Skip to main content
. 2018 Dec 14;9(1):125–140. doi: 10.1002/ece3.4679

Table 2.

Response to CO2 enrichment reported in the literature for fleshy macroalgal species, regarding growth, photosynthesis, and δ13C values (“I” = increase, “D” = decrease, “NR” = no response, “–” = unreported)

Phylum and species Enriched pCO2 level (μatm) Response to CO2 enrichment Putative carbon uptake strategy Reference
Growth Photosynthesis δ13C
Rhodophyta (Red algae)
Amansia rhodantha ~1,000 NR Non‐CCM [1]
Chondrus crispus ~800 NR & I NR, D & I CCM [2]
Craspedocarpus ramentaceus ~1,000 NR NR NR Non‐CCM current study
Gelidium crinale ~750 NR CCM [3]
Gracilaria chilensis 650 & 1,250 I I CCM [4]
G. conferta ~750 NR CCM [3]
G. secundata I CCM [5]
G. tenuistipitata D D CCM [6]
G. tikvahiae (pH = 6.0) NR I CCM [7]
Gracilariopsis lemaneiformis* ~700, ~1,000 & ~1,400 NR & I NR & I CCM [8–12]
Grateloupia cornea 900 & 1,900 D D CCM [13]
Hypnea cornuta ~750 NR CCM [3]
H. musciformis ~750 D CCM [3]
H. spinella 700 & 1,600 I I CCM [14]
Laurencia intricata ~1,000 NR I D CCM [15]
Lomentaria articulata 700–1,800 (range) I D Non‐CCM [16]
L. australis ~1,000 I NR D CCM current study
Melanothamnus harveyi ~800 & ~1,500 NR & I NR & I CCM [17]
Palmaria palmata ~1,000 NR & D D CCM [18,19]
Phycodrys rubens ~1,000 NR Possibly non‐CCM [20]
Plocamium cartilagineum 900 D & I CCM [21]
Porphyra linearis ~750 D NR CCM [22]
Ptilota gunneri ~1,000 NR Possibly non‐CCM [20]
Pterocladiella capillacea ~750 NR CCM [3]
Pyropia haitanensis 1,000 I D & I CCM [23,24]
P. leucosticta D I CCM [25]
P. yezoensis 1,000 & 1600 I I CCM [26]
Chlorophyta (Green algae)
Chaetomorpha linum (pH = 6.73) I CCM [27]
Cladophora coelothrix (pH = 6.73) I CCM [27]
C. patentiramea (pH = 6.73) NR CCM [27]
C. vagabunda (pH = 6.0) I I Possibly non‐CCM [7]
Codium fragile 900 & 1,900 NR NR CCM [13]
Monostroma grevillei var. arctica ~1,000 NR CCM [20]
Ulva australis* ~900 & ~1,000 & ~1,900 NR & I NR & I CCM [13,28–30]
U. lactuca ~700 NR NR CCM [10,31]
U. linza ~750 & ~1,000 NR D CCM [3,32]
U. prolifera ~1,000 I NR CCM [33–35]
U. pulchra I CCM [36]
U. reticulata NR CCM [36]
U. rigida* ~1,200 NR & I NR & D NR CCM [36–39]
Ochrophyta (Brown algae)
Alaria esculenta* ~1,000 & ~1,300 NR, D & I NR D CCM [20,40,41]
Chnoospora implexa ~1,000 NR I D CCM [15]
Desmarestia aculeata ~1,000 & ~1,300 D & I NR & I D & NR CCM [20,40,42]
Dictyopteris undulata 900 I CCM [21]
Dictyota bartayresiana ~1,000 NR CCM [1]
Fucus vesiculosus ~1,200 NR & D CCM [43–45]
F. vesiculosus f mytili 1,000 I CCM [46]
Laminaria solidungula ~1,200 NR NR NR CCM [47]
Lobophora variegata ~1,000 NR CCM [1]
Macrocystis pyrifera ~1,200 NR NR NR CCM [48]
Nereocystis luetkeana ~3,000 I I CCM [49,50]
Padina pavonica ~750 NR CCM [3]
Saccharina japonica ~1800 NR I CCM [51]
S. latissima* ~1,000 & ~1,200 & ~3,000 NR, D & I NR & I NR & D CCM [18,41,47,49,52]
Saccorhiza dermatodea ~1,000 I CCM [20]
Sargassum fusiforme* ~700 & ~1,000 D & I NR & I CCM [53–55]
S. horneri 900 & 1,900 NR & I NR CCM [13,21]
S. muticum 1,000 I I CCM [56]
S. thunbergii 900 & 1,900 I I CCM [13]
S. vulgare ~750 NR CCM [3]
Turbinaria ornata ~1,000 NR NR NR CCM [15]

