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ABSTRACT
Obesity is associated with higher cardio-metabolic risk even in childhood and adolescence;
whether this association is mediated by epigenetic mechanisms remains unclear. We examined
the extent to which mid-childhood body mass index (BMI) z-score (median age 7.7 years) was
associated with cardio-metabolic risk score in early adolescence (median age 12.9 years) via mid-
childhood DNA methylation among 265 children in the Project Viva. We measured DNA methyla-
tion in leukocytes using the Infinium Human Methylation450K BeadChip. We assessed mediation
CpG-by-CpG using epigenome-wide association analyses, high-dimensional mediation analysis,
and natural effect models. We observed mediation by mid-childhood DNA methylation at 6 CpGs
for the association between mid-childhood BMI z-score and cardio-metabolic risk score in early
adolescence in the high-dimensional mediation analysis (accounting for 10% of the total effect)
and in the natural effect model (β = 0.04, P = 3.2e-2, accounting for 13% of the total effect). The
natural direct effect of BMI z-score on cardio-metabolic risk score was still evident (β = 0.27,
P = 1.1e-25). We also observed mediation by mid-childhood DNA methylation at 5 CpGs that was
in the opposite direction from the total effect (natural effect model: β = −0.04, P = 2.0e-2).
Mediation in different directions implies a complex role of DNA methylation in the association
between BMI and cardio-metabolic risk and needs further investigation. Future studies with larger
sample size and greater variability in cardio-metabolic risk will further help elucidate the role of
DNA methylation for cardio-metabolic risk.
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Introduction

The prevalence of childhood obesity in the United
State (U.S.) has increased in the past two decades.
Between 2011–2014, 23% of children and adolescents
in the U.S. had a body mass index (BMI) at or above
the 95th percentile [1]. Childhood obesity has been
associated with cardio-metabolic risk factors such as
hypertension and insulin resistance, and also with
higher risk of cardiovascular disease (CVD) in adult-
hood [2]. CVD is one of the leading causes of death

worldwide and in the U.S. [3,4], and places
a significant burden on the healthcare system and
economy [5]. Investigation of the mechanisms by
which obesity affects cardio-metabolic diseases may
provide insights into the prevention of CVD starting
early in the life course and may reveal potential mole-
cular targets.

With the accumulation of excess weight, adipose
tissuemay participate in inducing a pro-inflammatory
state by releasing cytokines and adipokines into the
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circulation [6], which are thought to contribute to
higher risk of CVD. However, evidence of mortality
benefits from anti-inflammatory drugs in people with
coronary artery disease is lacking [7]. As such, other
modifiable mechanisms may exist. Epigenetic regula-
tion of gene expression has a central role during
development, and epigenetic dysregulation may be
a driver of early life programming of diseases that
manifest in adult life [8,9]. In preschool children,
DNA methylation in multiple genes was found asso-
ciated with differential body composition measures
including BMI [10]. Although the causal direction
between obesity and DNA methylation is not totally
clear, recent studies suggested elevated BMI could
causes changes in DNA methylation [11–13]. For
example, DNA methylation at ABCG1 and HIF3A
has been identified as a consequence rather than
a cause of adiposity using longitudinal analysis,
Mendelian randomization and epigenome-wide asso-
ciation studies (EWAS) [11–14]. DNA methylation is
also associated with CVD [15]. For example, lower
methylation of long-interspersed nucleotide repetitive
elements-1 (LINE-1) throughout the genome was
associated with higher risk of ischemic heart disease
and stroke in a longitudinal study of adult men [16].
Changes in DNA methylation among infants born
large-for-gestational-age may affect the expression of
certain genes that are related to CVD based on func-
tional enrichment analysis using Gene Ontology [17].
DNA methylation was also found to regulate cardio-
metabolic risk factors such as blood pressure [18].
These findings suggest a potential regulatory role of
epigenetic variability in the biological processes
underlying CVD [9,19]. Obesity undoubtedly
increases the risk of CVD [20], but whether it does
so via epigenetic mechanisms is unknown. Here, we
assessed the extent to which DNA methylation med-
iates the association betweenmid-childhood BMI and
cardio-metabolic risk in early adolescence, using
CpG-by-CpG analysis, high-dimensional mediation
analysis, natural effect model, and regional DNA
methylation analysis.

Methods

Participants

The Project Viva pre-birth cohort was recruited
between 1999 and 2002 in the greater Boston area,

Massachusetts (U.S.) [21]. Research staff identified
eligible participants attending their initial prenatal
visit at Atrius Harvard Vanguard Medical
Associates and conducted brief interviews after the
visit. We recruited women with a singleton preg-
nancy, fluent in English, gestational age < 22 weeks,
and not planning to move away from the study area
during pregnancy. Of the 4,102 eligible participants
initially approached, 2,670 (64%) were enrolled in
the study [21]. At the time of delivery 2,128 eligible
women remained enrolled and had a live birth.
Mothers reported maternal characteristics and
child sex via interviews and questionnaires. We
obtained birth weight and date of delivery from
medical records and determined gestational age by
subtracting the date of the last menstrual period
from the date of delivery. If gestational age accord-
ing to the 2nd-trimester ultrasound differed from
the estimation based on last menstrual period by
more than 10 days, we used ultrasound results.
Birth weight for gestational age z-score was calcu-
lated based on a U.S. national reference [22,23]. We
conducted in-person follow-up in mid-pregnancy,
at birth, in mid-childhood (age ~ 7 years), and in
early adolescence (age ~ 13 years) for phenotype
characterization and sample collection.

