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1  | INTRODUC TION

Freshwater ecosystems cover <1% of the Earth's surface, but are 
home to around 6% of all known species (Strayer & Dudgeon, 2010). 
The warming rates of recent decades combined with the multitude 

of anthropogenic stressors threaten the biological diversity, struc‐
ture, and function of freshwater ecosystems (Mantyka‐Pringle, 
Martin, Moffatt, Linke, & Rhodes, 2014; Strayer & Dudgeon, 2010; 
Woodward, Perkins, & Brown, 2010). Habitat fragmentation and the 
limited ability of many species to track spatial shifts toward suitable 
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Abstract
The distribution of a species along a thermal gradient is commonly approximated by 
a unimodal response curve, with a characteristic single optimum near the tempera‐
ture where a species is most likely to be found, and a decreasing probability of occur‐
rence away from the optimum. We aimed at identifying thermal response curves 
(TRCs) of European freshwater species and evaluating the potential impact of climate 
warming across species, taxonomic groups, and latitude. We first applied generalized 
additive models using catchment‐scale global data on distribution ranges of 577 
freshwater species native to Europe and four different temperature variables (the 
current annual mean air/water temperature and the maximum air/water temperature 
of the warmest month) to describe species TRCs. We then classified TRCs into one of 
eight curve types and identified spatial patterns in thermal responses. Finally, we in‐
tegrated empirical TRCs and the projected geographic distribution of climate warm‐
ing to evaluate the effect of rising temperatures on species’ distributions. For the 
different temperature variables, 390–463 of 577 species (67.6%–80.2%) were char‐
acterized by a unimodal TRC. The number of species with a unimodal TRC decreased 
from central toward northern and southern Europe. Warming tolerance (WT = maxi‐
mum temperature of occurrence—preferred temperature) was higher at higher lati‐
tudes. Preferred temperature of many species is already exceeded. Rising 
temperatures will affect most Mediterranean species. We demonstrated that fresh‐
water species’ occurrence probabilities are most frequently unimodal. The impact of 
the global climate warming on species distributions is species and latitude depend‐
ent. Among the studied taxonomic groups, rising temperatures will be most detri‐
mental to fish. Our findings support the efforts of catchment‐based freshwater 
management and conservation in the face of global warming.
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habitats cause freshwater biodiversity to be highly vulnerable to cli‐
mate warming (cf. Markovic, Carrizo, Kärcher, Walz, & David, 2017).

The magnitude of the already observed temperature alterations 
plays a fundamental role for determining the future climatic suitabil‐
ity of current species’ ranges. Temperature has strong impacts on the 
physiology (Vornanen, Haverinen, & Egginton, 2014), growth (Elliott 
& Allonby, 2013) and behavior of certain species (Frost et al., 2013). 
According to the Fifth Assessment Report of the Intergovernmental 
Panel on Climate Change (IPCC, 2013), the linear trend of the globally 
averaged combined land and ocean surface temperature data show a 
warming of 0.85°C (0.65–1.06°C), over the period 1880–2012 (IPCC, 
2013). Recent warming was shown to drastically shift the ranges of 
different taxonomic groups (Chen, Hill, Ohlemueller, Roy, & Thomas, 
2011; Domisch et al., 2013; Markovic et al., 2017), leading to a de‐
cline of many populations (Parmesan, 2006). In particular, for strictly 
aquatic species, temperature may set environmental tolerance range 
limits (Wiens, 2011). Accordingly, already minor shifts in water tem‐
perature lead to considerable changes of species assemblages.

The typical assumption for a thermal response curve of a species 
is the Gaussian curve (Gauch & Whittaker, 1972), with the preferred 
temperature at its peak. For freshwater species, responses along ther‐
mal gradients are sparsely explored, providing the opportunity to in‐
vestigate current thermal response shapes. Most previous studies on 
the thermal responses of freshwater species have been constrained 
to single taxonomic groups or to single stream networks. For example, 
using the logistic generalized linear regression models (GLMs), Logez, 
Bady, and Pont (2012) have identified thermal responses for 21 native 
European fish species, while Isaak, Wenger, and Young (2017) identi‐
fied thermal responses for 14 fish and amphibian species for a moun‐
tain stream network in the U.S. Rocky Mountains. Similarly, Pyne and 
Poff (2017) identified insect taxon response curves for temperature 
and streamflow. Comparative studies delineating response curves of 
species from various taxonomic groups are missing.

Assessing species responses along environmental gradients com‐
monly involves the use of various statistical approaches that estimate 
the probability of a species’ occurrence as a function of the environ‐
mental conditions across the current species’ geographic range, that 
is, the environmental response curves. Generalized linear regression 
models are among the most widely used approaches for identifying re‐
sponse curves. However, there are numerous alternative approaches 
such as 95%‐quantile regressions (Carrascal, Villén‐Pérez, & Palomino, 
2016) or Huisman‐Olff‐Fresco models (HOF) (Huisman, Olff, & Fresco, 
1993). The latter are considered one of the best statistical tools for 
response modeling, because of their predictive performance (Jansen 
& Oksanen, 2013; Oksanen & Minchin, 2002). It was shown that 
HOF models perform better than GLMs or beta functions (Lawesson, 
Fosaa, & Olsen, 2003; Oksanen & Minchin, 2002). Generalized addi‐
tive models (GAMs) provide response curves that coincide with the 
shape of those resulting from the HOF models (Jansen & Oksanen, 
2013). Specifically, Jansen and Oksanen (2013) have shown that the 
HOF models were mostly located in the range of the 95% confidence 
interval of GAMs. Additionally, according to Oksanen and Minchin 
(2002), GAMs and HOF models usually were consistent, but GAM has 

a greater flexibility regarding the response shape than HOF models, 
which are restricted to a limited number of shapes.

This study explores and compares the thermal responses of 577 
European freshwater species of molluscs, fish, plants, odonates, 
and crayfish. Thermal properties derived from global species ranges 
(209,659 catchments) are transferred to the European scale (16,689 
catchments). We use GAMs to link the species occurrence data to the 
annual mean air/water temperature and to the maximum air/water 
temperature of the warmest month, respectively, to parameterize 
species’ thermal response curves (TRCs). Specifically, we examine and 
compare the TRC types for the different temperature variables and 
the thermal properties across the individual species, taxa groups, and 
latitudes. The TRCs link the species occurrence probability to tem‐
perature patterns and are thus of fundamental importance for the 
conservation of freshwater biodiversity given the current warming 
rates and the likelihood of further temperature increases (cf. Isaak et 
al., 2017). Finally, we match the empirical thermal response curves 
with the projected temperature for the middle of the 21st century to 
evaluate the impacts of temperature alterations on freshwater species 
distributions throughout Europe.

2  | METHODS

2.1 | Species data

The IUCN Global Species Programme, as part of the Red List assess‐
ment process (IUCN, 2013, 2014), compiled presence and absence data 
on freshwater species distribution ranges in polygon shape files corre‐
sponding to global watershed boundaries. To capture the whole range 
of freshwater species native to Europe, the global species data from the 
IUCN Global Species Programme were used. Global data were available 
for 1,402 freshwater species native to Europe including 609 molluscs, 
473 fishes, 209 plants, 106 odonates, and five crayfish (see https://
www.iucn.org/theme/species/our-work/iucn-red-list-threatened-spe‐
cies for more details). Freshwater species data were mapped to 209,659 
catchments at the HydroBasins level 8 resolution (Lehner & Grill, 2013) 
(see Supporting Information, Appendix S1, Figure S1.1). Only species 
that occurred in at least 50 catchments were part of the analysis to 
guarantee an accurate estimate of the TRCs (Coudon & Gégout, 2007). 
Due to the dendritic structure of river networks, catchment mapping is 
more appropriate for freshwater species than the point‐to‐grid mapping 
used for mapping terrestrial species’ occurrences (see Fagan, 2002). 
In addition, given that catchments serve as units for freshwater man‐
agement and conservation (commonly referred to as the Catchment‐
Based Approach—CaBA, see DEFRA, 2013), catchment‐scale mapping 
of freshwater species’ occurrences ensures compatibility between 
the management and the analysis scales (Lévêque, Oberdorff, Paugy, 
Stiassny, & Tedesco, 2008; Markovic et al., 2017).