The elevated pCO2 level (which was compared to ambient control levels in each study), the carbon uptake strategy (non‐CCM or CCM), and references are also noted. * indicates species of which detailed physiological and biochemical regulatory mechanisms are known.

References: [1] Ho and Carpenter (2017); [2] Sarker, Bartsch, Olischläger, Gutow, and Wiencke (2013); [3] Israel and Hophy (2002); [4] Gao et al. (1993); [5] Lignell and Pedersén (1989); [6] García‐Sánchez et al. (1994); [7] Rivers and Peckol (1995); [8] Chen, Zou, Zhu, and Yang (2017); [9] Xu, Zou, and Gao (2010); [10] Liu, Zou, and Yang (2018); [11] Zou and Gao (2009); [12] Kang, Kambey, Shen, Yang, and Chung (2017); [13] Kim et al. (2016); [14] Suárez‐Álvarez, Gómez‐Pinchetti, and García‐Reina (2012); [15] Bender‐Champ, Diaz‐Pulido, and Dove (2017); [16] Kübler et al. (1999); [17] Olischläger and Wiencke (2013); [18] Nunes et al. (2016); [19] Sebök, Herppich, and Hanelt (2017); [20] Gordillo, Carmona, Viñegla, Wiencke, and Jiménez (2016); [21] Kram et al. (2016); [22] Israel, Katz, Dubinsky, Merrill, and Friedlander (1999); [23] Liu and Zou (2015a); [24] Xu, Chen, et al. (2017); [25] Mercado, Javier, Gordillo, Xavier Niell, and Figueroa (1999); [26] Gao et al. (1991); [27] de Paula Silva, Paul, Nys, and Mata (2013); [28] Reidenbach et al. (2017); [29] Kang and Chung (2017); [30] Kang and Kim (2016); [31] Liu and Zou (2015b); [32] Gao et al. (2018); [33] Xu and Gao (2012); [34] Li, Xu, and He (2016); [35] Li, Zhong, Zheng, Zhuo, and Xu (2018); [36] Björk, Haglund, Ramazanov, and Pedersén (1993); [37] Gordillo, Niell, and Figueroa (2001); [38] Rautenberger et al. (2015); [39] Gordillo, Figueroa, and Niell (2003); [40] Iñiguez et al. (2016a); [41] Gordillo et al. (2015); [42] Iñiguez, Heinrich, Harms, and Gordillo (2017); [43] Gutow et al. (2014); [44] Kawamitsu and Boyer (1999); [45] Ober and Thornber (2017); [46] Mensch et al. (2016); [47] Iñiguez et al, (2016b); [48] Fernández et al. (2015); [49] Swanson and Fox (2007); [50] Thom (1996); [51] Kang and Chung (2018); [52] Olischläger, Iñiguez, Koch, Wiencke, and Gordillo (2017); [53] Zou (2005); [54] Zou, Gao, and Luo (2011); [55] Jiang, Zou, Lou, and Gong (2018); [56] Xu, Gao, Gao, Xu, and Wu (2017).