We measured DNA methylation in whole blood
samples from the mid-childhood visit using the
Infinium Human Methylation450 BeadChip
(Illumina, San Diego, CA). The Infinium Human
Methylation450K BeadChip measures DNA methy-
lation at around 485,000 loci, covering 99% of the
RefSeq genes, using oligonucleotides that hybridize
with corresponding target CpGs, also known as
probes [24]. Quality control procedures were per-
formed in 473 whole blood samples in mid-
childhood. For sample-level quality control, we
excluded samples with low quality (≥ 25% of the
probes with a detection p-value ≥ 0.01, n = 6), geno-
type mismatch (n = 4), or sex mismatch (n = 3),
leaving 460 participants with available data on DNA
methylation in mid-childhood. For probe-level qual-
ity control, we excluded probes in X and
Y chromosomes, non-CpG probes, non-specific
and cross-reactive probes [25], and single nucleotide
polymorphism-associated (SNP-associated) probes
with a minor-allele frequency of ≥ 5%. A SNP-
associated probe is considered as a probe that has
SNPs overlapping the probe, the target CpG, or the
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single base extension (SBE) of the CpG, and was
identified based on the SNP information from
Illumina and dbSNP (snp137Common). After qual-
ity control, 394,460 CpGs were available for the
analysis. Annotation data for the methylation array
was based on the Illumina’s v1.2 annotation file or
obtained from the UCSC Genome Browser [26].
Both SNP-associated probes and Illumina’s annota-
tion data were obtained using the Bioconductor
package IlluminaHumanMethylation450kanno.
ilmn12.hg19 [27]. The normal-exponential out-of-
band (noob) correction was performed to account
for background noise and dye-bias [28]. β-mixture
quantile intra-sample normalization procedure
(BMIQ) was performed to reduce the potential bias
due to type II probes [29]. Batch effects from the
sample plate were adjusted for using ComBat [30].
We estimated cell type proportions using the
Bioconductor package minfi (CD8T, CD4T,
Monocytes, B-cells, NK, and Granulocytes).

Exposure

During the mid-childhood in-person visit (median
age 7.7 years), research staff measured standing
height with a calibrated stadiometer (Shorr
Height Board) and weight with a Tanita Scale.
We calculated age- and sex-specific BMI z-score
based on the U.S. Centers for Disease Control and
Prevention national reference data [31]. Among
8-year-old boys and girls of average height, a 1
unit increase in BMI z-score translates into
a 2.2 kg/m2 higher BMI or a 3.6 kg higher weight.

Outcome

The outcome of interest was cardio-metabolic risk
score in early adolescence (median age 12.9 years).
At the in-person early adolescence visit, trained
research assistants measured blood pressure (BP)
using biannually calibrated automated oscillo-
metric monitors (The Omron HEM-907XL,
Illinois, US) on the child’s upper arm at 1-minute
intervals 5 times We used the average of the 5
measures in the data analysis. Research staff mea-
sured standing waist circumference with a Lefkin
woven measuring tape. Participants provided fast-
ing whole blood samples at the early adolescence
visit. We measured plasma fasting glucose

enzymatically and fasting insulin using an electro-
chemiluminescence immunoassay (Roche
Diagnostic, Indianapolis, IN), and estimated insu-
lin resistance using the Homeostatic Model of
Insulin Resistance (HOMA-IR = glucose × insu-
lin/22.5). We measured triglycerides enzymatically
with correction for endogenous glycerol and mea-
sured high-density lipoproteins cholesterol (HDL-
cholesterol) using a direct enzymatic colorimetric
assay.

We then derived the cardio-metabolic risk score
using an adapted metabolic syndrome definition,
as the mean of sex- and cohort-specific z-scores of
5 components of metabolic risk: 1) systolic blood
pressure; 2) waist circumference; 3) log-
transformed insulin resistance (HOMA-IR); 4)
log-transformed triglycerides; and 5) HDL-
cholesterol (scaled inversely). We have used the
same method in previous studies in this cohort
[32–34].

Mediator

For this study, we assessed the extent to which
DNA methylation at each CpG measured in
blood collected at the mid-childhood visit (median
age 7.7 years) mediated the association of mid-
childhood BMI z-score with cardio-metabolic risk
score in early adolescence. DNA methylation at
each CpG site was defined as the proportion of
average methylated fluorescence intensity, also
known as β-value (ranged from 0 to 1). We con-
verted β-values into M-values (M = log2[β/(1- β)])
for statistical analysis as M-values are approxi-
mately normally distributed [35].

Statistical analysis

Demographic differences for participants included
and excluded from this study were assessed using
χ2 tests (categorical variables) and t-tests (contin-
uous variables), and effect size analysis [36]. We
used least-square linear regression to assess the
total effect of BMI z-score on cardio-metabolic
risk score, adjusted for maternal education and
smoking during pregnancy, and age at the early
adolescence visit. We used robust linear regression
models (RLM) CpG-by-CpG to separately assess
the epigenome-wide associations of (a) BMI
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z-score with DNA methylation at each site, and (b)
DNA methylation at each site with cardio-
metabolic risk score (Steps 1 and 2 of Figure 1).
To assess the association of BMI z-score with
DNA methylation, we adjusted for age at blood
draw for DNA methylation, cell type proportion,
child sex, maternal education and maternal smok-
ing during pregnancy in EWAS (a). We included
the same covariates in EWAS (b) to assess the
association of DNA methylation with cardio-
metabolic risk score, except that we additionally
included age at the early adolescence visit. We
considered these models as most appropriate
because the covariates adjusted in the models are
common causes of BMI and cardio-metabolic risk,
i.e., confounders. Also, genomic inflation factors
(λ) that were close to 1 (λ = 0.97 for EWAS (a);
λ = 1.02 for EWAS (b)) imply systematic bias is
unlikely. We controlled the Benjamini-Hochberg
false discovery rate (FDR) at 5% to account for
multiple comparisons for each of the two EWAS
separately.