2.2 | Climate data

Global climatic data were ascertained for the second half of the 
20th century (1960–1990, hereafter referred to as baseline) from 

https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
https://www.iucn.org/theme/species/our-work/iucn-red-list-threatened-species
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the WorldClim (version 1.4) 30 arc‐second (approximately 1 km 
× 1 km) dataset (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005, 
www.worldclim.org, accessed on March 19, 2018). Due to a lack 
of in situ and satellite‐retrieved water temperature data given the 
large spatial extent of our study (209,659 river catchments), pa‐
rameterization of species’ thermal response curves was based on 
the catchment‐specific annual mean air temperature (Tmeanair) and 
the maximum air temperature of the warmest month (Tmaxair) of 
the baseline period. However, given a strong correlation between 
water and air temperature (Markovic, Scharfenberger, Schmutz, 
Pletterbauer, & Wolter, 2013; Mohseni, Stefan, & Eriksson, 1998), 
we used a global relationship model to transform air temperature 
to stream water temperature on a monthly basis (Punzet, Voß, Voß, 
Kynast, & Bärlund, 2012). Thus, we estimated the annual mean 
water temperature (Tmeanwater) and the maximum water tempera‐
ture of the warmest month (Tmaxwater). The annual mean water 
temperature was derived by averaging the transformed monthly 
average air temperatures. Areas without appreciable flows, that 
is, lakes, reservoirs, and lagoons, were excluded from the analy‐
sis. Pairwise Pearson correlations among the four used variables 
ranged from 0.81 to 0.98 (Supporting Information Table S1.1).

Future climate projections for Europe (16,689 river catchments) 
were gathered for the middle of the 21st century (hereafter referred to 
as 2050s) from the CIAT (International Center for Tropical Agriculture) 
30 arc‐seconds gridded dataset (www.ccafs-climate.org). The pro‐
jections in the CIAT dataset were obtained by three climate models 
(MOHC, IPSL, and MPI), each considering the RCP4.5 (Representative 
Concentration Pathways) emission scenario. RCP4.5 follows a medium‐
low mitigation of greenhouse gas emission and represents intermediate 
scenarios (van Vuuren et al., 2011). The gridded layers of the 20th and 
21st century Tmeanair and Tmaxair were mapped to HydroBasins level 
8 resolution catchments using the ESRI ArcGIS zonal statistics tool and 
afterwards transformed to projections of Tmeanwater and Tmaxwater 
using the derived global relationships model (Punzet et al., 2012).

2.3 | Modeling thermal response curves

2.3.1 | Statistical model

Global distributions of freshwater species native to Europe were 
modeled using GAMs (Hastie, 2016). GAMs are useful to model non‐
linear relationships and for relating binary data to probabilities by an 
adequate transformation of the fit. The evaluation of the species’ 
thermal response curves for the four different temperature variables 
Tmeanair, Tmaxair, Tmeanwater, and Tmaxwater (four models per spe‐
cies) was based on a univariate modeling approach, that is, Tmeanair, 
Tmaxair, Tmeanwater, or Tmaxwater was the only explanatory variable, 
respectively. Furthermore, a smoothing by spline functions with 
three degrees of freedom, that is, a piecewise interpolation by poly‐
nomials of maximal order two, was applied in order to get a smooth 
representation of the probability.

Based on the probability results from the statistical model, a 
threshold for separating presences and absences of a species was 

determined by minimizing the absolute difference between specific‐
ity (the rate of correctly predicted absences) and sensitivity (the rate 
of correctly predicted presences) (Fielding & Bell, 1997). Minimizing 
the difference between the sensitivity and specificity generally 
leads to accurate predictions (Jimenez‐Valverde & Lobo, 2007).

To evaluate the models’ performance, two main measures were 
calculated: the area under the receiver operating characteristic 
(ROC) curve, AUC (Hosmer & Lemeshow, 2000), and the true skill 
statistic (TSS = sensitivity + specificity – 1), whereas specificity and 
sensitivity are the result of the probability threshold determination 
(Allouche, Tsoar, & Kadmon, 2006). AUC values can range from 0 to 
1, with values of 0.5–0.7 demonstrating poor performance, 0.7–0.9 
moderate, and >0.9 high performance (Manel, Williams, & Ormerod, 
2001; Swets, 1988). An AUC value of 0.5 indicates a random pre‐
diction while an AUC value of 0 means that every presence is in‐
correctly predicted. TSS values range from −1 to +1, where values 
≤0 indicate a random and +1 a perfect performance (Allouche et al., 
2006). Consequently, only species with thermal modeling results ful‐
filling AUC ≥0.7 and TSS ≥0.4 for all four temperature variables were 
included in further investigations.

To account for accuracy of the predictive performance, the data 
were split into a training (80%) and validation (20%) dataset. The 
random data splitting into the training and the validation datasets 
procedure was repeated 100 times, leading to 100 individual values 
of the main performance measures for the calibration and valida‐
tion phase, respectively, which were averaged afterwards (Dormann, 
Purschke, Márquez, Lautenbach, & Schröder, 2008). The average 
AUC and TSS values of the validation were used for the assessment 
of the predictive performance.

Uncertainty was depicted by calculating 95% confidence inter‐
vals (CIs) around the modeled probabilities of occurrence, that is, 
around the thermal response curves, for each observation. CIs give 
an impression of the scattering and the preciseness of statistically 
calculated key figures (De Jong & Heller, 2008).

2.3.2 | Thermal response curve types

The resulting thermal response curves for each of the four tempera‐
ture variables, illustrating the probability of occurrence along the 
thermal gradient, were classified into eight different curve types (see 
Table 2). Type I corresponds to a Gaussian distribution, that is, a uni‐
modal symmetric response, showing a uniform distribution of the spe‐
cies’ occurrence around the temperature with the highest probability 
of occurrence (here termed as “preferred temperature”). Type II repre‐
sents a unimodal right skewed response and thus a tendency toward 
warmer regions. Type III describes a unimodal left skewed response, 
representing the tendency toward colder regions, that is, regions below 
the preferred temperature. Type IV represents no response, that is, the 
response curve is approximately a constant line at some probability. 
Type V describes an increasing probability of occurrence up to a certain 
threshold and an afterwards nearly constant response at the height 
of the respective threshold, showing a constant probability for higher 
temperatures. Type VI corresponds to a mirror image of the Type V 

www.worldclim.org
www.ccafs-climate.org
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response. Type VII response is characterized by a monotonic growth 
and Type VIII by a monotonic decline, indicating higher or lower prob‐
abilities along cold to warm temperatures, respectively (see Table 2).

Responses were automatically identified as Type IV, that is, no 
response, if the maximum probability of occurrence was smaller than 
0.01, because for these low probability TRCs no reliability can be as‐
sumed. In cases of a maximum probability greater than or equal to 0.01, 
all types were taken into consideration in order to determine the type 
via an automatic identification that makes use of the slope properties of 
each thermal response curve.

