caspase 8 activation, along with 
increased activation of RIPK1, RIPK3, and MLKL. In the EAE and cuprizone models of MS, and 
in vitro, necroptosis mediated TNF-induced degeneration of oligodendrocytes, and RIPK1 
inhibition protected against oligodendrocyte death

92

Compound 22 attenuated disease progression in the mouse EAE model of MS 105

AD Necroptosis markers were observed in human AD brains and correlated positively with Braak 
stage, and negatively with brain mass and cognition. Gene sets regulated by AD and RIPK1 show 
substantial overlap

124

RIPK1 was shown to be activated in human AD pathological samples. RIPK1 inhibition, using 
Nec-1s or the RIPK1 D138N kinase-dead mutation, reduced Aβ burden, levels of inflammatory 
cytokines and memory deficits in a mouse model of AD. RIPK1 inhibition promoted microglial 
degradation of Aβ in vitro, possibly in part by suppressing the expression of cystatin F

125

Stroke Administration of Nec-1 or its analogues up to 6 hours after the initiation of MCAo in mice dose-
dependently reduced infarct volume and improved neurological score

2

Pre-treatment with Nec-1 before MCAo protected against OPC death, white-matter injury and 
loss of neurological function, and inhibited necroptotic kinases in the SVZ and corpus callosum

159

Nec-1 reduced inflammatory response and improved cognitive function in BCAS mouse model of 
chronic ischaemic stroke

160

Nec-1 reduced neurovascular injury (including cell death, BBB opening and oedema 
development) after collagenase-induced ICH in mice

161

Traumatic brain injury Nec-1 reduced histopathology and improved functional outcome after CCI in mice 162

Traumatic SCI Nec-1 reduced cell death and tissue damage induced by traumatic SCI 163

Glaucoma RIC protected retinal ganglion cells against ischaemic injury in a rat glaucoma model 164

Reinal ischaemia Nec-1 protected the thickness and histoarchitecture of the inner retina and improved function after 
retinal ischaemia

165

TNF and RIPK1 were increased in the retina ganglion cell layer after IR injury. Nec-1 reduced 
retinal cell loss in IR-injured retinas

166

Nec-1 reduced retinal damage and inflammation after IR injury 167

Retinal detachment Nec-1 attenuated retinal histopathological damage and plasma membrane breakdown in outer 
retinal layers and improved function after retinal detachment in rats

168

Age-related macular degeneration In the degenerative mouse retina, RIPK3 levels were increased. RIPK3 loss protects retinal 
histoarchitecture and the RPE and prevents inflammation

169

Gaucher disease RIPK3 deficiency increased survival and motor function in a mouse model of Gaucher disease 114

Niemann–Pick disease, type C1 Nec-1 delayed cerebellar Purkinje cell loss, progression of neurological symptoms, and death in 
Npc1-mutant mice

170

PD Nec-1s improved survival of OPA1-mutant human iPSC-derived neurons in vitro. Nec-1s 
attenuated MPTP-induced dopaminergic neuronal loss

112
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Aβ, amyloid-β; AD, Alzheimer disease; ALS, amyotrophic lateral sclerosis; ALS/FTD, comoribid ALS and frontotemporal dementia; BBB, blood–
brain barrier; BCAS, bilateral carotid artery stenosis; CCI, controlled cortical impact; EAE, experimental autoimmune encephalitis; ESC, 
embryonic stem cell; ICH, intracerebral haemorrhage; iPSC, induced pluripotent stem cell; IR, ischaemia–reperfusion; MCAo, middle cerebral 
artery occlusion; MLKL; mixed lineage kinase domain-like protein; MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine; MS, multiple sclerosis; 
Nec-1, necrostation-1; Nec-1s, necrostation 1s; NPC1, Niemann–Pick C1 protein; OPA1, optic atrophy 1; OPC, oligodendrocyte progenitor cell; 
OPTN, optineurin; PD, Parkinson disease; RIC, RIPK1-inhibitory compound; RIPK1, receptor-interacting protein kinase 1; RPE, retinal pigmented 

epithelium; SCI, spinal cord injury; SODG93A mice, mice expressing the G93A variant of superoxide dismutase 1; SVZ, subventricular zone; 
TAK1, transforming-growth-factor-β-activated kinase 1; TBK1, kinase TBK1; TDP43, TAR DNA-binding protein 43; TNF, tumour necrosis factor.
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Table 2 |

Effects of null and kinase-dead mutations in Ripk1, Ripk3 and Mlkl in the mouse CNS.

Genotype Viable Comments Refs

Ripk1D138N kinase-dead knock-in mutation Yes Protects against TNF-induced SIRS 151,171

Ameliorates axonal pathology in Optn−/− mice 75

Protects against neuroinflammation, TDP43 aggregation, axonal 
degeneration, neuronal loss and behavior deficits in Tbk1+/−,Tak1ΔM/+ 

mice.

79

Protects against neuronal loss following intracerebral haemorrhage 172

Reduces Aβ burden, inflammation, and memory deficits in APP/PS1 
mice

125

Protects systemic inflammation in A20−/− mice 173

Protects kidney ischaemia–reperfusion injury 173

Ripk1K45A kinase-dead knock-in mutation Yes Protects against TNF-induced SIRS 174

Reduces inflammation in SHARPIN-deficient mice 70

Protects against neuronal loss following intracerebral haemorrhage 172

Ripk1K584R knock-in mutation (disrupts DD 
homodimerization to block RIPK1 activation)

Yes Protects against TNF-induced SIRS 87

Ripk3D161N kinase-dead knock-in mutation No Mice with catalytically inactive RIPK3 kinase die at around embryonic 
day 11.5 with abnormal yolk sac vasculature

171

Ripk3−/− Yes Protects against TNF-induced SIRS 153

Ameliorates axonal pathology in Optn−/− mice 75

Ameliorates axonal pathology in SODG93A mice 75

Protects against spinal cord injury 175

Protects against demyelination following cuprizone treatment 92

Protects against traumatic brain injury 176

Prevents necrosis and inflammation in poly(I:C)-induced retinal 
degeneration

169

No effect in MCAo stroke model 173

Protects against photoreceptor death after retinal detachment 177

Protects against Gaucher disease model 114

Mlkl−/− Yes No effect on hypothermia induced by 300 μg TNF per kg body weight; 
some resistance to hypothermia induced by 500 μg TNF per kg body 
weight

173

DD, death domain; MCAo, middle cerebral artery occlusion; OPTN, optineurin; poly(I:C), polyinosinic:polycytidylic acid; RIPK1, receptor-
interacting protein kinase 1; SHARPIN, shank-associated RH domain-interacting protein; SIRS, systemic inflammatory response syndrome; TAK1, 
transforming-growth-factor-β-activated kinase 1; TBK1, kinase TBK1; TDP43, TAR DNA-binding protein 43; TNF, tumour necrosis factor.
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