We performed a high-dimensional mediation
analysis (Step 3 of Figure 1) based on the sure
independence screening criterion and a variable
selection technique (minimax concave penalty),
using the HIMA package in R [37,38]. The high-
dimensional mediation analysis consists of three
steps. First, we identified a subset of CpGs that are
among the top n/log(n) largest effects of mediators
on the outcome regardless of the p-value, where
n is the sample size (i.e., top 48 largest effects given
a sample size of 265) [37]. In this study, we used
a stricter screening criterion instead of the top 2n/
log(n) largest effects in the previous literature to
address potential false positive findings. Second,
we used minimax concave penalty to evaluate the
effects of BMI z-score on the DNA methylation of
this subset of CpGs [39]. Third, we examined the
FDR of exposure-mediator and mediator-outcome
associations based on a joint significance test. To
test the robustness of the high-dimensional media-
tion analysis, we also used the leave-one-out cross-
validation approach, in which one participant was
left out of each analysis. We reported CpGs
selected in more than 95% of the validation tests.
We also assessed mediation using a natural effect
model (Step 4 of Figure 1) [40,41], using the med-
flex package in R [42]. The natural effect model

circumvents the statistical issues in the traditional
mediation analysis, such as confounding and col-
lider bias [43], by decomposing the total causal
effect into natural direct and indirect effects [41–
43]. Specifically, we assessed the joint natural
indirect effect of the potential mediators identified
in the leave-one-out cross-validation of the high-
dimensional mediation analysis. In a sensitivity
analysis, we additionally adjusted for child race,
birth weight for gestational age z-score, and mater-
nal pre-pregnancy BMI.

In the regional DNA methylation analysis, dif-
ferentially methylated regions (DMRs) were iden-
tified using the Bioconductor package DMRcate,
an approach that is agnostic to genomic annota-
tion and effect direction but not to chromosomal
coordinates [44]. Robust estimates of BMI z-score
on DNA methylation at each CpG were derived
from the Bioconductor package limma [44], and
we adjusted for age at blood draw for DNA methy-
lation, child sex, maternal education and smoking
during pregnancy in the model. We then assessed
the associations of BMI z-score with DMR DNA
methylation (exposure-mediator), and of DMR
DNA methylation with cardio-metabolic risk
score (mediator-outcome) separately using gener-
alized estimating equation (GEE). In GEE, we
treated the DNA methylation of each CpG in one
DMR as one of the multiple repeated measures.
Thus, the results may be more robust than using
the median of all available CpGs in one DMR. The
FDR was used to account for multiple compari-
sons of DMRs for each of the two associations
separately.

We also performed a secondary analysis to
assess mediation by DNA methylation at
cg06500161 (ABCG1) selected based on prior lit-
erature. DNA methylation at cg06500161 was pre-
viously identified to be influenced by adiposity
[12,13] by both a Mendelian randomization study
and an EWAS. Associations of BMI z-score with
DNA methylation at cg06500161, and of DNA
methylation at cg06500161 with cardio-metabolic
risk score were assessed. We also assessed the
natural indirect effect of DNA methylation at
cg06500161 for the association of BMI z-score
with cardio-metabolic risk score. Table A-1 in
Supplementary Material A shows the covariates
adjusted for in each analysis.
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Figure 1. Workflow for assessing the potential mediation effects of DNA methylation in blood in mid-childhood on the associations
of BMI z-score in mid-childhood with cardio-metabolic risk score in early adolescence (Mp represents DNA methylation at each CpG.
Joint M is the joint natural indirect effect via DNA methylation at the CpGs that were selected in more than 95% of the leave-one-out
cross validation tests in the high-dimensional mediation analysis. Illustration for high-dimensional mediation analysis was repro-
duced according to Zhang et al. 2016 [38] and Boca et al. 2014 [78]).
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Data availability

The data that support the findings of this study are
available from the corresponding author upon rea-
sonable request.

Results

Among 1,110 children with BMI information in
mid-childhood, 10% were overweight (at or above
the 85th percentile and below the 95th percentile) and
5% were obese (at or above the 95th percentile). We
included 265 participants from the Project Viva who
had BMI at the mid-childhood visit, DNA methyla-
tion in blood at the mid-childhood visit, cardio-
metabolic risk at the early adolescence visit, and all
covariates. Table 1 shows that at enrollment, most
mothers were college graduate or above (67.9%) and
never smoker (70.9%). Participants included in and
excluded from this study showed no difference in

terms of BMI inmid-childhood but some differences
in terms of maternal parity, and age at enrollment,
and child birth weight, age at blood draw for DNA
methylation, and age at the early adolescence visit.
However, the effect sizes of these differences were
mostly smaller than 0.2, implying small differences.

Higher BMI z-score in mid-childhood was asso-
ciated with higher cardio-metabolic risk score in
early adolescence (β = 0.31, 95% CI 0.25 to 0.37).
Figures 2 and 3 show the QQ-plots for the EWAS (a)
and EWAS (b) respectively, and Figures 4 and 5
show the Manhattan plots for the EWAS (a) and
EWAS (b) respectively. Figures A-1 and A-2 in
Supplementary Material A show that p-values of
EWAS (a) were slightly underinflated and null
p-values may be expected from EWAS (b). Figures
A-3 and A-4 in Supplementary Material A show
symmetric patterns with methylation at a few CpGs
reached FDR cutoff in the Volcano plots. Table 2
shows the CpG sites with an FDR smaller than 0.05

Table 1. Comparisons of covariates between the participants included in and excluded from this study.
Included (N = 265) Excluded (N = 1863)

Covariates N
Mean (SD)
or N (%) N

Mean (SD)
or N (%) P-valuea Effect sizeb

Maternal characteristics at enrollment
Education 265 1839 0.26 0.02
≥ College graduate 180 (67.9) 1180 (64.2)
< College graduate 85 (32.1) 659 (35.8)

Smoking during pregnancy 265 1842 0.34 0.03
Never 188 (70.9) 1255 (68.1)
Former 51 (19.2) 347 (18.8)
During pregnancy 26 (9.8) 240 (13.0)

Parity (nulliparous) 265 1863 2.0e-2 0.05
No 156 (58.9) 955 (51.3)
Yes 109 (41.1) 908 (48.7)