2.3.3 | Assessment of species’ thermal properties

The global thermal range of each single species is defined as the current 
temperature range. Thus, the thermal range is the difference between 
the maximum temperature and the minimum temperature of occur‐
rence. Thermal ranges or breadths facilitate the understanding of the 
vulnerability to extinction and of the rarity of a species (Slatyer, Hirst, 
& Sexton, 2013). Additionally, for each of the four statistical models, a 
thermal preference for species of Types I‐III, that is, for species with 
unimodal responses, was specified. The preferred temperature (Tpref) 
is the temperature with the highest probability of occurrence. Tpref 
was determined by using the function “optimize” implemented in R 
(R Development Core Team, 2017), which searches for the maximum 
probability. The maximum temperature at which the species was regis‐
tered for each temperature variable was set as critical temperature (CT).

Species sensitivity to global warming is closely related to spe‐
cies’ thermal range, thermal distribution and preferred temperature 
(cf. Markovic et al., 2017). For example, species with a small thermal 
range and low CT are more likely to be sensitive to rising tempera‐
tures. The potential exposure to global warming at the European 
scale was quantified using the difference between the average of 
the respective projected temperature variables of the three climate 
models and the corresponding species‐specific CT. The difference 
was considered “critical” if the projected temperature exceeded CT 
(i.e., the current baseline maximum temperature of occurrence of the 
species). “Warming tolerance” (WT) was calculated as the difference 
between CT and Tpref of the statistical model (WT = CT – Tpref). For 
each temperature variable, “safety margin” (SM) was calculated as the 
difference between Tpref and the average temperature of the species’ 
current temperature range (Tav) (SM = T pref – Tav). WT and SM val‐
ues were derivable only for species with a unimodal response curve 
(Types I‐III). Geographical variations at the European scale of these 
tolerance measures were depicted by averaging across latitude. We 
note that the critical temperature (CT), safety margin (SM), and the 
warming tolerance (WT) are the common terms used to describe 
the species thermal performance curves (TPCs) (see Deutsch et al., 
2008). Here, we used the latter terms to provide comparable descrip‐
tors of the TRCs, but underline that the interpretation of the CT, SM, 
and WT in the context of TRCs and TPCs is different. Specifically, 
while TPCs address the question of the species’ performance within 
a certain thermal range, the TRCs address the question of the likeli‐
hood of species occurrence.

3  | RESULTS

Results from transformed temperature variables, that is, annual mean 
water temperature and maximum water temperature of the warmest 
month, led to similar patterns in thermal response curves and thermal 
properties of the considered species. Therefore, the focus of the results 
and the following discussion will be on the non‐transformed temperature 
variables, that is, annual mean air temperature and maximum air tem‐
perature of the warmest month. However, results for the water tempera‐
ture variables are presented in the Supporting Information Appendix S1 
(Table S1.2, Figures S1.7 – S1.16) and S2 (Tables S2.3 and S2.4).

3.1 | Species thermal range

The current thermal ranges based on the global species ranges var‐
ied greatly across the taxa groups (see Figure 1a,b, Supporting 
Information Tables S2.1 and S2.2; for convenience, in figures and ta‐
bles taxa groups are ordered according to the number of initially avail‐
able species). The globe wanderer (Pantala flavescens), the freshwater 
snail big‐ear radix (Radix auricularia), the widely distributed pea clam 
(Pisidium casertanum), and the water‐starwort (Callitriche brutia) with 
thermal ranges above 47°C and 45°C for Tmeanair and Tmaxair, respec‐
tively, were among the species with the highest thermal ranges. The 
molluscs species Turricaspia lindholmiana, restricted to the estuarine 
waters of the Dnieper River system (Ukraine) and the Don River sys‐
tem (Russia), had the smallest realized thermal range regarding both 
air temperature variables (1.5°C for Tmeanair and 2.3°C for Tmaxair). 
While for Tmeanair the second smallest realized thermal range was as‐
signed to the fern Marsilea batardae (2.2°C) endemic to the Iberian 
Peninsula, for Tmaxair the fish species Percarina maeotica had the sec‐
ond smallest thermal range for Tmaxair (2.5°C). The median of the real‐
ized thermal ranges was smallest for fish and molluscs (Figure 1a,b).

3.2 | Models’ performance and uncertainty

Of the initially 1,402 considered European freshwater species, 649 
species occurred in more than 50 catchments and were thus suitable 
for the species distribution modeling. Of the 649 species whose spatial 
distributions were modeled using GAM, validation model performance 
was moderate to high (0.7 ≤ AUC ≤1 and 0.4 ≤ TSS ≤1) across the tem‐
perature variables for 577 species (see Table 1, Figure 1c,d, Supporting 
Information Tables S2.1 and S2.2). Models with AUC <0.7 and TSS <0.4 
were considered insufficiently accurate, which led to an elimination of 
the corresponding species from the further analysis (n = 72). The vali‐
dation AUC and TSS values were highest for fish (0.94 ≥ AUC median 
≥0.88 and 0.77 ≥ TSS median ≥0.61) and lowest for plants and odonates 
(0.92 ≥ AUC median ≥0.84 and 0.71 ≥ TSS median ≥0.54). The uncer‐
tainty of the modeled occurrence probabilities was low.

3.3 | Thermal response curve types

Considering all categorizations of the air temperature variables, 
the most common TRC types for molluscs, fish, plants, odonates 
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(Table 2) and crayfish (Supporting Information Tables S2.1 and 
S2.2) were Type I (unimodal symmetric response, 374 (Tmaxair) 
and 437 (Tmeanair) species) and Type IV (no response, 107 
(Tmeanair) and 179 (Tmaxair) species) (Table 2). For example, for 
Tmeanair, 58.6% (molluscs) to 89.3% (plants, odonates) had Type 
I as thermal response curve (Supporting Information Figure S1.2; 
Figure S1.3 for Tmaxair; Table 2, Table S2.1 and S2.2). The Type 
IV response was mainly found for endemic and restricted‐range 
species. However, for Marsilea batardae endemic to the Iberian 
Peninsula we found a Type I response for the annual mean air 
temperature (Tmeanair), suggesting that a Type IV response can‐
not be generalized for all endemic and restricted‐range species. A 
Type IV response consequently represents species with statisti‐
cally no identifiable thermal preference.

With regard to the species’ TRCs spatial distribution, the num‐
ber of species with a unimodal thermal response curve type, that 
is, Type I‐III, decreased from central toward northern and south‐
ern Europe (Supporting Information Figure S1.4).

3.4 | Assessment of species’ thermal properties

Thermal responses were unimodal (Type I‐III) for 463 (80.2%) and 
390 (67.6%) species using Tmeanair and Tmaxair to model species 

distributions, respectively (Table 2, Supporting Information Tables 
S2.1 and S2.2). For these species, the preferred temperature (Tpref), 
warming tolerance (WT) and safety margin (SM) could be deter‐
mined. Since high latitude analyses are based on a small number of 
species, high latitude WTs and SMs should be treated with caution. 
WT—latitude relationships were characterized by a WT increase 
with increasing latitude until around 55°N (Figures 2 and 3). As 
mentioned, for latitudes above 55°N, no reliable trend can be out‐
lined because of the low number of species representing the higher 
latitudes. The SMs of all considered species were located around 
0°C for 40°–55°N with species having either positive or negative 
SMs (Figures 2j and 3j). Both, WT and SM, were generally below 
5°C for species with an average latitude of occurrence below 45°N 
for Tmeanair (e.g., the “Vulnerable” Iberian mollusc Unio tumidiformis 
with WT = 1.1°C, SM = 0.4°C (Supporting Information Tables S2.1 
and S2.2)). Species living in regions >55°N had safety margins of 
down to around −7°C (e.g., the pea clam Pisidium casertanum with a 
safety margin of −7.4°C and −7.2°C for Tmeanair and Tmaxair, respec‐
tively) (Figures 2b and 3b; Supporting Information Table S2.1 and 
S2.2). Of those species with a unimodal response, the proportions 
of species with a negative safety margin per taxa group were be‐
tween 22% (molluscs) and 44% (odonates) (Supporting Information 
Figure S1.5). We note that for Tmaxair the proportion of species 

F I G U R E  1   Thermal ranges of the 
species and the distribution of the 
accuracy measures per taxonomic group 
for the respective temperature variable, 
that is, for (a, c) Tmeanair and (b, d) Tmaxair. 
The boxplots illustrate the distribution of 
the minimum, 25% quantile, median, 75% 
quantile, and maximum of the thermal 
ranges. The minimum and maximum are 
displayed by the end of the corresponding 
whiskers. Note that crayfish were 
excluded because of the low frequency of 
analyzed species
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with negative SMs was higher than for Tmeanair, ranging from 70% 
(fish) to 91% (plants) (Supporting Information Figure S1.6).