Age (years) 265 32.9 (5.3) 1863 31.7 (5.2) 2.3e-4 0.24
Pre-pregnancy BMI (kg/m2) 265 24.9 (5.2) 1847 24.9 (5.6) 0.90 0.01
Child characteristics
Sex 265 1863 0.79 0.01
Boys 134 (50.6) 962 (51.6)
Girls 131 (49.4) 901 (48.4)

Race/ethnicity 265 1844 0.15 0.06
White 163 (61.5) 1179 (63.9)
Black 46 (17.4) 309 (16.8)
Hispanic 16 (6.0) 112 (6.1)
Asian 7 (2.6) 88 (4.8)
Other 33 (12.5) 156 (8.5)

Birthweight (grams) 265 3551 (548) 1862 3448 (597) 0.5e-2 0.19
Gestational age (weeks) 265 39.6 (1.6) 1863 39.4 (2.0) 0.17 0.09
Birthweight for gestational age z-score 265 0.31 (1.00) 1862 0.15 (0.97) 1.3e-2 0.16
Age at blood draw for DNAm (years) 265 7.7 (0.7) 195 8.2 (0.9) 2.0E-7 0.50
BMI in mid-childhood (kg/m2) 265 17.4 (3.2) 845 17.2 (2.9) 0.45 0.05
BMIz in mid-childhood 265 0.45 (1.06) 845 0.37 (0.98) 0.27 0.08
Age at the early adolescence visit (years) 265 12.9 (0.6) 773 13.3 (1.0) 4.4E-12 0.50
Cardio-metabolic in early adolescence 265 −0.03 (0.63) 334 0.02 (0.62) 0.30 0.09

Abbreviation: Standard deviation (SD); Body mass index (BMI); BMI z-score (BMIz); DNA methylation (DNAm).
a χ[2] test was used for categorical variables, t-test was used for continuous variables;
b Cramér’s V was used for the effect size analysis for categorical variables, Cohen’s d was used for the effect size analysis for continuous variables.
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in each EWAS. BMI z-score in mid-childhood was
positively associated with DNA methylation in mid-
childhood at cg11412418, cg09571082, and
cg17298543 (GNAI1), but negatively associated
with DNA methylation in mid-childhood at
cg24618739 (PRTFDC1). DNA methylation in mid-
childhood at cg17086579 (PITPNM1) was negatively
associated with cardio-metabolic risk score in early

adolescence. However, the discovered CpG sites in
the two EWAS did not overlap.

Table 3 shows that the variable selection procedure
selected 19 CpGs from the top 48 CpGs with the
largest effects of DNA methylation in mid-
childhood on cardio-metabolic risk score in early
adolescence. The mediation by DNA methylation at
12 CpGs were in the same direction as the total effect,

Figure 2. QQ-plot of EWAS of BMI z-score in mid-childhood and DNA methylation in mid-childhood (Adjusted for age at blood draw
for DNA methylation, cell type proportion, child sex, maternal education and maternal smoking during pregnancy).

Figure 3. QQ-plot of EWAS of DNA methylation in mid-childhood and cardio-metabolic risk score in early adolescence (Adjusted for
age at blood draw for DNA methylation, cell type proportion, child sex, maternal education, maternal smoking during pregnancy,
and age at the early adolescence visit).
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i.e., consistent mediation [45], among which 6 CpGs
(ATOH8, CDC37/MIR1181, COMT/TXNRD2,
DDX10, AS2R40, and TBCD) were selected as poten-
tial mediators inmore than 95% of the validation tests
and jointly explained 10% of the total effect. Although
none of them had an FDR smaller than 0.05 in any of
the validation tests, the joint natural indirect effect of
DNA methylation at these 6 CpGs was evident (NIE:

β = 0.04, P = 3.2e-2). This means that one unit higher
in BMI z-score (corresponding to 2.2 kg/m2 higher
BMI) was indirectly associated with 0.04 higher of
cardio-metabolic risk score via DNA methylation at
these 6 CpGs. This natural indirect effect accounted
for 13% of the total effect. By isolating the joint natural
indirect effect of DNA methylation at these 6 CpGs,
the remained natural direct effect of BMI z-score on

Figure 4. Manhattan plot of EWAS of BMI z-score in mid-childhood and DNA methylation in mid-childhood (Adjusted for age at
blood draw for DNA methylation, cell type proportion, child sex, maternal education and maternal smoking during pregnancy; red
line: FDR < 0.05).

Figure 5. Manhattan plot of EWAS of DNA methylation in mid-childhood and cardio-metabolic risk score in early adolescence
(Adjusted for age at blood draw for DNA methylation, cell type proportion, child sex, maternal education, maternal smoking during
pregnancy, and age at the early adolescence visit; red line: FDR < 0.05).

Table 2. Mid-childhood CpG sites associated with BMI z-score in mid-childhood and with cardio-metabolic risk score in early
adolescence.

EWAS chr CpG
Change

in M-value FDR Bonferroni
Gene
symbol

Gene
region

Relation to
Island

BMIz – DNAma 5 cg11412418 0.18 5.0e-2 0.20 N_Shore
6 cg09571082 0.18 1.5e-2 1.5e-2 OpenSea
7 cg17298543 0.11 3.4e-2 0.10 GNAI1 Body OpenSea
10 cg24618739 −0.16 3.2e-2 6.4e-2 PRTFDC1 Body OpenSea

DNAm – cardio-metabolic risk
scoreb

11 cg17086579 −0.37 4.6e-2 4.6e-2 PITPNM1 Body S_Shelf

Abbreviation: false discovery rate (FDR); Body mass index (BMI); BMI z-score (BMIz); DNA methylation (DNAm).
a Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never, former, during pregnancy), age at blood
draw for DNA methylation, and cell type proportions. Batch effect from plate was adjusted in ComBat. BMIz was included in ComBat model to
protect regression variability;

b Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never, former, during pregnancy), age at the
early adolescence visit, age at blood draw for DNA methylation, and cell type proportions. Batch effect from plate was adjusted in ComBat.
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cardio-metabolic risk score was still evident (NIE:
β = 0.27, P = 1.1e-25). Joint natural indirect effect of
DNA methylation at these 6 CpGs may mediate the
associations of BMI z-score with systolic blood pres-
sure (NIE: β = 0.04, P-value = 0.04) and with log-
transformed triglycerides (NIE: β = 0.05,
P-value = 0.03) but not those with other cardio-
metabolic risk components. In a sensitivity analysis,
we found the join natural indirect effect of DNA
methylation at these 6 CpGsmaymediate the associa-
tions of subscapular skinfold thickness at mid-
childhood with cardio-metabolic risk score (NIE:
β = 0.06, P-value = 0.03). This means that one unit
higher in subscapular skinfold z-score (corresponding
to 5.6mm thicker subscapular skinfold) was indirectly
associated with 0.06 higher of cardio-metabolic risk
score via DNA methylation at these CpGs. In
a sensitivity analysis adjusted for child race, birth
weight for gestational age z-score, and maternal pre-

pregnant BMI, 1 out of these 6 potential mediators
was also selected in more than 95% of the validation
tests (cg22683879 (CDC37/MIR1181)). The media-
tion estimates by DNA methylation at 7 CpGs were
in the opposite direction from the total effect, i.e.,
inconsistent mediation [45]. Among these 7 CpGs,
five (FAIM, PARP6, and SHISA2) were selected as
potential mediators in more than 95% of the valida-
tion tests. The joint natural indirect effect of DNA
methylation at these 5 CpGs was also evident (NIE:
β = −0.04, P = 2.0e-2).

DMRcate identified 16 DMRs for association with
BMI z-score inmid-childhood (Table 4). The number
of CpGs in each DMR ranged from 2 to 35 (Table B-1
in Supplementary Material B for the CpGs in each
DMR). Figures A-5 to A-6 in the Supplementary
Material A show that DNA methylation at CpGs in
each DMR were highly correlated. However, no asso-
ciation was identified for these 16 BMI-associated

Table 3. High-dimensional mediation analysis for the association of BMI z-score in mid-childhood with cardio-metabolic risk score in
early adolescence via DNA methylation in mid-childhood (Results of CpG sites selected by sure independence screening criterion and
a variable selection technique (minimax concave penalty)).

Joint significance testa
Leave-one-out
cross-validationb

CpG chr αc βd FDR % TEe mean αc mean βd Gene symbol Gene region Relation to Island

cg03205258 22 0.06 0.14 0.53 2.45% 0.06 0.13 TXNRD2;COMT 1stExon;1stExon;5ʹUTR Island
cg01832325 11 0.04 0.15 0.53 2.11% NA NA HBBP1 TSS1500 OpenSea
cg25825612 17 −0.04 −0.17 0.53 1.95% −0.04 −0.14 TBCD Body N_Shelf
cg04967734 11 −0.03 −0.17 0.53 1.85% −0.03 −0.12 DDX10 Body OpenSea
cg22683879 19 0.05 0.09 0.53 1.50% 0.05 0.09 MIR1181;CDC37 TSS200;TSS200 Island
cg14732969 3 −0.06 −0.03 0.53 0.55% NA NA S_Shore
cg08033383 1 0.01 0.06 0.53 0.24% NA NA FAM40A 1stExon Island
cg08189124 11 0.03 0.25 0.54 2.17% NA NA N_Shelf
cg06897686 2 0.01 0.33 0.67 1.22% 0.01 0.3 ATOH8 Body Island
cg24780236 7 −0.02 −0.2 0.67 1.14% −0.02 −0.19 TAS2R40 TSS1500 OpenSea
cg05677579 3 0.01 0.11 0.67 0.36% NA NA RRP9;PARP3 TSS1500;TSS200 Island
cg23081542 7 −3.17E-03 −0.18 0.83 0.19% NA NA LOC723809 Body OpenSea
cg01025283 3 −0.05 0.15 0.23 −2.25% −0.05 0.16 FAIM TSS200;5ʹUTR;1stExon Island
cg26494138 2 −0.05 0.24 0.23 −4.18% −0.05 0.20 S_Shore
cg23992886 7 0.02 −0.14 0.54 −0.89% NA NA MET;MET Body;Body OpenSea
cg07026904 11 −0.02 0.06 0.67 −0.42% NA NA S_Shore
cg23331961 15 0.02 −0.13 0.67 −0.67% 0.02 −0.12 PARP6 TSS1500 N_Shore
cg11631158 13 0.01 −0.09 0.76 −0.43% 0.01 −0.09 SHISA2 Body N_Shore
cg18647237 5 4.50E-04 −0.26 0.98 −0.04% 4.35E-04 −0.20 N_Shore

Abbreviation: false discovery rate (FDR); Body mass index (BMI); BMI z-score (BMIz); DNA methylation (DNAm); the proportion of total effect (% TE)
a In the joint significance test, FDR of the BMIz – DNAm associations (α) and FDR of the DNAm – cardio-metabolic risk score associations (β) were
estimated separately, and the larger FDR was reported;

b In the leave-one-out cross-validation, 265 validation tests were performed by excluding one participant from the full dataset. Only the CpGs being
selected by the variable selection procedure in more than 95% of the validation tests were reported in this study. Results are the mean coefficients
of each CpG in all validation tests;

c Results represent changes of M-value. Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never,
former, during pregnancy), age at blood draw for DNA methylation, and cell type proportions. Batch effect from plate was adjusted in ComBat.
BMIz was included in the ComBat model to protect regression variability;

d Results represent changes of M-value. Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never,
former, during pregnancy), age at the early adolescence visit, age at blood draw for DNA methylation, and cell type proportions. Batch effect from
plate was adjusted in ComBat. BMIz was included in the ComBat model to protect regression variability;

e ‘% TE’ denotes the proportion of total effect explained by each mediator, calculated as α*β/TE. In this study, higher BMIz in mid-childhood is
associated with higher cardio-metabolic risk score in early adolescence.
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DMR methylation in mid-childhood and cardio-
metabolic risk score in early adolescence. BMI
z-score was negatively associated with DNAmethyla-
tion in mid-childhood at 4 DMRs (chr1:248100276–-
248100614 on OR2L13 (7 CpGs), chr6:28583971
–28584464 on ZBED9 (17 CpGs), chr6:28911926–-
28912166 on LINC01556 (5 CpGs), and
chr22:46449430–46450114 on PRR34 and PRR34-AS
1 (11 CpGs)).