For both air temperature variables, the analyses showed that 
areas in Spain and Mediterranean coastlines will be affected the 
most by rising temperatures (Figures 4e and 5e). Regarding the CT 
deduced from Tmaxair, regions in Eastern Europe, especially in the 

coastal area of the Caspian Sea and the Danube region will likely 
suffer from temperature increases (Figure 5e). Among the studied 
taxonomic groups rising temperatures will be most detrimental to 
fish with more than 25% of the species in the respective catch‐
ments having a CT below the predicted temperatures mostly in the 
southern areas of Europe, reaching from the coastlines of Portugal 

Taxonomic group No. species
No. species with 
n ≥ 50

No. species with AUC 
& TSS > limit

Molluscs 609 106 99

Fish 473 243 220

Plants 209 196 178

Odonates 106 99 75

Crayfish 5 5 5

Sum 1,402 649 577

TA B L E  1   Development of the species 
number per taxonomic group. The table 
includes the initial number of species, the 
number of species, which occurred in at 
least 50 catchments, and the number of 
species, which fulfilled the statistical 
model accuracy criteria for all four 
temperature variables, that is, the AUC 
and TSS values of the species’ statistical 
thermal response curve model were >0.7 
and 0.4, respectively

TA B L E  2  Thermal responses according to the univariate GAM using the annual mean air temperature and the maximum air temperature 
of the warmest month. n is the total number of species with the respective TRC. Note that crayfish were excluded because of the low 
frequency of analyzed species

No.
Thermal response 
curve type

Taxonomic groups

Molluscs Fish Plants Odonates

Tmeanair Tmaxair Tmeanair Tmaxair Tmeanair Tmaxair Tmeanair Tmaxair

I n 58 43 148 109 159 156 67 61

% 58.6 43.4 67.3 49.5 89.3 87.6 89.3 81.3

II n 0 1 0 0 0 0 1 2

% 0.0 1.0 0.0 0.0 0.0 0.0 1.3 2.7

III n 5 1 13 6 7 6 0 0

% 5.1 1.0 5.9 2.7 3.9 3.4 0.0 0.0

IV n 36 54 59 105 9 12 3 8

% 36.4 54.5 26.8 47.7 5.1 6.7 4.0 10.7

V n 0 0 0 0 0 0 1 1

% 0.0 0.0 0.0 0.0 0.0 0.0 1.3 1.3

VI n 0 0 0 0 0 4 0 0

% 0.0 0.0 0.0 0.0 0.0 2.2 0.0 0.0

VII n 0 0 0 0 0 0 3 3

% 0.0 0.0 0.0 0.0 0.0 0.0 4.0 4.0

VIII n 0 0 0 0 3 0 0 0

% 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0

∑ 99 220 178 75

Note. Tmeanair, Annual mean air temperature; Tmaxair, Maximum air temperature of the warmest month.
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and Spain to the coastlines of the Caspian Sea (Figures 4 and 5). 
Overall, the relative frequency of species with a critical difference 
between the projected and current maximum temperature of oc‐
currence in a catchment was mainly below 10% (Figures 4e and 

5e). These numbers were generally exceeded in the coastal areas of 
Spain and Italy, in south‐west Portugal, in coastal areas of Greece, 
in the Alpine region, the Balkans, and the western areas of the 
Caspian Sea.

F I G U R E  2  Latitudinal distributions and nonlinear trend lines of warming tolerance (WT = CT − Tpref) and safety margin (SM = Tpref − Tav) 
for freshwater species inferred from the temperature variable Tmeanair. CT represents the maximum temperature of a species’ occurrence, 
Tpref the temperature corresponding to the highest probability of occurrence and Tav the average temperature of the current distribution 
range. WT and SM were only computed for species with a unimodal response, that is, responses for which a temperature that maximizes 
the probability of occurrence could be determined. Here, latitude values correspond to the average latitude of each species’ European 
latitudinal range. WT, SM, and average latitude values were determined for (a, b) molluscs, (c, d) fishes, (e, f) plants, (g, h) odonates, and (i, j) 
all taxonomic groups with unimodal response curves combined. Note that crayfish were excluded because of the low frequency of analyzed 
species. Each dot represents the WT and SM of one species in the respective figure
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4  | DISCUSSION

Since decades, the classical Gaussian response curve, which has a 
single optimum and a decreasing probability of occurrence away 
from the optimum along the thermal gradient, is a well‐accepted 

assumption for a species’ thermal response (Gauch & Whittaker, 
1972). Thermal response curves of the European freshwater spe‐
cies did not vary greatly among taxonomic groups and the species 
within a group. Our results highlighted that the unimodal response 
curves (Type I–III) were most frequent among all considered 

F I G U R E  3  Latitudinal distributions and nonlinear trend lines of warming tolerance (WT = CT − Tpref) and safety margin (SM = Tpref − Tav) 
for freshwater species inferred from the temperature variable Tmaxair. CT represents the maximum temperature of a species’ occurrence, 
Tpref the temperature corresponding to the highest probability of occurrence and Tav the average temperature of the current distribution 
range. WT and SM were only computed for species with a unimodal response, that is, responses for which a temperature that maximizes 
the probability of occurrence could be determined. Here, latitude values correspond to the average latitude of each species’ European 
latitudinal range. WT, SM, and average latitude values were determined for (a, b) molluscs, (c, d) fishes, (e, f) plants, (g, h) odonates, and (i, j) 
all taxonomic groups with unimodal response curves combined. Note that crayfish were excluded because of the low frequency of analyzed 
species. Each dot represents the WT and SM of one species in the respective figure
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taxonomic groups and all four temperature variables (Tmeanair—an‐
nual mean air temperature, Tmaxair—maximum air temperature of 
the warmest month, Tmeanwater—annual mean water temperature, 
Tmaxwater—maximum water temperature of the warmest month) 
that were used to model the thermal response (390–463 of 577 
species, i.e., 67.6%–80.2%). High pairwise correlations of the tem‐
perature variables (above 0.8) explain the similarities of the results. 

For species with spatial distribution ranges characterized by sub‐
stantially differing thermal gradients across the used temperature 
metrics, the corresponding thermal response types (TRCs) also 
varied. Species with unimodal response types were most common 
in central Europe, following thus the species richness patterns. 
Namely the species density was higher in central than in northern 
and southern Europe.