In the secondary analysis targeting a region of
interest based on prior literature, BMI z-score was
positively associated with DNA methylation at
cg06500161 (ABCG1) (β = 0.04, P = 1.0e-3).
However, higher DNA methylation at this CpG
was not associated with cardio-metabolic risk score
(β = 0.26, P = 0.17) and no natural indirect effect of
DNA methylation at cg06500161 (ABCG1) for the
association of BMI z-score with cardio-metabolic
risk was evident (NIE: β = 0.01, P = 0.21).

Discussion

In this study, we assessed the association of BMI
z-score in mid-childhood with cardio-metabolic

risk score in early adolescence and potential epige-
netic mechanisms mediating this association. We
hypothesized that DNA methylation of leukocytes
in mid-childhood partially mediates this associa-
tion, and we performed a CpG-by-CpG analysis
using an EWAS approach, a high-dimensional
mediation analysis using a variable selection tech-
nique, and we assessed the natural indirect effect
using the natural effect model. We also assessed in
a regional analysis the association of DNAmethyla-
tion at DMRs with BMI z-score and with cardio-
metabolic risk score. We replicated the previously
reported [13] positive association between BMI
z-score and DNA methylation for ABCG1 in mid-
childhood. We also found that BMI z-score in mid-
childhood was negatively associated with DNA
methylation in mid-childhood at 4 DMRs using
a GEE approach. In the high-dimensional media-
tion analysis, we identified 6 CpGs that explained
10% of the total effect of BMI z-score in mid-
childhood on cardio-metabolic risk score in early
adolescence. None of the FDRs was smaller than
0.05. However, the joint natural indirect effect of
these 6 CpGs consistently explained 13 % of the

Table 4. Regional analysis of the mediation effects of DNA methylation (DNAm) in mid-childhood on the association of body mass index
z-score (BMIz) in mid-childhood with cardio-metabolic risk score in early adolescence using generalized estimating equation (GEE).

BMIz – DNAmb DNAm – cardio-metabolic risk scorec

DMRa Number of CpGs α FDR β FDR

chr1:248,100,276–248,100,614 7 −0.33 2.3e-08 2.03e-04 0.97
chr1:25,291,385–25,292,215 11 0.02 0.69 1.06e-03 0.97
chr4:111,397,134–111,397,581 7 −0.08 0.13 −1.44e-03 0.97
chr6:28,583,971–28,584,464 17 −0.07 1.0e-2 −2.96e-03 0.97
chr6:28,911,926–28,912,166 5 −0.11 2.2e-04 −0.01 0.97
chr6:30,459,867–30,460,322 2 −4.45e-03 0.86 −0.03 0.97
chr6:31,542,740–31,543,686 13 −0.03 0.37 1.69e-03 0.97
chr6:31,549,929–31,550,090 2 0.02 0.33 −0.02 0.97
chr6:31,690,904–31,692,375 35 −0.06 0.13 8.15e-04 0.97
chr6:32,942,063–32,943,025 11 0.05 0.34 6.67e-04 0.97
chr8:145,024,774–145,025,610 9 −0.04 0.38 −4.69e-04 0.97
chr12:122,711,988–122,712,381 9 0.03 0.23 −4.09e-03 0.97
chr16:54,227,790–54,228,447 7 −0.11 0.12 2.61e-03 0.97
chr19:2,607,726–2,607,903 4 0.03 0.13 0.01 0.97
chr20:57,582,581–57,583,263 15 4.44e-04 0.98 1.68e-03 0.97
chr22:46,449,430–46,450,114 11 −0.14 3.1e-19 −0.03 0.23

Abbreviation: Differentially methylated region (DMR); BMI z-score (BMIz); DNA methylation (DNAm); generalized estimating equation (GEE); false
discovery rate (FDR)

a Regions were identified for association with BMI z-score in mid-childhood using DMRcate package, adjusted for child sex, maternal education
(college graduate), maternal smoking during pregnancy (never, former, during pregnancy), and age at blood draw for DNA methylation.

b Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never, former, during pregnancy), age at blood
draw for DNA methylation, and cell type proportions. Batch effect from plate was adjusted in ComBat; BMI z-score was included in the ComBat
model to protect regression variability;

c Adjusted for child sex, maternal education (college graduate), maternal smoking during pregnancy (never, former, during pregnancy), age at the
early adolescence visit, age at blood draw for DNA methylation, and cell type proportions. Batch effect from plate was adjusted in ComBat; BMI
z-score was included in the ComBat model to protect regression variability.
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total effect. This may imply that the effect of DNA
methylation at individual CpGs may not be strong
enough to bridge the causal relation between BMI
and cardio-metabolic risk.

We also identified potential mediation by 5 CpGs
in the opposite direction from the total effect.
Considering the small sample size and low varia-
bility of cardio-metabolic risk, the hypothesis that
DNA methylation mediates the effect of BMI on
cardio-metabolic risk needs further examination.