F I G U R E  4  Relative frequency per catchment of species with the critical maximum temperature (CT) inferred from Tmeanair that is 
exceeded by the averaged projected temperature of the three climate models MOHC, IPSL, and MPI for the 2050s for (a) molluscs, (b) fishes, 
(c) plants, (d) odonates, and (e) all taxonomic groups combined. The grey area represents either no occurrence or catchments in which the 
CT, that is, the maximum temperature of a species’ occurrence, is not exceeded by the projected temperatures. Note that crayfish were 
excluded because of the low frequency of analyzed species
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Despite the “overarching importance of thermal regimes to 
aquatic life” (Isaak et al., 2017), thermal niches of freshwater species 
are only scarcely studied. For example, Lassalle, Béguer, Beaulaton, 
and Rochard (2008) found unimodal responses using annual tem‐
perature for Acipenser gueldenstaedtii, Acipenser stellatus, Alosa alosa, 
Alosa tanaica, Vimba vimba, and Osmerus eperlanus, corresponding to 
our response type categorization for Tmeanair. The response type 

of the cold‐water specialist brown trout (Salmo trutta, Type III for 
Tmaxwater) coincides with the findings of Isaak et al. (2017), where 
both the multivariate and univariate (using August stream tempera‐
ture as explanatory variable) models showed a unimodal response. 
For the fish species investigated by Logez et al. (2012) using the 
mean air temperature in July, response curves for Tmaxair are differ‐
ent for three fish species (Alburnus alburnus, Rhodeus amarus, Salmo 

F I G U R E  5  Relative frequency per catchment of species with the critical maximum temperature (CT) inferred from Tmaxair that is 
exceeded by the averaged projected temperature of the three climate models MOHC, IPSL, and MPI for the 2050s for (a) molluscs, (b) fishes, 
(c) plants, (d) odonates, and (e) all taxonomic groups combined. The grey area represents either no occurrence or catchments in which the 
CT, that is, the maximum temperature of a species’ occurrence, is not exceeded by the projected temperatures. Note that crayfish were 
excluded because of the low frequency of analyzed species
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trutta). Differences may have resulted from consideration of native 
portions of species ranges by Logez et al. (2012), whereas our study 
considers global species ranges.

Warming tolerances and safety margins for the different tem‐
perature variables showed only marginal differences in the latitu‐
dinal trends. The species‐based warming tolerance increased by 
moving northwards until 55°N, indicating that on average species 
in central Europe had a greater difference between the critical and 
preferred temperature than southern species and thus a greater 
capacity to cope with warming. For high latitude species, no reli‐
able latitudinal relationships above approximately 55°N could be 
given due to a low species number as compared to much larger data 
availability for southern to central Europe. In addition, due to the 
statistical barrier of 50 occurrences at the analyzed scale, many en‐
demic species of the Italian, Iberian, and Balkan Peninsulas with few 
catchment occurrences could not be included for southern parts of 
Europe. Most species in central Europe have a high colonization ca‐
pability, wider distribution ranges and experience greater intra‐an‐
nual variability than species at lower latitudes, which explains their 
warming tolerance. Furthermore, while some specialists of cold 
climates in the far north had also a low warming tolerance com‐
parable to species in the south (e.g., Gasterosteus islandicus native 
to Iceland with WT = 3.8°C and WT = 3.1°C inferred from Tmeanair 
and Tmaxair, respectively), other species with average latitudes lo‐
cated in colder climates (>60°N) had higher warming tolerances. 
High warming tolerance at these latitudes may be an indication of 
species occurrences in areas different from the European ranges. 
For example, the fish species Osmerus dentex (WT = 19°C and 
WT = 14°C inferred from Tmeanair and Tmaxair, respectively) occurs 
at the European scale at an average latitude of 67°N, but is also 
found at lower latitudes, for example, in Japan or Korea. Despite 
the fact that WT increased with latitude up to about 55°N, one has 
to be cautious with the interpretation of this result as the preferred 
temperature, Tpref, might have been already exceeded for some spe‐
cies (negative safety margin).

Shuter and Post (1990) and Brazner et al. (2005) found that 
temperature is one of the main drivers of the spatial distribution 
of stream fish, suggesting high vulnerability to future temperature 
rise. In our study, future temperature predictions showed that 
especially fish will be affected critically by rising temperatures. 
Fishes spend their entire life cycle in the water. Consequently, they 
depend on the water temperature throughout all life stages, in con‐
trast to merolimnic species (e.g., odonates) that are connected to 
the waters only in early stages of their life cycle, having the ability 
to escape water temperature rises in critical periods. Additionally, 
sensitivity of fishes to temperature changes (Magnuson, Crowder, 
& Medvick, 1979), in terms of survival and growth, underline the 
threat fishes are facing in the future. Potential movement is con‐
nected with a maximization of the growth rate (Jobling, 1981) and 
metabolic power available for reproduction and activity (Kelsch, 
1996) and may vary by life‐history strategies, for example, migra‐
tory and sedentary fish. Considering all taxonomic groups, espe‐
cially the Balkans, the western area of the Caspian Sea and the 

coastal areas of the Mediterranean Sea like southern Portugal 
and Spain or Italy and Greece will be affected according to the 
temperature projections. Additional changes in the marine realm 
(Lejeusne, Chevaldonne, Pergent‐Martini, Boudouresque, & Perez, 
2010) demonstrate the ongoing and upcoming changes in the 
Mediterranean area. More than 25% of the considered species 
in the catchments of these regions had a CT below the predicted 
temperature of the 2050s. Some species can adapt, more or less 
fast, to a certain extent by physiological adjustment (Johnson & 
Kelsch, 1998) or behavioral thermoregulation (Heggenes, Krog, 
Lindås, Dokk, & Bremnes, 1993), while another option for escap‐
ing or mitigating these threatening conditions is movement to 
suitable areas. However, especially in the regions of the Iberian 
Peninsula and the Mediterranean area, where thermal alteration 
impacts will be the strongest, endemic, or restricted‐range species 
prevail. The latter suggest an urgent need for further research on 
species’ sensitivity to climate warming; in particular, effects of ris‐
ing temperatures have to be investigated in the context of species 
thermal properties, with the focus on species with currently small 
thermal ranges, and dispersal traits paired with habitat suitability 
and connectivity.

Strengths and weaknesses of statistical models describing spe‐
cies distributions have been extensively evaluated in the literature 
(see, e.g., Franklin, 2009). Considering our study, the thermal re‐
sponse curves and thus the occurrence probabilities along thermal 
gradients resulting from GAMs should be viewed in the context of the 
analyzed scale (catchments) and statistical approach. Consequently, 
different thermal responses may result from local scale data and 
for species with few occurrences (n <50) thermal responses could 
not be captured. Thus, high‐endemism areas (peri‐Mediterranean 
region and Balkans) are in need of additional extensive analyses at 
finer scales. Furthermore, our thermal response curves do not con‐
sider the above discussed possibility of adaption to environmental 
changes. We considered annual mean water temperature and the 
maximum water temperature of the warmest month as a transfor‐
mation of the corresponding air temperature via a global relation‐
ships model (Punzet et al., 2012). The key shortcoming of the latter 
model is that it solely depends on air temperature and thus ignores 
effects such as catchment heterogeneity, shading, or dissolved ox‐
ygen concentration. Although thermal responses give a quantifi‐
cation of thermal habitats (Hester & Doyle, 2011) and a necessary 
assessment of the impact of future global warming (Vetaas, 2000), 
they do not account for other environmental and community influ‐
ences. It is important to keep in mind that species do not respond 
to a single environmental factor (Økland, 1992). Therefore, our re‐
sults on thermal properties and responses should be viewed in the 
context of complex interactions of different factors. For example, 
Verberk, Durance, Vaughan, and Ormerod (2016) outlined effects of 
stream oxygenation on thermal tolerances, while Arismendi, Safeeq, 
Johnson, Dunham, and Haggerty (2012) found that the combina‐
tion of flow reduction and temperature increase could lead to an 
exacerbation of the reduction in cold‐water species habitat. The 
latter leads to a process known as “thermophilization,” describing 
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the increasing dominance of warm‐water species (De Frenne et al., 
2013). As such, amplifications of climate change related impacts 
caused by anthropogenic pressures, for example, intensified eutro‐
phication of lake catchments and especially the disappearance of 
water bodies and modification of habitats (Nowakowski, Thompson, 
Donnelly, & Todd, 2017) should be further considered in the con‐
text of the potential future species distributions. New generations 
of species distribution models aim at combining abiotic and biotic 
factors, but need detailed and thus rarely available ecological in‐
formation about species for reliable projections (Singer et al., 2016; 
Urban et al., 2016).