The association of BMI with DNA methylation
has been investigated previously, however, whether
the change in DNA methylation is the cause or
consequence of adiposity remains to be determined.
Among 83 BMI-related CpGs that replicated in
multiple cohorts, Mendelson et al. used Mendelian
randomization to suggest that methylation at
cg11024682 (SREBF1) influenced BMI (i.e., methy-
lation as the cause), while BMI affected methylation
at 16 other CpGs (i.e., methylation as the conse-
quence) [12]. By investigating 187 CpGs with
potential BMI-methylation associations replicated
in multiple cohorts, Wahl et al. found that methyla-
tion at cg26663590 (NFATC2IP) influenced BMI,
while BMI affected DNA methylation at 3 other
CpGs [13]. Furthermore, Dick et al. reported
a positive association between BMI and DNA
methylation at cg22891070, cg27146050, and
cg16672562 at HIF3A in adults [14], and
Richmond et al. replicated the association of
cg27146050 at HIF3A in adolescents [11]. The
study by Richmond et al. also supported the direc-
tion of BMI causes DNA methylation using
Mendelian randomization, although the association
was not evident [11]. These findings suggest that
the accumulation of excess weight captured as ele-
vated BMI most commonly causes changes in DNA
methylation, rather than vice versa.

Both Mendelson et al. and Wahl et al. reported
positive associations of BMI with DNAmethylation
at cg06500161 (ABCG1) [12,13]. In this study, we
initially excluded cg06500161 (ABCG1) from our
main analysis because it is a SNP-associated probe
with a minor allele frequency of 6.5% (rs9982016)
in the dbSNP (snp137Common) in all populations.
However, the minor allele frequency of rs9982016 is
4.8% among people of European descent according
to 1000 Genomes Project Phase 3 (information
extracted from Ensembl (http://www.ensembl.org/

)) [46]. Furthermore, rs9982016-cg06500161 asso-
ciation is not reported in the mQTL Database of the
Avon Longitudinal Study of Parents and Children
(ALSPAC) cohort (only SNP-CpG associations
with a p-value below 1.0e-7 are reported), and
rs9982016 is not associated with DNA methylation
level at cg06500161 in a Mexican American cohort
(P = 0.19) [47]. Therefore, we performed a second-
ary analysis assessing mediation by DNA methyla-
tion at cg06500161. Consistent with previous
studies of DNA methylation in adult blood
[12,13], we found that BMI was positively asso-
ciated with DNA methylation at cg06500161,
which is located in ABCG1 regulatory sites [48].
Previous studies also showed that DNA methyla-
tion at cg06500161 (ABCG1) in blood was nega-
tively associated with ABCG1 expression [12,13],
consistent with the association between weight
loss and upregulated ABCG1 expression in an
observational study (Table A-2 in Supplementary
Material A) [49]. ABCG1 expression was associated
with adiposity in a genotype analysis in humans
[50], and a decrease in adiposity was found in high-
fat diet fed mice with knockout of ABCG1 [50,51].
Taken together, the findings from this study, along
with the previous EWAS and Mendelian randomi-
zation [12,13], imply a negative effect of BMI on
ABCG1 expression via increasing DNAmethylation
at cg06500161 (ABCG1), which may subsequently
inhibit fat mass growth. This body of evidence
indicates that the ABCG1 methylation change may
be a response to adiposity, and act as a negative
feedback to protect the body from the potential
harm of excess fat mass. The underlying pathway
of elevated ABCG1 expression affecting adiposity
may involve the activation of lipoprotein lipase
(LPL) and PPARγ [50]. Genetic mutations that
lead to LPL deficiency are associated with higher
risk of coronary artery disease [52]. PPARγ activa-
tion can lower low-density lipoproteins cholesterol
(LDL-cholesterol) and improve insulin sensitivity
[53,54], which may imply an effect of PPARγ defi-
ciency on higher cardio-metabolic risk. Also,
ABCG1 are ATP-binding cassette transporters that
modulate cholesterol homeostasis via cholesterol
efflux [55,56]. Deficiency of ABCG1 in T cells
impairs cholesterol transportation, and may, there-
fore, inhibit the mammalian target of rapamycin
(mTOR) signaling pathway [57], which regulates
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cardiac metabolism [58]. Furthermore, ATP-
binding cassette transporters ABCG5 and ABCG8
are associated with higher LDL-cholesterol [59].
However, whether ABCG1may exert similar effects
is unclear.

To assess mediation by multiple mediators, regres-
sing the outcome on all potential mediators in a single
model is suggested [40]. However, traditional regres-
sion is not applicable when the number of potential
mediators is much larger than the sample size.
Therefore, we used a sure independence screening
criterion and a variable selection technique to perform
a high-dimensionalmediation analysis [38]. However,
mediation analysis relying on statistical models is
vulnerable to confounding and collider bias [43].
Thus, the effect estimates may not be valid. In the
high-dimensional mediation analysis, we found med-
iators in the same direction as the total effect as well as
somemethylationmediators in the opposite direction.
Therefore, we used the natural effect model to assess
the joint natural indirect effects of the potential med-
iators stratified by the direction of mediation [40–42].
The proportion of total effect explained by the indirect
effect via DNAmethylation at the 6 CpGs in the same
direction as the total effect were similar based on the
high-dimensional mediation analysis (10%) and the
natural effect model (13%). The putative functions of
the genes identified in this study (see Tables 2 and 3)
were obtained from Genecards and the GWAS
Catalog (see Table A-3 in Supplementary Material
A). DDX10 is associated with glucose homeostasis
traits [60], TAS2R40 is associated with cancer risk
[61], FAIM can protect against apoptosis and regu-
lates B-cell signalling and differentiation [62], and
PARP6 is associated with cognitive impairment [63].
However, whether these genes play a role in cardio-
metabolic risk is unclear given limited evidence from
the existing lit erature. Of these CpGs, cg03205258 is
on COMT, which regulates catecholamine metabo-
lism and was previously found associated with CVD
[64]. In the sensitivity analysis additionally adjusted
for additionally adjusted for child race, birth weight
for gestational age z-score, and maternal pre-
pregnancy BMI, cg22683879 (CDC37/MIR1181) was
also selected by the high-dimensional mediation ana-
lysis. CDC37 enhances the bioactivity of Hsp90,
a molecular chaperone plays a crucial role in the
maturation and activation of many steroid receptors
including estrogen and androgen [65,66]. Hsp90 also