In summary, future temperatures are expected to exceed the 
current maximum temperature of occurrence of species living 
in coastal areas of the Mediterranean Sea, the Balkans, and the 
western area of the Caspian Sea. Synergetic effects of rising tem‐
peratures and other influencing factors, such as restricted catch‐
ment connectivity or anthropogenic disturbances in these areas, 
will additionally aggravate the viability of populations, but the 
whole scope of climate change impacts remains difficult to grasp. 
However, given the high vulnerability of freshwater ecosystems to 
climate change, re‐assessments of the existing conservation areas 
and integrated management practices that facilitate species mi‐
gration are urgently needed. Furthermore, for keeping the thermal 
habitat suitability of European catchments within species toler‐
ance limits, a renewed effort to slow down the pace of climate 
change is essential.

ACKNOWLEDG MENTS

Current research is funded by the DFG Grant MA 6593/2‐1. Species 
data used in this study were obtained from the EU‐funded research 
project BioFresh (https://www.freshwaterbiodiversity.eu/).

AUTHOR ' S CONTRIBUTION

OK and DM designed the study and collected the data. OK ran the 
models and prepared the figures and tables with input from DH, KF, 
and DM. OK and DM wrote the first draft of the manuscript. All au‐
thors contributed to revisions.

DATA ACCE SSIBILIT Y

Data on European freshwater species were collected during the 
EU‐funded research project BioFresh and are available at https://
www.iucnredlist.org/technical-documents/spatial-data. More in‐
formation is available at https://project.freshwaterbiodiversity.
eu/.

Gridded climate data for the second half of the 20th century 
were extracted from the WorldClim data set and are available at 
www.worldclim.org.

Data on future climate projections were gathered from the CIAT 
(International Center for Tropical Agriculture) dataset available at 
www.ccafs-climate.org.

ORCID

Oskar Kärcher   http://orcid.org/0000-0002-9418-6074 

Danijela Markovic   http://orcid.org/0000-0002-7808-211X 

R E FE R E N C E S

Allouche, O., Tsoar, A., & Kadmon, R. (2006). Assessing the accuracy 
of species distribution models: Prevalence, kappa and the true skill 
statistic (TSS). Journal of Applied Ecology, 43, 1223–1232. https://doi.
org/10.1111/j.1365-2664.2006.01214.x

Arismendi, I., Safeeq, M., Johnson, S. L., Dunham, J. B., & Haggerty, 
R. (2012). Increasing synchrony of high temperature and low flow 
in western North American streams: Double trouble for cold‐
water biota? Hydrobiologia, 712, 61–70. https://doi.org/10.1007/
s10750-012-1327-2

Brazner, J. C., Tanner, D. K., Detenbeck, N. E., Batterman, S. L., Stark, S. 
L., Jagger, L. A., & Snarski, V. M. (2005). Regional, watershed, and 
site‐specific environmental influences on fish assemblage struc‐
ture and function in western Lake Superior tributaries. Canadian 
Journal of Fisheries and Aquatic Sciences, 62, 1254–1270. https://doi.
org/10.1139/f05-031

Carrascal, L. M., Villén‐Pérez, S., & Palomino, D. (2016). Preferred tem‐
perature and thermal breadth of birds wintering in peninsular Spain: 
The limited effect of temperature on species distribution. PeerJ, 4, 
e2156. https://doi.org/10.7717/peerj.2156

Chen, I. C., Hill, J. K., Ohlemueller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid 
range shifts of species associated with high levels of climate warming. 
Science, 333, 1024–1026. https://doi.org/10.1126/science.1206432

Coudon, C., & Gégout, J. C. (2007). Quantitative prediction of the dis‐
tribution and abundance of Vaccinium myrtillus with climatic and 
edaphic factors. Journal of Vegetation Science, 18, 517–524. https://
doi.org/10.1111/j.1654-1103.2007.tb02566.x

De Frenne, P., Rodríguez‐Sánchez, F., Coomes, D. A., Baeten, L., 
Verstraeten, G., Vellend, M., … Verheyen, K. (2013). Microclimate 
moderates plant responses to macroclimate warming. Proceedings 
of the National Academy of Sciences of the United States of America, 
110(46), 18561–18565. https://doi.org/10.1073/pnas.1311190110

De Jong, P., & Heller, G. Z. (2008). Generalized linear models for insurance 
data. Cambridge, UK. Cambridge University Press.

DEFRA (2013). Catchment based approach: Improving the quality of our 
water environment. Department for Environment, Food & Rural Affairs. 
Policy paper Retrieved from: https://www.gov.uk/government/
publications/catchment-based-approach-improving-the-quali‐
ty-of-our-water-environment

Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, 
C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming 
on terrestrial ectotherms across latitude. Proceedings of the National 
Academy of Sciences of the United States of America, 105, 6668–6672. 
https://doi.org/10.1073/pnas.0709472105

Domisch, S., Araújo, M. B., Bonada, N., Pauls, S. U., Jähnig, S. C., & Haase, 
P. (2013). Modelling distribution in European stream macroinver‐
tebrates under future climates. Global Change Biology, 19, 752–762. 
https://doi.org/10.1111/gcb.12107

Dormann, C. F., Purschke, O., Márquez, J. R. G., Lautenbach, S., & 
Schröder, B. (2008). Components of uncertainty in species distri‐
bution analysis: A case study of the great grey shrike. Ecology, 89, 
3371–3386. https://doi.org/10.1890/07-1772.1

Elliott, J. M., & Allonby, J. D. (2013). An experimental study of ontoge‐
netic and seasonal changes in the temperature preferences of unfed 
and fed brown trout, Salmo trutta. Freshwater Biology, 58, 1840–1848.

Fagan, W. F. (2002). Connectivity, fragmentation, and extinction risk 
in dendritic metapopulations. Ecology, 83, 3243–3249. https://doi.
org/10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2

https://www.freshwaterbiodiversity.eu/
https://www.iucnredlist.org/technical-documents/spatial-data
https://www.iucnredlist.org/technical-documents/spatial-data
https://project.freshwaterbiodiversity.eu/
https://project.freshwaterbiodiversity.eu/
www.worldclim.org
www.ccafs-climate.org
http://orcid.org/0000-0002-9418-6074
http://orcid.org/0000-0002-9418-6074
http://orcid.org/0000-0002-7808-211X
http://orcid.org/0000-0002-7808-211X
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1111/j.1365-2664.2006.01214.x
https://doi.org/10.1007/s10750-012-1327-2
https://doi.org/10.1007/s10750-012-1327-2
https://doi.org/10.1139/f05-031
https://doi.org/10.1139/f05-031
https://doi.org/10.7717/peerj.2156
https://doi.org/10.1126/science.1206432
https://doi.org/10.1111/j.1654-1103.2007.tb02566.x
https://doi.org/10.1111/j.1654-1103.2007.tb02566.x
https://doi.org/10.1073/pnas.1311190110
https://www.gov.uk/government/publications/catchment-based-approach-improving-the-quality-of-our-water-environment
https://www.gov.uk/government/publications/catchment-based-approach-improving-the-quality-of-our-water-environment
https://www.gov.uk/government/publications/catchment-based-approach-improving-the-quality-of-our-water-environment
https://doi.org/10.1073/pnas.0709472105
https://doi.org/10.1111/gcb.12107
https://doi.org/10.1890/07-1772.1
https://doi.org/10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2
https://doi.org/10.1890/0012-9658(2002)083[3243:CFAERI]2.0.CO;2


     |  123KÄRCHER et al.

Fielding, A. H., & Bell, J. F. (1997). A review of methods for the assess‐
ment of prediction errors in conservation presence/ absence mod‐
els. Environmental Conservation, 24, 38–49. https://doi.org/10.1017/
S0376892997000088

Franklin, J. (2009). Mapping species distributions: Spatial inference and pre-
diction. New York, NY: Cambridge University Press.

Frost, A. J., Thomson, J. S., Smith, C., Burton, H. C., Davis, B., Watts, P. 
C., & Sneddon, L. U. (2013). Environmental change alters personal‐
ity in the rainbow trout, Oncorhynchus mykiss. Animal Behaviour, 85, 
1199–1207. https://doi.org/10.1016/j.anbehav.2013.03.006

Gauch, H. G., & Whittaker, R. H. (1972). Coenocline Simulation. Ecology, 
53, 446–451. https://doi.org/10.2307/1934231

Hastie, T. (2016). gam: Generalized Additive Models R package version 1.14.
Heggenes, J., Krog, O. M. W., Lindås, O. R., Dokk, J. G., & Bremnes, T. 

(1993). Homeostatic behavioural responses in a changing environ‐
ment: Brown trout (Salmo trutta) become nocturnal during winter. 
Journal of Animal Ecology, 62, 295–308. https://doi.org/10.2307/5361

Hester, E. T., & Doyle, M. W. (2011). Human impacts to river temperature 
and their effects on biological processes: A quantitative synthesis. 
Journal of the American Water Resources Association, 47, 571–587.

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). 
Very high resolution interpolated climate surfaces for global land 
areas. International Journal of Climatology, 25, 1965–1978. https://
doi.org/10.1002/joc.1276

Hosmer, D. W., & Lemeshow, S. (2000). Applied logistic regression. New 
York, NY: Wiley.

Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of mod‐
els for species response analysis. Journal of Vegetation Science, 4, 
37–46. https://doi.org/10.2307/3235732

IPCC (2013). Climate Change 2013: The Physical Science Basis. 
Contribution of Working Group I to the Fifth Assessment Report of the 
Intergovernmental Panel on Climate Change. New York, NY: Cambridge 
University Press.

Isaak, D. J., Wenger, S. J., & Young, M. K. (2017). Big biology meets mi‐
croclimatology: Defining thermal niches of ectotherms at landscape 
scales for conservation planning. Ecological Applications, 27, 977–
990. https://doi.org/10.1002/eap.1501

IUCN (2013). IUCN Red List of Threatened Species. Version 2013.2. 
IUCN (2014). Guidelines for Using the IUCN Red List Categories and Criteria. 

Version 11. Prepared by the Standards and Petitions Subcommittee.
Jansen, F., & Oksanen, J. (2013). How to model species responses along eco‐

logical gradients – Huisman–Olff–Fresco models revisited. Journal of 
Vegetation Science, 24, 1108–1117. https://doi.org/10.1111/jvs.12050

Jimenez‐Valverde, A., & Lobo, J. M. (2007). Threshold criteria for con‐
version of probability of species presence to either‐or presence‐ab‐
sence. Acta Oecologica, 31(3), 361–369. https://doi.org/10.1016/j.
actao.2007.02.001

Jobling, M. (1981). Temperature tolerance and the final preferen‐
dum – rapid methods for the assessment of optimum growth 
temperatures. Journal of Fish Biology, 19, 439–455. https://doi.
org/10.1111/j.1095-8649.1981.tb05847.x

Johnson, J. A., & Kelsch, S. W. (1998). Effects of evolutionary thermal 
environment on temperature‐preference relationships in fishes. 
Environmental Biology of Fishes, 53, 447–458.

Kelsch, S. W. (1996). Temperature selection and performance by bluegills: 
Evidence for selection in response to available power. Transactions of 
the American Fisheries Society, 125, 948–955. https://doi.org/10.1577
/1548-8659(1996)125<0948:TSAPBB>2.3.CO;2

Lassalle, G., Béguer, M., Beaulaton, L., & Rochard, E. (2008). Diadromous 
fish conservation plans need to consider global warming issues: An 
approach using biogeographical models. Biological Conservation, 
141(4), 1105–1118. https://doi.org/10.1016/j.biocon.2008.02.010

Lawesson, J. E., Fosaa, A. M., & Olsen, E. (2003). Calibration of Ellenberg 
indicator values for the Faroe Islands. Applied Vegetation Science, 6, 
53–62. https://doi.org/10.1111/j.1654-109X.2003.tb00564.x

Lehner, B., & Grill, G. (2013). Global river hydrography and network rout‐
ing: baseline data and new approaches to study the world’s large 
river systems. Hydrological Processes, 27, 2171–2186.

Lejeusne, C., Chevaldonne, P., Pergent‐Martini, C., Boudouresque, C. 
F., & Perez, T. (2010). Climate change effects on a miniature ocean: 
The highly diverse, highly impacted Mediterranean. Sea Trends 
in Ecology & Evolution, 25(4), 250–260. https://doi.org/10.1016/j.
tree.2009.10.009

Lévêque, C., Oberdorff, T., Paugy, D., Stiassny, M. L. J., & Tedesco, P. A. 
(2008). Global diversity of fish (Pisces) in freshwater. Hydrobiologia, 
595, 545–567. https://doi.org/10.1007/s10750-007-9034-0

Logez, M., Bady, P., & Pont, D. (2012). Modelling the habitat re‐
quirement of riverine fishspecies at the European scale: 
Sensitivity to temperature and precipitation and associated un‐
certainty. Ecology of Freshwater Fish, 21, 266–282. https://doi.
org/10.1111/j.1600-0633.2011.00545.x

Magnuson, J. J., Crowder, L. B., & Medvick, P. A. (1979). Temperature as 
an ecological resource. American Zoologist, 19, 331–343. https://doi.
org/10.1093/icb/19.1.331

Manel, S., Williams, H. C., & Ormerod, S. J. (2001). Evaluating pres‐
ence‐absence models in ecology: The need to account for prev‐
alence. Journal of Applied Ecology, 38, 921–931. https://doi.
org/10.1046/j.1365-2664.2001.00647.x

Mantyka‐Pringle, C. S., Martin, T. G., Moffatt, D. B., Linke, S., & Rhodes, 
J. R. (2014). Understanding and predicting the combined effects of 
climate change and land‐use change on freshwater macroinverte‐
brates and fish. Journal of Applied Ecology, 51, 572–581. https://doi.
org/10.1111/1365-2664.12236

Markovic, D., Carrizo, S. F., Kärcher, O., Walz, A., & David, J. N. W. (2017). 
Vulnerability of European freshwater catchments to climate change. 
Global Change Biology, 23, 3567–3580. https://doi.org/10.1111/
gcb.13657

Markovic, D., Scharfenberger, U., Schmutz, S., Pletterbauer, F., & Wolter, 
C. (2013). Variability and alterations of water temperatures across 
the Elbe and Danube River Basins. Climatic Change, 119, 375–389. 
https://doi.org/10.1007/s10584-013-0725-4