shows cardiac protective effect [67]. Decreased
CDC37 gene expression due to elevated DNAmethy-
lation may inhibit the activity of Hsp90 and thereby
deteriorate cardio-metabolic profile. The observation
of inconsistent mediators may imply a complex role
of DNA methylation in the association of BMI with
cardio-metabolic risk. Mediation in different direc-
tions should be interpreted with caution. Maternal
pre-pregnancy BMI was previously found negatively
associated with cord blood LEP gene methylation,
while higher leptin levels may increase risk of obesity
by regulating energy metabolism [68]. Therefore,
DNA methylation may act as a confounder between
BMI and cardio-metabolic risk. However, BMI and
DNA methylation were measured at the same time
point in this study, it is also possible that unknown
confounders affect both BMI and DNA methylation.
In addition, other unknown causal mechanisms
underlying the association of BMI with cardio-
metabolic risk may exist.

We also found associations of BMI z-score with
DNA methylation in 4 DMRs that had not pre-
viously been identified. One of these, DMR
chr1:248100276–248100614, is located on OR2L13,
an olfactory receptor gene. Mice experiments have
reported an association of impaired olfactory func-
tion with weight loss without loss of appetite [69].
However, observational studies reported a negative
association of visceral fat and BMI with olfactory
sensitivity [70,71]. DMR chr22:46449430–46450114
covers PRR34 (Proline-rich 34) and PRR34-AS1; the
latter is an antisense RNA gene which could affect
different stages of gene expression [72]. However,
little is known about the association of adiposity with
proline-rich protein.

This is the first study using epigenome-wide
association analyzes, high-dimensional mediation
analysis, and natural effect models to investigate
the mediation by blood DNA methylation of the
association between BMI z-score and cardio-
metabolic risk. We identified potential mediators
in different directions, which may provide insight
into specific targets for intervention. Nevertheless,
this study has several limitations. First, the cohort
participants all resided in the greater Boston area
and had health insurance, and thus results may not
be generalizable to other populations, although
causal factors usually act consistently. Second, the
final sample size was relatively small since we
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included the participants with complete data on all
required variables in the mediation analysis. Thus,
the analyzes are underpowered. To address poten-
tial false positive findings, we used a stricter screen-
ing criterion in the high-dimensional mediation
analysis. Third, BMI may not be a strong predictor
for total fat mass in children younger than 9 years
old [73]; however, our previous study shows that
dual x-ray absorptiometry total fat mass was highly
correlated with BMI (Spearman r = 0.83) in mid-
childhood in this cohort [74]. Also, BMI is likely to
be a reliable predictor of subscapular skinfold
thickness [75]. Our study showed consistent find-
ings for the associations of subscapular skinfold
thickness and BMI with cardio-metabolic risk. In
addition, a Mendelian randomization study sug-
gests that higher BMI causes CVD [20].
Therefore, this study may still provide insight into
the epigenetic mechanisms underlying the associa-
tion of adiposity with cardio-metabolic risk.
Fourth, the cardio-metabolic risk score was calcu-
lated based on five components of metabolic risk
including waist circumference, which is correlated
with BMI. Therefore, the association of BMI
z-score with cardio-metabolic risk score may be
overestimated in this study. When assessing the
cardio-metabolic risk components separately, only
the joint natural indirect effect for the association
of BMI z-score with systolic blood pressure and
log-transformed triglycerides were evident. This
may also imply that components in the global
metabolic risk score may involve different biologi-
cal mechanisms. Fifth, although we identified asso-
ciations between BMI z-score and DNA
methylation in the regional analysis, we could not
exclude the possibility of reverse causation.
However, a recent Mendelian randomization
study and an EWAS support the hypothesis that
most commonly BMI influences DNA methylation
in adult blood and not vice versa [12,13]. Sixth, we
replicated the positive association of BMI z-score
with DNA methylation at cg06500161 (ABCG1) in
a secondary analysis. However, we cannot exclude
the possibility of a SNP effect for this CpG.
Seventh, the null findings for the association of
DNA methylation with cardio-metabolic risk
score may be due to low variability. It may be
valuable to replicate this analysis in a cohort with
metabolic assessment later in the life course.

Eighth, given that DNA methylation at one CpG
may affect DNA methylation at another CpG and
that unknown mediator-outcome confounders
affected by the exposure may exist, this analysis
may have violated the assumptions of ‘no con-
founding between exposure-outcome, mediator-
outcome and exposure-mediator relationships and
that confounders of the mediator-outcome rela-
tionship are not affected by the exposure’ [41].
Future studies may consider using other study
designs such as two-step Mendelian randomization
to assess the mediation by DNA methylation.
Ninth, DNA methylation was measured in whole
blood, which may not reflect the DNA methylation
profile in tissues relevant to obesity, for instance,
adipose tissue [76]. However, a previous study
found BMI associates with DNA methylation in
both blood and adipose tissue [13], suggesting
blood samples could be used as a surrogate – at
some selected CpG sites – for adipose tissue for
investigating the associations between BMI and
DNA methylation. Finally, the Infinium Human
Methylation450K BeadChip interrogates only
1.7% of all CpGs in the whole genome [77]. While
it covers 99% of the RefSeq genes [24], the design
may not lead to the most comprehensive and all-
encompassing findings, i.e., associations in other
regions of the genome may be missed due to the
sparsity of the platform.

Conclusion

Using the high-dimensional mediation analysis
and the natural effect model, we identified both
consistent and inconsistent mediation by DNA
methylation in mid-childhood of the association
between BMI z-score in mid-childhood and car-
dio-metabolic risk score in early adolescence.
However, the associations between genes where
these potential mediators locate and cardio-
metabolic risk are unclear. We need to replicate
and expand our findings in future studies with
larger sample size and greater variability in cardio-
metabolic risk to elucidate the complex role of
DNA methylation as in this association.
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