Mohseni, O., Stefan, H. G., & Eriksson, T. R. (1998). A nonlinear regression 
model for weekly stream temperatures. Water Resources Research, 
34, 2685–2692. https://doi.org/10.1029/98WR01877

Nowakowski, A. J., Thompson, M. E., Donnelly, M. A., & Todd, B. D. (2017). 
Amphibian sensitivity to habitat modification is associated with pop‐
ulation trends and species traits. Global Ecology and Biogeography, 26, 
700–712. https://doi.org/10.1111/geb.12571

Økland, R. H. (1992). Studies in SE Fennoscandian mires: Relevance to 
ecological theory. Journal of Vegetation Science, 3, 279–284. https://
doi.org/10.2307/3235693

Oksanen, J., & Minchin, P. R. (2002). Continuum theory revisited: 
What shape are species responses along ecological gradients? 
Ecological Modelling, 157, 119–129. https://doi.org/10.1016/
S0304-3800(02)00190-4

Parmesan, C. (2006). Ecological and evolutionary responses to re‐
cent climate change. Annual Review of Ecology, Evolution, and 
Systematics, 37, 637–669. https://doi.org/10.1146/annurev.
ecolsys.37.091305.110100

Punzet, M., Voß, F., Voß, A., Kynast, E., & Bärlund, I. (2012). A global 
approach to assess the potential impact of climate change on stream 
water temperatures and related in‐stream first‐order decay rates. 
Journal of Hydrometeorology, 13, 1052–1065. https://doi.org/10.1175/
JHM-D-11-0138.1

Pyne, M. I., & Poff, N. L. (2017). Vulnerability of stream community 
composition and function to projected thermal warming and hydro‐
logic change across ecoregions in the western United States. Global 
Change Biology, 23, 77–93. https://doi.org/10.1111/gcb.13437

R Development Core Team. (2017). A Language and environment for statiscal 
computing. Vienna, Austria R Foundation for Statistical Computing.

https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1017/S0376892997000088
https://doi.org/10.1016/j.anbehav.2013.03.006
https://doi.org/10.2307/1934231
https://doi.org/10.2307/5361
https://doi.org/10.1002/joc.1276
https://doi.org/10.1002/joc.1276
https://doi.org/10.2307/3235732
https://doi.org/10.1002/eap.1501
https://doi.org/10.1111/jvs.12050
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1016/j.actao.2007.02.001
https://doi.org/10.1111/j.1095-8649.1981.tb05847.x
https://doi.org/10.1111/j.1095-8649.1981.tb05847.x
https://doi.org/10.1577/1548-8659(1996)125<0948:TSAPBB>2.3.CO;2
https://doi.org/10.1577/1548-8659(1996)125<0948:TSAPBB>2.3.CO;2
https://doi.org/10.1016/j.biocon.2008.02.010
https://doi.org/10.1111/j.1654-109X.2003.tb00564.x
https://doi.org/10.1016/j.tree.2009.10.009
https://doi.org/10.1016/j.tree.2009.10.009
https://doi.org/10.1007/s10750-007-9034-0
https://doi.org/10.1111/j.1600-0633.2011.00545.x
https://doi.org/10.1111/j.1600-0633.2011.00545.x
https://doi.org/10.1093/icb/19.1.331
https://doi.org/10.1093/icb/19.1.331
https://doi.org/10.1046/j.1365-2664.2001.00647.x
https://doi.org/10.1046/j.1365-2664.2001.00647.x
https://doi.org/10.1111/1365-2664.12236
https://doi.org/10.1111/1365-2664.12236
https://doi.org/10.1111/gcb.13657
https://doi.org/10.1111/gcb.13657
https://doi.org/10.1007/s10584-013-0725-4
https://doi.org/10.1029/98WR01877
https://doi.org/10.1111/geb.12571
https://doi.org/10.2307/3235693
https://doi.org/10.2307/3235693
https://doi.org/10.1016/S0304-3800(02)00190-4
https://doi.org/10.1016/S0304-3800(02)00190-4
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1175/JHM-D-11-0138.1
https://doi.org/10.1175/JHM-D-11-0138.1
https://doi.org/10.1111/gcb.13437


124  |     KÄRCHER et al.

Shuter, B. J., & Post, J. R. (1990). Climate, population variability, and 
the zoogeography of temperate fishes. Transactions of the American 
Fisheries Society, 119, 314–336.

Singer, A., Johst, K., Banitz, T., Fowler, M. S., Groeneveld, J., Gutiérrez, A. 
G., … Travis, J. M. J. (2016). Community dynamics under environmen‐
tal change: How can next generation mechanistic models improve 
projections of species distributions? Ecological Modelling, 326, 63–74. 
https://doi.org/10.1016/j.ecolmodel.2015.11.007

Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predict geo‐
graphical range size: A general ecological pattern. Ecological Letters, 
16, 1104–1114.

Strayer, D. L., & Dudgeon, D. (2010). Freshwater biodiversity con‐
servation: Recent progress and future challenges. Journal of the 
North American Benthological Society, 29, 344–358. https://doi.
org/10.1899/08-171.1

Swets, J. A. (1988). Measures of the accuracy of diagnostic systems. 
Science, 240, 1285–1293.

Urban, M. C., Bocedi, G., Hendry, A. P., Mihoub, J. B., Pe’er, G., Singer, A., 
& Travis, J. M. J. (2016). Improving the forecast for biodiversity under 
climate change. Science, 353(6304), aad8466–aad8466. https://doi.
org/10.1126/science.aad8466

Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., 
Hibbard, K., … Rose, S. K. (2011). The representative concentration 
pathways: An overview. Climatic Change, 109, 5–31. https://doi.
org/10.1007/s10584-011-0148-z

Verberk, W. C. E. P., Durance, I., Vaughan, I. P., & Ormerod, S. J. (2016). 
Field and laboratory studies reveal interacting effects of stream oxy‐
genation and warming on aquatic ectotherms. Global Change Biology, 
22, 1769–1778. https://doi.org/10.1111/gcb.13240

Vetaas, O. (2000). Comparing species temperature response curves: 
Population density versus second‐hand data. Journal of Vegetation 
Science, 11(5), 659–666. https://doi.org/10.2307/3236573

Vornanen, M., Haverinen, J., & Egginton, S. (2014). Acute heat toler‐
ance of cardiac excitation in the brown trout (Salmo trutta fario). 
The Journal of Experimental Biology, 217, 299–309. https://doi.
org/10.1242/jeb.091272

Wiens, J. J. (2011). The niche, biogeography and species interactions. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 
366(1576), 2336–2350. https://doi.org/10.1098/rstb.2011.0059

Woodward, G., Perkins, D. M., & Brown, L. E. (2010). Climate change 
and freshwater ecosystems impacts across multiple levels of orga‐
nization. Philosophical Transactions of the Royal Society B: Biological 
Sciences, 365, 2093–2106. https://doi.org/10.1098/rstb.2010.0055

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article.  

How to cite this article: Kärcher O, Hering D, Frank K, 
Markovic D. Freshwater species distributions along thermal 
gradients. Ecol Evol. 2019;9:111–124. https://doi.org/10.1002/
ece3.4659

https://doi.org/10.1016/j.ecolmodel.2015.11.007
https://doi.org/10.1899/08-171.1
https://doi.org/10.1899/08-171.1
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1126/science.aad8466
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1007/s10584-011-0148-z
https://doi.org/10.1111/gcb.13240
https://doi.org/10.2307/3236573
https://doi.org/10.1242/jeb.091272
https://doi.org/10.1242/jeb.091272
https://doi.org/10.1098/rstb.2011.0059
https://doi.org/10.1098/rstb.2010.0055
https://doi.org/10.1002/ece3.4659
https://doi.org/10.1002/ece3.4659

